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Natural gums and mucilages from plant-derived polysaccharides are potential candidates for a tissue-
engineering scaffold by their ability of gelation and biocompatibility. Herein, we utilized Glucuronoxylan-
based quince seed hydrogel (QSH) as a scaffold for tissue engineering applications. Optimization of QSH ge-
lation was conducted by varying QSH and crosslinker glutaraldehyde (GTA) concentrations. Structural
characterization of QSH was done by Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, mor-
phological and mechanical investigation of QSH was performed by Scanning Electron Microscopy (SEM)
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Hydrocolloid tachment. Biocompatibility of QSH was confirmed by culturing NIH-3T3 mouse fibroblast cells on it. Cell vi-

ability and proliferation results revealed that optimum parameters for cell viability were 2 mg mL™~" of QSH
and 0.03 M GTA. SEM and DAPI staining results indicated the formation of spheroids with a diameter of ap-
proximately 300 um. Furthermore, formation of extracellular matrix (ECM) microenvironment was con-
firmed with the Collagen Type-I staining. Here, it was demonstrated that the fabricated QSH is a
promising scaffold for 3D cell culture and tissue engineering applications provided by its highly porous
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structure, remarkable swelling capacity and high biocompatibility.
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1. Introduction

In recent years, hydrogels emerged as promising scaffold mate-
rials in 3D cell culture and tissue engineering field, since they are
closely mimicking ECM structure and function [1-3]. Both natural
and synthetic polymers have been developed and used in tissue en-
gineering applications [1,4-9]. However synthetic polymers often
exhibit toxic and non-biocompatible properties, while natural poly-
mers provide more suitable microenvironment for cellular studies
[5,10]. Polysaccharides are one of the biggest clusters of natural poly-
mers and an example of natural polymers with the hydrogel forming
ability. They are widely used in food industry [11-13] as; gelling
agents, stabilizers, emulsifiers, thickeners, and in medical/pharma-
ceutical industry [14-16] as; gelling agents, coatings, biofilms, and
as a wound dressing. Their biocompatibility, biological activity, bio-
degradability, and hydrogel forming ability make them a valuable
biomaterial for tissue engineering [5,17-19]. Alginate [20], cellulose
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[21], hyaluronic acid [22], chitosan [23], xanthan gum [15], guar gum
[15], carrageenan [5,15], dextran [15], and gellan gum [15,17] are the
most abundant polysaccharide types that are used as a scaffold in tis-
sue engineering.

Plants seeds are one of the most common sources of plant-based
polysaccharides. They contain high-molecular weight polysaccharides
that form hydrocolloids [24,25], which are usually water-soluble. Gela-
tion ability makes hydrocolloids suitable materials for varied applica-
tions in food, pharmaceutical, and medical industry. As biomaterials,
hydrocolloids demonstrate excellent properties such as; high swelling
capacity, bioactivity, biocompatibility, biodegradability, having antioxi-
dant and anti-inflammatory features [15]. Quince (Rosaceae family) is a
small, yellow fruit that is native to West Asia and Middle East regions,
and it has been heavily used in traditional medicine as well as in phar-
maceutical industry. Quince seed is an important source of hydrocol-
loid/hydrogel that is composed of mostly cellulose and hydrolysable
polysaccharides such as glucuronoxylan [26-28], unsaturated fatty
acids [29] and amino acids [29]. Quince seed hydrocolloid is richer in
terms of polysaccharide content and has a higher molecular weight
[11] than other commercial hydrocolloids like gellan gum [30], xanthan
gum [31], guar gum [32], and locust bean gum [33]. Polysaccharide-rich
QSH has outstanding mechanical and biological properties that make it
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a valuable and potential source as a biomaterial for medical applica-
tions. Although there are numerous studies on structural, physicochem-
ical and mechanical properties of QSH [11,24,34], it's potential as a
biomaterial has been under-evaluated and it has not been utilized in tis-
sue engineering yet.

In this study, we aim to demonstrate the potential of QSH as a
novel scaffold for tissue engineering application. For this aim, the
gelation capacity of water-extracted QSH and its crosslinking ability
with GTA was investigated. Chemical, structural and morphological
characterization of QSH was done through ATR-FTIR, SEM and AFM
analysis, respectively. Furthermore, cytotoxicity, cell viability, and
proliferation were investigated through NIH-3T3 fibroblast cell cul-
ture to evaluate biocompatibility of QSH. We demonstrated the po-
tential of QSH as a scaffold for 3D cell culture and tissue engineering
applications.

2. Materials and methods
2.1. Preparation and gelation optimization of QSH

The QSH was prepared based on previous reports [25-29,34,35]
with some modifications. Quince fruits from Izmir/Turkey were
used, and seeds were separated from fresh fruits. Quince seeds
were dried at room temperature approximately for a week. Dried
seeds were gently crashed; white colored inner side of the seeds
were removed with the help of forceps and brown colored outer
shells of seeds were collected for further gelation process. Outer
shells of seeds were mixed with ultra-pure water (UP H,0) to obtain
varying concentrations of QSH (1, 1.5, 2, 3.3, 5, and 10 mg/mL). After
24-h incubation at room temperature, QSH samples were filtered
through gauze dressing and were lyophilized for approximately
72 h. Lyophilized QSHs were subsequently crosslinked by GTA. Either
0.03 M GTA for lightly-crosslinked QSH or 0.5 M GTA for heavily-
crosslinked QSH, were prepared in acetone containing 0.05 M hydro-
chloric acid (HCI), and were incubated for 30 min at room tempera-
ture. Crosslinked QSHs were rinsed with UP H,O for 3 times prior to
further experiments, and kept lyophilized for long-term if not used
directly after production.

2.2. Characterization of QSH scaffold

All characterization experiments were carried out by using non-
crosslinked, lightly crosslinked (0.03 m GTA) and heavily crosslinked
(0.5 GTA) 2 mg mL~! QSHs. Morphological characterization of QSH
was accomplished with macro imaging, SEM analyses and pore size/
pore distribution analyses. Scanning Electron Microscope (FEI
QUANTA, 250 FEG) was used for SEM measurements. Lyophilized
QSH samples were used for SEM analysis [13]. Average pore size
and pore size distribution were determined via analysis of SEM im-
ages [36] by Image] image processing software (NIH) and OriginPro
software (Northampton, MA).

Chemical characterization of QSHs was done with FTIR analysis in
ATR mode (PerkinElmer, USA) from 1000 to 4000 cm ™! to identify the
crosslinking of QSH. FTIR data was plotted and analyzed by OriginPro
software (Northampton, MA).

Mechanical characterization of QSH was performed with AFM anal-
ysis. Surface topography and force-distance profiles of QSHs were ob-
tained using the CoreAFM System (Nanosurf CoreAFM, Switzerland).
Homogeneous and lyophilized QSH was placed on the microscope
slide and tested in the AFM with beam shaped cantilever in contact
mode (Stad 0.2 LAuD, NanoAndMore GMBH, Germany) having a nomi-
nal spring constant of 0.2 N nm ™" and tip radius of 7 nm. 512 lines at a
speed of 2 s per line and 55 nN set point were acquired for each image.
Root mean square (RMS) roughness and Young's Modulus values were
calculated using the open-source software for SPM data analysis
Gwyddion, Version 2.45. A series of 256 force-distance curves were
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calculated for 50 x 50 um? regions and fit up to 1 um tip deflections
with a Hertz (sphere) model. Samples were indented at rates of ap-
proximately 1 um s~ !, which is generally enough to explore elastic
properties rather than viscoelastic properties of cells, matrix, or
substrates.

The swelling ratio of QSH was analyzed through phosphate buffered
saline (PBS) retention behavior. Crosslinked and lyophilized QSHs were
measured to obtain dry weight (W) prior to immersing in 1x PBS solu-
tion at 37 °C, and then swollen weight (Ws) was observed at 1, 2, 4, 6, 8
and 24h. Excess PBS was removed from sample surface with the help of
a filter paper. Swelling ratio was calculated by using ((Ws — Wq) /
W4)x100 equation according to the literature [37,38], where Wj is
swollen and Wy is dry weight of QSH. The data was analyzed by
OriginPro software (Northampton, MA).

BCA Protein Assay (Pierce, Thermo Scientific) was used to analyze
total protein adsorption on QSH scaffolds [39]. Lightly crosslinked and
lyophilized QSHs were screened against bovine serum albumin (BSA)
protein solutions with concentrations ranging from 0 pg mL™! to
2000 pug mL™". After 2 h of incubation at 37 °C, QSHs were rinsed 3
times with PBS and transferred into 5% (w/v) sodium dodecyl sulfate
(SDS) to solubilize adsorbed protein from scaffold surface. Absorbance
was measured at 562 nm. Adsorbed and solubilized protein concentra-
tions were quantified through BSA standard curve by OriginPro soft-
ware (Northampton, MA).

2.3. 3D cell culture, viability and proliferation analysis

Mouse embryonic fibroblast cell line; NIH/3T3 (ATCC® CRL-1658™),
which is one of the most widely utilized cell line for biomaterial devel-
opment studies, was used as a model for cell culture assays [39]. Cells
were maintained in growth medium containing 10% fetal bovine
serum (FBS) (Gibco™, 10270) and 1% Penicillin-Streptomycin (Sigma-
Aldrich, P4333) solutions in Dulbecco's Modified Eagle's medium
(DMEM), High Glucose (Gibco™, 11965) and incubated at 5% CO,, 37
°C. Lightly crosslinked and heavily crosslinked QSH scaffolds were ana-
lyzed to investigate the effects of GTA on cell viability and toxicity. After
crosslinking, QSH scaffolds were rinsed 3 times with UP H,0 to elimi-
nate GTA residues. Prior to cell culturing, crosslinked QSHs were steril-
ized through UV sterilization and then transferred to 48 well plates
with DMEM complete medium (with 10% FBS and 3% Penicillin-
Streptomycin) for conditioning.

AlamarBlue assay was used for cell viability and proliferation analy-
sis. Low density (2 x 10°) and high density (2 x 10°%) NIH 3T3 cells were
seeded on QSHs for cell number optimization. Cells were cultured for up
to 7 and 14 days to monitor short and long term cellular behaviors. Be-
fore analysis, scaffolds were transferred to fresh DMEM that contains
resazurin sodium salt (%0.01 (v/v)) and incubated for 4 h. Absorbance
values were obtained at 570 and 600 nm by microplate reader (Thermo
Fisher Scientific Multiskan™ GO Microplate Spectrophotometer). Via-
bility results were quantified by OriginPro software (Northampton,
MA). Live/Dead assay was used to analyze toxicity of GTA on 3D cell cul-
tures. High density (2 x 108) NIH 3T3 cells were seeded on QSHs for
Live/Dead assay and cultured 1, 3 and 7 days. An equal volume of
CytoCalcein and Propidium Iodide were mixed in buffer solution and
applied to QSH scaffolds at 1, 3 and 7 days of 3D cell culture. Then sam-
ples were observed under the fluorescent microscope (Zeiss Observer
Z1). As a control group TCPS (tissue culture polystyrene) was utilized.
All cellular analyses were done by using 6 independent experimental
data sets.

24. Cellular imaging

Morphological analysis of cellular spheroids was performed by SEM
imaging. High density (2 x 10°) NIH 3T3 cells were seeded on QSHs
and cells were cultured on 48-well plates for up to 2 months to monitor
ECM secretion. Cell cultured QSH scaffolds were first rinsed with 1x PBS
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to eliminate cell culture medium and unwanted residues, and then they
were fixed in 4% paraformaldehyde solution. After fixation, scaffolds
were rinsed with 1x PBS and UP H,0. Scaffolds were gold-coated
prior to SEM analysis and were analyzed by SEM (FEI QUANTA,
250 FEG).

On the other hand, ECM formation and structural integrity were
confirmed via Collagen and DAPI staining. Anti-collagen Type-I
FITC (Milli-Mark™, FCMAB412F) was used for Collagen Type-I
and DAPI (Sigma-Aldrich, D9542) was used for nucleus staining.
QSH scaffolds were fixed as explained previously. Fixed scaffolds
were rinsed with 1x PBS and transferred into either Anti-collagen
Type-I FITC (1:5 (v/v)) or DAPI (1:1000 (v/v)) solutions in PBS.
Scaffolds were incubated in Anti-collagen Type-I FITC solution at
+4 °C overnight, and in DAPI solution at RT, 10 mins. After the in-
cubation period, scaffolds were rinsed in 1x PBS prior to fluores-
cent microscope analysis (Zeiss Observer Z1).

2.5. Statistical analysis

Cell viability and proliferation analyses were done by using 6 inde-
pendent experimental data sets and expressed as mean value +SD.
Mixed ANOVA was performed by SPSS 22.0. Post-hoc analysis was per-
formed with LSD correction for pairwise comparisons. The significance
level was accepted as p < 0.05 at all analyses.

3. Results and discussion
3.1. Fabrication of QSH scaffold

The flowsheet of QSH extraction is illustrated in Fig. 1. Unpro-
cessed QSH was obtained via conventional water extraction tech-
nique by immersing seeds in UP H,0. Pre-gelation has occured at
around 24 h, and has monitored by apparent viscosity technique
[25]. Here, QSH exhibits condensed phase rather than viscous
liquid prior to crosslinking, because of secondary interactions be-
tween the glucuronoxylan molecules, however, it tends to disinte-
grate by mechanical force and start flowing [40]. Therefore, this

Quince Quince seeds

Crosslinked QSH

Lyophilized QSH
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state is called as pre-gel. Transparent pre-gel was obtained after fil-
tration of remaining seed particles as shown in Fig. 1. Pre-gel was
lyophilized immediately after filtration. As shown in Fig. 1, non-
transparent, sponge-like scaffolds were obtained after lyophiliza-
tion process. Lyophilized pre-gels were then crosslinked with
GTA to obtain non-soluble scaffold materials for further cell culture
studies. 2 mg mL~! QSH concentration was decided as optimum
concentration parameter due to handling of pre-gels; higher
concentrations resulted in brittle texture, which is an undesirable
property for tissue scaffolds.

3.2. Morphological characterization of QSH scaffold

More detailed characterization and morphological investigation
were performed by SEM. As shown in Fig. 2, all non-crosslinked, lightly
crosslinked and heavily crosslinked QSH have porous and intercon-
nected structure, which is quite similar to majorly used scaffolds in tis-
sue engineering; such as collagen [41]. As depicted in Fig. 2c, average
pore size of non-crosslinked QSH samples was around 99.85 um while
22.52% porosity was obtained. After crosslinking of QSH, average pore
size decreased to 76.59 pm and 18.36% porosity was obtained for lightly
crosslinked sample (Fig. 2f). For heavily crosslinked samples, average
pore size decreased to 56.04 um while 13.58% porosity was ob-
tained (Fig. 2i). With the increased degree of crosslinking, the
QSH scaffold gained a firmer structure, which resulted in a decrease
in interconnected pore size and porosity [37]. Interconnected and
porous structure is a fundamental issue in scaffold design [42]
and QSH provides high porosity that promises high potential in tis-
sue engineering.

Fig. 2j shows cross-section of QSH demonstrating the edge morphol-
ogy of lyophilized QSHs that exhibit stacked layer formation. The
smoother topography shown by the outer layers, which may be a conse-
quence of homogeneous drying, on the other hand, inner layers show
sponge like morphology due to inhomogeneous water removal during
freeze-drying process. Stacked layers ascertain that building blocks of
QSH exhibiting mutual interactions with water molecules throughout
secondary forces. In particular, hydrogen bonding between water and

Filtration

Pre-gel state of QSH

Fig. 1. Schematic illustration of QSH extraction and scaffold fabrication process.
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Fig. 2. Characterization of QSH scaffolds; (a,d,g)macro images of QSH for (a)non-crosslinked, (d)lightly crosslinked and (g)heavily crosslinked form, (b,e,h) SEM images of porous QSHs for
(b)non-crosslinked, (e)lightly crosslinked and (h)heavily crosslinked form (scale bar = 500 um), (c,f,i) average pore size distribution histograms of QSH for (c)non-crosslinked, (f) lightly
crosslinked and (i)heavily crosslinked form, (j)cross-sectional SEM photos of QSH, (scale bars = 400 um and 10 pm respectively).

QSH may play role in gelation and condensation of layers. We consider
that stacked layers may eventually contribute to the mechanical proper-
ties of the gel.

3.3. Morphological and mechanical analysis of QSH scaffold via AFM

Morphology of non-crosslinked (Fig. 3a) and crosslinked (Fig. 3d)
QSH samples are analyzed by AFM measurements. Height profiles of
the corresponding lines drawn in Fig. 3a and d were illustrated in
Fig. 3b and e, respectively. The surface roughness of non-crosslinked
and crosslinked samples was calculated as 613.5 nm and 2 um, respec-
tively. It is evident that the surface roughness increased about 3.5
times after the crosslinking process. Young's modulus distributions be-
fore and after crosslinking of QSH samples were shown in Fig. 3c and
f. The Young's modulus of non-crosslinked QSH was found to be
53 MPa while crosslinked QSH sample was 76 MPa. The increase was
expected due to chemical crosslinking [43-45] process since it provides
more entanglement in polymer chains. As reported earlier, the chain
entanglements mediate energy dissipation [43-45]. Non-crosslinked
QSH (Fig. 3¢) showed heterogeneous distribution of Young's modulus
ranging between 12 MPa (blue regions) to 60 MPa (green regions)
whereas crosslinked one (Fig. 3f) exhibited more homogenous Young's
modulus distribution with 70 MPa to 80 MPa (green regions). The in-
crease in the Young's modulus caused by the crosslinking, indicating
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that the material has a more rigid structure, which was shown by AFM
measurements.

3.4. Analysis of QSH content and crosslinking efficiency

ATR-FTIR spectroscopy was used to identify the major functional
groups in QSH structure and also degree of crosslinking was analyzed.
GTA based crosslinking relies on the basis of aldehyde-hydroxyl group
bonding. Dialdehyde groups of GTA yield strong bonds with hydroxyl
groups of QSH [46]. Spectrums of non-crosslinked, lightly crosslinked
(0.03 m GTA), and heavily crosslinked (0.5 m GTA) QSHs are presented in
Fig. 4. The broad band that appeared between 3600 and 3000 cm ™! is
the characteristic stretching peak of hydrogen bonding involving the hy-
droxyl groups of QSH [11,25,28]. A rather intense peak was observed
around this area in non-crosslinked QSH compared to crosslinked QSHs,
which is attributed to intra/inter hydrogen bonds formed between hy-
droxyl groups of QSH and CHO groups of GTA [46,47]. Weak CH stretching
vibration peaks are observed between 2800 and 2950 cm ™! from CH and
CH; in cellulose and hemicellulose components [11,25,48]. Characteristic
peaks around 1598 and 1420 cm ™! show the presence of COO™ asymmet-
ric stretching carbonyl group (C=0) and COO™ symmetric stretching that
indicates carbonyl (C=0) and carboxyl groups in the structure shows the
presence of uronic acid [38,49-52]. Also, band at 1730 cm ™! suggests the
existence of grafting [12] or esterification in carboxylic group [25,28,35].
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Fig. 3. AFM analysis showing the surface characteristics of QSH (a) surface topography, (b) height profile and (c) force-distance profile of non-crosslinked and (d) surface topography,

(e) height profile and (f) force-distance profile of crosslinked QSH scaffolds.

Also, an increased peak around 1730 cm ™! can be referred to as
the acetate bridge through combining the dialdehyde of GTA
and hydroxyl group of cellulose content of QSH with the catalyz-
ing of hydrochloric acid [46,53,54]. Typical polysaccharide bands
are exhibited in the range of 1200-1000 cm™! assigned to C-OH
bending and C-O-C stretching of glycosidic linkage [48-50,55]. Over-
all FTIR results indicate that crosslinking of QSH was accomplished
successfully by using GTA.

3.5. Swelling behavior of QSH
Swelling capacity of QSH is illustrated in Fig. 5a. In general, all QSH

samples; both lightly and heavily crosslinked ones, reached equilibrium
swelling within 2 h while no deswelling was observed. Higher swelling

was observed for lightly crosslinked QSH, while lower swelling was
observed for heavily crosslinked QSH. As expected, degree of
crosslinking affects the swelling capacity of QSH; where highly po-
rous structure enhance the swelling behavior compared to the less
porous one [37,56,57].

3.6. Protein adsorption assessment of QSH scaffold

Protein-scaffold interaction indicates adhesion potential of cells
onto a scaffold. Here protein adsorption analysis was done to inves-
tigate capability of QSH as a scaffold material. Protein adsorption
profiles are shown in Fig. 5b for adsorbed BSA on QSH. Amount of
adsorbed protein reached an equilibrium at 1000 ug mL™" stock
concentration and total adsorbed protein amount was around
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Fig. 4. FTIR spectrum of non-crosslinked, lightly crosslinked and heavily crosslinked QSH scaffolds.

143 ug mL~! indicating maximum protein holding capacity of QSH.
This indicates that QSH has a certain protein holding capacity;
therefore, it also favors cellular adhesion and cell proliferation.

3.7. 3D cell culture studies

Cell proliferation and viability analyses were done to investigate
biocompatibility of QSH scaffold. Cell viability profiles are shown
against crosslinking in Fig. 6a, and against cell number in Fig. 6b.
As shown in Fig. 6a, NIH-3T3 fibroblast cells were proliferated faster
on lightly crosslinked QSH than heavily crosslinked one, which can
be attributed to more porous structure of the lightly crosslinked
scaffold. In addition, higher GTA concentration (0.5 m) in heavily
crosslinked QSH could have a negative effect on cell viability.
Therefore, lightly crosslinked QSH was used for further cellular
studies. For cell number evaluation, low density (2 x 10°) and
high density (2 x 10°) NIH-3T3 cells were seeded on QSH
(Fig. 6b). In all sets, proliferation of control groups (TCPS) was lim-
ited because of the insufficient surface area. High density cell
seeding provided higher proliferation rate and higher viability be-
cause of increased cell number in unit area increased supported
the cell-cell interactions, therefore cell proliferation is increased
[58]. Moreover, long-term cell culturing (Fig. 6¢) was done to ex-
amine the cellular growth in long term. As expected, cell prolifera-
tion decreased in TCPS controls due to limited surface area, and
cells started to die after day 9. Cell-material interaction is an impor-
tant parameter in terms of biocompatibility of a material [58]. In
contrary to standard 2D cell culture, 3D scaffold provided a suitable
microenvironment and surface area for increased cell proliferation,
although proliferation rate is slower due to cell adhesion and adap-
tation period, cell proliferation on QSH increased gradually during
15-day culturing (Fig. 6¢).

Furthermore, cell viability was analyzed through Live/Dead assay
for TCPS (Fig. 7a), lightly crosslinked QSH (Fig. 7b) and heavily
crosslinked QSH (Fig. 7c¢). Starting from day 1 NIH-3T3 fibroblast
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cells started to form aggregates, which are early forms of spheroids,
and spheroid formation was clearly observed in both QSH scaffolds
(Fig. 7b and c) starting from day 3 onwards. However, cell viability
and total number of spheroids were lower on heavily crosslinked
QSH compared to lightly crosslinked one. As parallel to the literature
[59], higher GTA concentrations had toxic effect on cells. In addition,
QSH scaffolds were compared with TCPS in terms of viability and it
was observed that limited culture area in 2D environment (TCPS) re-
sulted in contact inhibition and cells started to die starting from
day 3.

3.8. ECM analysis

For a successful tissue engineering application, it is required that cells
produce and secrete their own ECM components. Here, inter/intra-
cellular components for long-term (2 months) cell culture samples were
evaluated via SEM (Fig. 8a) and immunostaining methodologies (Fig. 8b
and c). As depicted in Fig. 8a, spheroids were homogeneously scattered
inside the QSH where average spheroid diameter was around 300 pm.
As shown in Fig. 8b, nuclear DAPI staining was done to investigate cellular
entities inside the spheroid structure. DAPI staining results also confirm
the homogeneous distribution of cells inside the spheroids.

In order to investigate ECM production, collagen secretion was
analyzed for 2-month old samples when the secretion rate was
the highest [60,61]. Collagen secretion during spheroid formation
has been examined by Anti-collagen Type-I FITC staining. After col-
lagen immunostaining, observed fluorescence images (Fig. 8c)
confirmed the presence of collagen Type-I secreted by NIH-3T3
cells, and exhibited similar spheroid patterns with SEM and DAPI
analyses.

4. Conclusion

Biomaterial potency of QSH as a scaffold material for tissue engineer-
ing was extensively examined in this paper. QSH was evaluated in terms
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of porosity, crosslinking properties, swelling ratio and protein ad-
sorption, and NIH-3T3 fibroblast cells were cultured in 3D microen-
vironment to observe biocompatibility. Highly porous scaffold was
obtained from 2 mg mL™! lyophilized QSH and it was crosslinked
by GTA where degree of crosslinking was adjusted by varying the
GTA concentration; lightly crosslinked QSH was obtained with
0.03 M GTA and heavily crosslinked one was obtained with 0.5 M
GTA. Biocompatibility of QSH was verified through cell viability, pro-
liferation, and ECM secretion analyses. NIH-3T3 fibroblast cells in
lightly crosslinked QSH showed improved viability and proliferation.
Live/Dead analysis, SEM imaging and DAPI staining successfully
demonstrated the spheroid formation in 3D microenvironment up
to 2 months. Moreover, ECM formation was confirmed via Collagen
secretion analysis. The overall results clearly prove that QSH is a
novel scaffold material, which has suitable mechanical features, re-
markable swelling capacity, as well as good biocompatibility, and it
promotes tissue formation. The fabricated QSH potentially offers an
efficient and cost-effective biomaterial for 3D cell culture and tissue
engineering applications.
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Fig. 7. Cell viability evaluation of NIH-3T3 fibroblast cells on QSH, evaluated by Live/Dead assay; (a) TCPS control group, (b) lightly crosslinked (0.03 M GTA) QSH, (c) heavily crosslinked
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Fig. 8. Spheroid formations in QSH scaffolds (a) SEM images of QSH with cells, (b) DAPI staining and (c) Anti-collagen Type-I FITC staining (scale bars = 200 pm).
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