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Analytical Improvement on the Electromagnetic
Scattering From Deformed Spherical
Conducting Objects

Baris Ates

Abstract—In this article, electromagnetic scattering from con-
ducting deformed spheres is considered analytically by employing
the perturbation method and utilizing Debye potentials. To be
able to analyze a wide variety of scattering problems, azimuthal
variation is indispensable, and therefore, the geometries of
the scatterers considered in this study do not have rotational
symmetry; hence, they are dependent on the # and ¢ angles
in spherical coordinates. Analyses are carried up to the second
order explicitly to obtain more accurate results, and thus,
scattered fields are obtained with second-order corrections. The
coefficients used to determine the scattered field are expressed
in terms of Clebsch—-Gordan coefficients, which enables one to
obtain the results for new geometries only by simple algebraic
manipulations. Numerical results and their comparisons are also
presented for various deformation functions and parameters.

Index Terms— Analytical solution, Debye potential, electro-
magnetic wave scattering, perturbation method (PM), radar cross
section (RCS).

I. INTRODUCTION

ONSPHERICAL objects are of great importance and

taken into consideration in many areas of study, e.g.,
elasticity [1], fluid dynamics [2], neuroscience [3], astro-
physics [4], and acoustics [5]-[7], including electromagnetic
scattering [8], [9]. The interest in the scattering properties
of conducting objects for real-life problems [10]—[13] never
decreases for researchers in many different fields [14]-[16].
The studies on PEC bodies maintain their importance because
they either find direct applications [17], [18] or allow one
to examine and understand more complex materials, such
as dielectrics and others [7], [19]-[22]. One of the realis-
tic examples of those dielectric objects is raindrop, which
causes attenuation [23]. Even though raindrops are assumed as
spherical in shape in the analysis [24], because of the gravity,
wind, pressure, and other effects, they actually differ much and

Manuscript received January 17, 2021; accepted May 11, 2021. Date of
publication July 16, 2021; date of current version December 16, 2021.
(Corresponding author: Baris Ates.)

Baris Ates was with the Department of Mathematics, izmir Institute of
Technology, Urla 35430, Turkey. He is now with the Ministry of National
Education, 35380 Buca, Turkey (e-mail: baristes2002 @ gmail.com).

Alp Kustepeli is with the Department of Electrical and Electronics
Engineering, izmir Institute of Technology, 35430 Urla, Turkey (e-mail:
alpkustepeli @iyte.edu.tr).

Zebih Cetin is with the Department of Physics, izmir Institute of Technol-
ogy, 35430 Urla, Turkey (e-mail: zebihcetin@iyte.edu.tr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2021.3096317.

Digital Object Identifier 10.1109/TAP.2021.3096317

, Alp Kustepeli, and Zebih Cetin

their shapes deviate from the sphere. To determine the shape
of raindrop, several successful models have been developed
[25], [26] and the results show that the sphericity assumption
is not very satisfactory for realistic calculations if its size is
large [27], [28].

Since the exact solution to electromagnetic scattering prob-
lems can be obtained only for certain geometries [26],
many methods have been developed and applied for the
detailed investigation of scattering by any object, e.g.,
the perturbation method (PM) [29], [30], the point matching
method [31], the method of moments [32], [33], the gener-
alized multipole method [34], the volume integral equation
method [35], the finite-difference time-domain method [36],
the finite-element method [37], the T matrix method [38],
and the Sh matrix method [39]. Although numerical methods
are very valuable and utilizable, the superiority of analytical
methods in many aspects, such as completeness, accuracy,
time, and memory requirements, is greatly appreciated, and
therefore, they are much more preferred [40], [41].

The PM [29], [42]-[44] can be considered as an advan-
tageous one since a full analytic approach is employed. The
method was employed up to the first order for various impor-
tant obstacles having rotational symmetry [29], [45], [46].
However, even for very specific geometries and problems,
lower order calculations are not sufficient for accurate results
[47]-[50] and to reveal the physics behind as well [5]-[22],
[46], [51]55]. Therefore, the order of the method turns out to
be very important for a clear and deep understanding of more
complicated problems. Even though there were some attempts
to increase the order to obtain more accurate results for
scatterers having arbitrary geometries, due to the complexity of
the integrals involved, only the general theory with the closed
form of the integrals was presented without their evaluation
[29], [43], [56].

The geometries considered in this work are obtained by the
smooth deformations of sphere which are dependent on both
6 and ¢ angles in spherical coordinates. In addition to this,
instead of the statistical version of the PM that causes loss
of information [57]-[59], the problem is examined directly
by using the second-order perturbation theory and neither
averaging methods nor additional assumptions are used, such
as in [60]-[62]. In this sense, present work could be regarded
as a generalization of [63].

Vector wave functions are commonly used to express the
fields [29], [43], [44], [57], [59], [64], [65], but since it is
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Fig. 1. Geometry obtained by deformation functions fi(6,¢) =
Re(Y65 @, 9)) and f2(0,¢9) = Re(Y66(0, ®)). (a) 3-D geometry. (b) 0 variation
for ¢ = /6. (c) ¢ variation for § =z /3.

easier to deal with one function than three, scalar functions
are considered instead of vector functions, and hence, Debye
potentials are utilized. Spherical harmonic expansion is also
utilized to expand the deformation functions in terms of spher-
ical harmonics denoted by Y, (0, ¢) [66], which enables one
to obtain the results for new geometries very easily without
repeating all of the calculations and to examine any scatterer
under TE or TM incidence without any additional, special,
or separate treatment through Wigner rotation matrices. The
unknown coefficients used to represent the scattered field are
presented explicitly and all of the surface integrals involved
are evaluated analytically.

II. FORMULATION AND SOLUTION

Geometries of the scatterers considered in this study are
obtained by small and smooth deformations of spheres and
their surfaces are described in spherical coordinates by

r=ry0,9) = R(L+ 110, 9) + 5 (0, 0)) &)

where r, 8, and ¢ are the spherical coordinates, R represents
the radius of the sphere to be perturbed, £ is the small
perturbation parameter, and f(6, ¢) and f>(0, ¢) are arbi-
trary deformation functions. One of the #- and ¢-dependent
geometries to be examined can be seen in Fig. 1 and it is
obtained using the real parts of the spherical harmonics for
the deformation functions where Re() represents the real part.
The total electric field E = E' + ES where E' and E® are the
incident and scattered fields, respectively, and for the perturbed
case, it can be written in terms of the perturbation parameter
p as [29]

E(r,0,9) = Eo+ BE\ + B2E» + O(B%) 2)

where Eo(r, 0, ¢) is the field component for the sphere and it
corresponds to the zeroth-order solution, E1(r, 6, ¢) is the con-
tribution from the first-order correction, and finally, E»(r, 8, ¢)
is the contribution due to the second-order correction. By the
formulation given in (2), it can be concluded that the field
for the deformed sphere is obtained by the summation of
the field belonging to the sphere together with the first-
and second-order corrections. Although the complexity of the
calculations increases enormously due to the increase in the
order of PM especially when the ¢ dependence is taken into
consideration to be able to represent an arbitrary geometry for
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the scatterer, analyses are carried up to the second order to
obtain more accurate results. The time dependence is assumed
to be e~'" and suppressed throughout this article (i = +/—1).
The scattered field components are of the forms [67]

ia .
E,, = Z ﬁzln (kr) P (cos@)e'™?

m,n

iy mn d ;
E,p = % e Zz,,(kr)@P,:”(cose)e e

- Z %bymn Z3u(kr) P, (cos 0)e'me

m,n

ma .
E,, =— — 75, (kr) P (cos 0)e™?
“—~ wpe sin 6

b)’mn d m img

+%; p Zg,,(kr)de P} (cosf)e 3)
where > > >, and y indicates the
order of perturbation. The Z functions seen in (3) are
Ziukr)y = ((d*/dr?) + K*)(kr b (kr)), Zy n(kr) =
(1/r)(d/dr)(kr bV (kr)), and Z3 ,(kr) = khD(kr) and (D
is the spherical Hankel function of the first kind. P, is the
associated Legendre function [66], k is the wavenumber of
the surrounding medium, € is the permittivity, and u is the
permeability. The coefficients a, ,,, and b, ,,, are arbitrary con-
stants [9], [67] and they are determined by using the boundary
condition on the surface of the conductor, 7 x E|,—=, = O,
where 71 is the unit normal vector on the surface and it is
described up to the second order by

N AR N C AR T
1= (1-r(3(%) *aaea(®)))
_gOh g O 0h),
+( Pao TP 15 ﬁae)e

L oh o fi Ofi o 1 3B,
+( ﬁsin@@go +h sinf o¢ ﬁsin@@gy ?

+0(B?). “4)

Considering ry in (1) as ry = R + AR where AR =
BfiR + B%f>R, the expressions for the field components up
to the second order are obtained as

Eya(rs,ea (p) = E)/(Z(R + AR) 6, ¢)
0
= |:Eya(r,<9, ®)+ ﬁflra—rEya(r,H, ®)
P 2 2.2
+ B2 for —Eya(r. 0, 9) + P
or 2
2

0
X ﬁEya(r’ea ¢):| +O(,B%) (5)

r=R
where a indicates the r, 8, or ¢ component of the fields in
spherical coordinates.

A. Scattering From Conducting Sphere;
Zeroth-Order Solution

To employ the PM, one must first obtain the zeroth-order
solution, which corresponds to the plane wave scattering by a
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conducting sphere. Considering (2), the total electric field for
the zeroth-order solution can be represented as E Ei —|—E s
Eo, and in this case, ES = Eh and, therefore, Eo E‘—i—ESPh,
where E! is the incident field and E*Ph is the scattered field
from the sphere. If the incident field is considered as E' =
E'e*”% where E' is an arbitrary constant, it can be expressed
in spherical coordinates by the expansion [68]

[e.0]

-, . .COS . .
Ei = Ei Z an[ — zk—r(pjn(/’cr)Pn1 (cosO)?
n=0
+ cosf cosgj, (kr)P,? (cos 0)0
— sin@j, (kr) Pn0 (cos (9)@i| (6)

where a, = i"(2n + 1) and j, is the spherical Bessel
function of the first kind. The incident field can also be
expressed in terms of the representation given in (3) by
arranging the coefficients and using j, for the Z func-
tions accordingly. Thus, the unknown coefficients ag ,, and
bo mn to be used to determine the scattered field can be
obtained as
rEi i"2n+ 1)(kRj,(kR))
2on(n + 1)(kRh (kR))"”
Li"2n + 1) (kRj,(kR)) 7
—F o m=—1
2w(kRh;,’ (kR))
0

=" 2n + 1), (kR)
20nn(n + DY kR)’
i i"12n 4+ 1)j,(kR) (®)

m=—1
20nh " (kR)
0 ,

aop mn =

m# 1

bO mn —

m # %1

by using the relations of Legendre functions [66]. The primes
in (7) and (8) represent the derivatives with respect to the
argument of the functions. # is the intrinsic impedance of the
medium.

B. Scattering From Deformed Conducting
Sphere—First-Order Corrections

For the first-order corrections, the total field can be written
as E = EO + ﬁEl = Ei + Esh +,[)’E1 by neglecting hlgher
oﬁrder terms in (2), and for this case, the scattered field ES =
E*PP + BE|. Considering the angular dependencies of the field
defined in (3), it would be very convenient to find and utilize
the spherical harmonics expansion of the perturbation function

f1(0, 9) as [6]

o
=2 2 dY; =

J=0s=—j

0 J
> D fiPi(cosO)e™. (9)

j=05=—]

f10. 9)

It should be noted here that, for some functions, the sum-
mation term j could be infinite; in such a case, summation
term must be truncated at a large value in order to make
sure that particle’s shape is represented accurately [58]. The
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first-order perturbation coefficients a; ,,, and b; ,, can be
obtained as

wuen + 1)(n —m)!

@ == 4r Zyy (kr)ym(n 4+ m)!
x| Ki(m,n) —i—ZZA‘f(p,q,j,s,n,m) Sgsm
Pq j.s
+ > > Alp, j.s.n,m) (10)
P r=R
where
47L'kb1m,,+1(n +m + 1)("1 + 2) 1)
K = h k
l(m’ n) ( (2}'1 + 3)(2”1 4 1) il+1( r)
_ Azkbin—1(n — 1)(n —m) 2D (kr)
@2n—1)Q2n+1) s
'
(n +m)! (11
e(n —m)!
b — wue2n + 1)(n-m)!
=\ dai Zin (k) (n + m)!
Zzéqsm X B;](pa q’ja S) na m)
P4 s
(12)

+ZZBI(Paj,S,n,m)
P

Ogsm = 21 g1sm and J; ; is the Kronecker delta. Ay, A{, By,
Bf, and all the other A and B functions with various indices to
be seen below are presented in the Appendix. The superscript
g in the A and B functions indicates that those functions are
dependent on an additional parameter ¢ and they are related to
the scattered fields, while the others are related to the incident
field.

r=R

C. Scattering From Deformed Conducting
Sphere—Second-Order Corrections

To obtain more accurate results, one needs to add more
correction terms by considering the higher order solutions,
and therefore, it is now intended to determine the field by
obtaining the second-order coefficients [9], [53]-[55]. For
the second-order corrections, the total field can be written as
E = Eg+BE, + f2E, = E1+E‘Ph+,[)’E1 +p? Ez, and in this
case, the scattered field ES = EP + ﬁEl + ﬂ2E2 Similar to
f1@, 9) in (9), it will also be convenient to expand f>(#, ¢)
and (f1(0, ¢))* in terms of the spherical harmonics as

o
120, 9) = z Z h‘j-PJ‘-Y(cosé')ei“’J (13)
j=05=—j
oo J
(10, 9))* = z Z ijJ‘?(cosé')e”‘”. (14)
j=05=—j

Considering the field components given in (3) and the spher-
ical harmonics expansions presented in (9), (13), and (14),
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using the orthogonality relations [65] and performing the
integrals involving multiplication of various forms of three
associated Legendre functions given in the Appendix, one can

obtain
A2mn
. wuen + 1)(n —m)!
4r Zyy (kr)ym(n 4+ m)!
10
X Kz(m’n)+zzzAg(p’q’.]9s9n9m) 5qsm
Pq  j,s v=2
15
+ZzzAv(p’jasanam) (15)
P j.s v=l11 Rk
where
4 kb 1 2
Ka(m.n) = Tkbyuni1(n +m + 1)(n + )hfllll(kr)
2n+3)2n+1)
_Arkbonn—1(n — 1)(n —m) WD ()
2n—1)Q2n+1)
'
(n +m)! (16)
e(n —m)!
wuen + 1)(n —m)!
b2mn -

driZyy(kr)(n +m)!

18
X zzz 5qsm X B,ﬁ’(p,q,j,s,n,m)

psq j.,s v=2
25
+ZZZ Bv(paj’s’n’m)
p j,s v=19 F=R
A7)

If aiy and by, presented in (10) and (12), respectively, are
taken into consideration with the expressions of the A and B
functions given in the Appendix, one may conclude that it can
be quite difficult to obtain the first-order corrections if there
is a ¢ variation in the scatterer geometry and it can be noticed
that the results can be obtained by using the A and B functions
with v = 1 in those cases. Moreover, the complexity and
difficulty of obtaining the second-order corrections for such
cases can be well appreciated if one examines (15) and (17)
that include all of the A and B functions with v > 2
accordingly.

III. VALIDATION AND NUMERICAL RESULTS

In this section, first, the results are verified and validated by
comparisons in terms of the radar cross section (RCS) [68]

. L IES
o= 1lim|4nr — .
r—00 |E1|2

Use previously published ones obtained for ¢ independent
scatterers and utilize their transformed forms. Then, more
results are presented for - and ¢-dependent scatterers, e.g.,

(18)
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ellipsoids, also called triaxial ellipsoids. Similar to (2), RCS
for the perturbed case can also be written as

o =0+ foy + 2oy + O(B7) (19)

where o™ corresponds to RCS from the sphere and ¢, and

o, are the first- and second-order corrections, respectively.
Actually, the efficiency of the method lies on the fact that,
in the PM with the representation given in (19), separation
of size and shape of scatterer enables to analyze the results
for many new geometries for fixed deformation function
but different perturbation parameters without repeating all of
the calculations. It is sufficient to change the perturbation
parameter and use the previously obtained o’s. This feature
of the PM makes it an advantageous one to save time in
terms of computations [69]. To employ the PM through the
general representation in (2) via the expansions given in (3),
the summations seen in (3) must be truncated accordingly
in order to achieve a good convergence. Hence, it can be
concluded that for the purposes of this study, choosing N =
15 is sufficient to obtain satisfactory results regarding the
convergence as in [64].

For comparisons and verifications, three different cases
are examined. In the first case, the #- and g-independent
deformation functions f1(0,¢) = C; and f>(0, ¢) = C;, can
be considered with real constants C; and C, in (1) leading
to the angle independent deformation of the sphere, which
results in a new sphere with radius R(1 + C|f + C»5%).
This deformation is not only important to compare the results
obtained by the perturbation theory with the ones obtained by
the Mie theory [70] but also enables to examine the size effect
in the perturbation theory for the same type of objects with
different sizes. The results are in a very good agreement and
not presented here because of this article limitations.

Next, the results can be checked by considering geometries
having rotational symmetry obtained by using deformation
functions in the form of f; (@, ¢) = f;(0). A spheroid is one
of those type of geometries and it is considered in the analysis
of many important problems [69], [71]-[78]. The surface of
spheroid is described, as a deformed sphere, by the following
relation [77]:

(1= o= (o= guo))
rs(@)=R{1— —sin“d — —(sin“0 — —sin"0 ) ). (20)
2 2 4

In [77], h? is used as a perturbation parameter and it corre-
sponds to the perturbation parameter given as f in (1). Since
B = h?, the results for prolate and oblate spheroids in [77]
can be obtained by f = h* and = —h?, respectively, with
fi(0) = —1/2sin*0 and f,(f) = —1/2sin*@ + 3/8sin* 4.
In Fig. 2, backward RCS (oy,) obtained by the second-order
perturbation for prolate spheroids is examined and compared
with the ones obtained by CST for various values of 4. It is
seen that the results are in a good agreement. Bistatic RCS
results are also presented in Fig. 3 for a prolate spheroid
obtained with 4 = 0.4 at kR = 1 and the results are in a
very good agreement. By the comparisons given above, it can
be concluded that the present results are consistent with the
ones obtained by CST for the spheroids.
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Fig. 2. Backward RCS for prolate spheroids. Comparison of the results
obtained by the PM and CST for various A values.
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Fig. 3. Bistatic RCS for prolate spheroid & = 0.4 and for the sphere at
kR =1 with ¢ = 0 and E' = ¢**3.

)

/4

E inc E inc T

(a) (b)

Fig. 4. Coordinate transformation for comparisons. (a) Spheroid. (b) Rotated
spheroid by an angle a.

Finally, in the third case, the results are checked by
transforming the backward RCS values of a ¢ independent
scatterer under oblique incidence with the ones obtained
by CST for spheroids. For comparison purposes, the spher-
oid examined in [77] as shown in Fig. 4(a) is consid-
ered in the primed coordinate system. Employing a rotation
by an angle o leads to a 6- and ¢-dependent geometry in
unprimed coordinate system as shown in Fig. 4(b), which
results in @- and ¢-dependent deformation functions f;(8, @)
and f»(0, ¢). With that approach for this very special case,
the results of that ¢ independent geometry are utilized
for the comparison and validation of the perturbation results of
the - and p-dependent geometry. The deformation functions
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Fig. 5. Normalized forward RCS for prolate and oblate spheroids.

Fig. 6. Normalized backward RCS for prolate and oblate spheroids for TE
case.

can also be obtained by using Wigner rotation matrices [79]
for that special case. Since the Wigner rotation matrices
can be employed for any kind of rotation in 3-D space,
the deformation functions can be obtained for any case by
their usage and that allows one to examine - and ¢-dependent
geometries for TE or TM incidence without the need of any
separate treatment. It is also worth mentioning here that the
usage of Wigner rotation matrices in the present work, which
allows one to consider 3-D rotations, is very important for
detecting buried objects. It is known that for spheroidal targets,
there exists some blind orientation that prevents buried objects
to be detected [10]. Thus, the present approach allows one to
consider different angles of incidence without repeating all
of the calculations from the beginning and therefore has the
potential to find application in that area. Forward RCS (oy)
results obtained by the second-order perturbation are shown
in Fig. 5. Both prolate and oblate spheroids for the deformation
parameters 0.2 and 0.4 are considered and it is seen that
the results are consistent with [77, Fig. 6]. Moreover, if the
backward RCS results presented in Fig. 6 are compared with
the ones shown in [77, Fig. 2] where a corresponds to 6y of
that figure, it can be seen that they are also in a very good
agreement.

Consequently, the verification and validation of the results
reveal that the methodology presented in this article can be
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1200

1000

Fig. 7. Backward RCS for triaxial ellipsoid for ¢ = 0.25 and various values
of h with E' = ¢/**%.

successfully used for the accurate calculation of the RCS
of arbitrarily shaped scatterers. Ellipsoidal surfaces can be
given as a well-known example for these types of shapes.
By expressing the semiaxes of the ellipsoid in terms of the
perturbation parameter S as a, a(l + f) and a(l + p<),
the equation of the ellipsoid, also called triaxial ellipsoid, can
be given as

%2 y? 2
a2t 2t 3 2
a> a*(1+ ) a*(1+ fS)
and in spherical coordinates, it can also be written as in (1),
where R corresponds to the semiminor axis a, fi(0,¢) =
sin?@sin* 9 + Ecos?0, and fo(0,9) = (B/2)(f20,9) —
10, 9)+(E—E?) cos? O) such that ¢ is arbitrary and |f&] < 1.
The coefficients f J‘?, kj., and h; used in the expansions of the
perturbation functions presented in (9), (13), and (14) are given
in the Appendix for arbitrary ¢. The incident field for the
ellipsoids is again E' = Ele*”% and it is employed via the
expansion in (6) as in the previous cases. Fig. 7 shows the
backward RCS results of the ellipsoids for ¢ = 0.25 and
various values of /& and the results are in good agreement.
To reveal the efficiency of the PM method for an ellipsoid, one
may compare the CPU times for the PM and CST solutions.
Using the values kR = 1.5, £ = 0.25, and & = 0.2, the PM
method needs 557 s and CST needs 1799 s, which leads to a
speedup of 3.23 times. In addition to that, the efficiency of the
PM method will be very well appreciated if one considers its
application for many different values of &. For every different
values of &, one needs to repeat the computations requiring the
same amount of time with CST. Since the computations with
the PM method are performed using a very simple expression
given in (19), the computation time for the new value of / is
less than 1 x 107> s, which does not make any contribution to
the total computation time. Therefore, one can conclude that
the PM method is the number of values of & x 3.23 times
faster than CST. Bistatic RCS results for ellipsoids are also
presented in Fig. 8 and it is seen that the results are in a very
good agreement.

In addition to the triaxial ellipsoid results, the present
calculations allow to evaluate the RCS results for more irreg-
ularly shaped obstacles. A specific example for such kind of
deformed objects has been presented in Fig. 1 and RCS results
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kR =1 with ¢ =0 and Ef = 7%,
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G,/ 22

Fig. 9. Normalized backward RCS for the geometries obtained by the defor-
mation function pairs fj(0, ¢) = Re(Yg(H, p)) and f>(0, ) = Re(Y(?(H, 0))
and f1(0, ) = Re(Y2(0, ¢)) and f>(0,9) = Re(Y;} (0, ¢)) with h = 0.36
and E' = ¢k,

for two different cases of that geometry are presented in Fig. 9.
Comparisons of the results show the very good agreement and
successful implementation of the methodology for irregularly
shaped obstacles.

IV. CONCLUSION

In this study, an analytical solution to the electromagnetic
scattering of a plane wave by arbitrarily shaped conducting
objects was presented by employing the PM. The geometries
of the scatterers are dependent on the 8 and ¢ angles in spher-
ical coordinates, and hence, they have azimuthal variations as
well, which increases the complexity significantly, contrary to
the ones generally considered with rotational symmetry in the
literature. Even though it led to very complicated expressions,
second-order corrections were also included in the solutions
to obtain more accurate results. Since it is easier to deal with
scalar functions, Debye potentials were utilized instead of
vector functions. By expanding the deformation functions in
terms of spherical harmonics, the scattered field was obtained
in terms of Clebsch—Gordan coefficients by evaluating all of
the surface integrals analytically and that approach enables one
to obtain the results for new geometries without repeating all
of the calculations and also eliminates the need of the separate
treatment of TE and TM excitations. Scattering results from
objects with azimuthal variations including ellipsoids were
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also presented. The validations of the results were performed
by comparisons with the ones given in the literature accord-
ingly and with the ones obtained by CST. From the results,
it can be concluded that the methodology can be successfully
employed with high accuracy for the solution to scattering
from more irregularly shaped objects.

APPENDIX

The A and B functions with various indices and the
results of the integrals involving multiplication of various
forms of three associated Legendre functions are presented
in the following. The A functions are in the form of A, =
A, (p, j,s,n,m) and A} = Al(p,q, j,s,n,m), the B func-
tions are also in the same form. The arguments of the A and
B functions are suppressed in the Appendix for simplicity
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where the arguments of the associated Legendre functions,
cosf, are suppressed for simplicity. The integrals given
in (A.44)—(A.48) can be evaluated by transforming them to
the expressions involving many integrals similar to (A.43).
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where asz(p,q) = ((—=p(p—qg+1))/2p+1)) and and (14) for ellipsoid are
as(p,q) = + +1)/2p+1 _
4(p,q) = (P +q)(p+ 1))/2p + 1)) =483, f=-2 (A63)
Ii(p, j,n,q,s,m) = (-1+25/3, fi=-1/12 (A.64)
=[Z(p,q,11)ZE(j, s, 72) ko = B+28+3EH/15, k> =—4B+¢&)/T  (A65)
xIo(p—1—=27,j—1-21,n,q—1,5 — 1,m)] k) =2(=3+&+6%)/21, ks =—-(3+E)/42  (A.66)
12
. A0 o k2= B oo (A.67)
Li(p. j.n.q.s,m) . 7 ,
_(p—q+ D+ ! . . . ky = (3-8 +859)/35, ki =(1-28)/210  (A.68)
T 20+ op, j+1Lng—1s+1,m) kj=1/1680 R = (— 1+5 &)/5 (A.69)
(P—g+Dp+q) . - 0 2
- - - h =—3—6,h=—1 28 -2 A.70
1 1
Jl hy = 3/2ky for s =—4,-2,0,2,4. (A.72)
+——Lip,j—1l,n,g+1,s+1,m A.57
22D o(p, J q ) (A.57)
. ACKNOWLEDGMENT
IS(p,]anaq’s’m) .
1 . The authors would like to thank Prof. Dr. I. H. Duru for
= E(P —q+D(p+q) xlo(p,j,n,qg—1,5,m) his fruitful discussions. The numerical calculations reported
1 ) in this article were partially performed at TUBITAK ULAK-
) Io(p, j,n,q+1,s,m) (A.58) BIM, High Performance and Grid Computing Center (TRUBA
Is(p, j,n,q,s,m) resources). They also thank Mustafa Se¢gmen, Yasar University,

=S g )X Io(p—21 =1, jin g —1,5,m)  (A59) for his. help about CST. They are grateful to tl.le reviewel.“s

for their very valuable constructive comments to improve this
where X(p,q,7)h(p,q,7) = ZL«” DDo(p — 27) —  article.
Dh(p, g, 7) for an arbitrary function h(p, g, 7). The integral

Iy seen in (A.54)—(A.59) and given by (A.43) can be evaluated
as [81] [1] C. Fogle, A. C. Rowat, A. J. Levine, and J. Rudnick, “Shape transitions
in soft spheres regulated by elasticity,” Phys. Rev. E, Stat. Phys.

REFERENCES

Plasmas Fluids Relat. Interdiscip. Top., vol. 88, no. 5, Nov. 2013,

lo(p. J, " 4,5 m) Art. no. 052404.
_ P4 PS P™ sin 040 [2] D. K. Srivastava, R. R. Yadav, and S. Yadav, “Steady Stokes flow around
- ptjtn deformed sphere. Class of oblate axisymmetric bodies,” Int. J. Appl.
0 L Math. Mech., vol. 8, no. 9, pp. 17-53, Jan. 2012.

\(7 | | prJ . 3] A. Hobolth, “The spherical deformation model,” Biostatistics, vol. 4,

_ [ E G F e Fm)! Z crincrin . n6. 4. pp. 583595, Oct, 2003

- — (7 — O\ (n — | qs M, 000 - % Pp- s - .
(p =PI — ) —m)! _—s [4] M. 1. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and

T. Wriedt, “T-matrix theory of electromagnetic scattering by particles
pitn — M3)! and its applications: A comprehensive reference database,” J. Quantum
X Z Cf,} rZAfIJZ Cgb’(']m Spectrosc. Radiat. Transf., vol. 88, pp. 357-406, Aug. 2004.

— (p2 + M3)! a [5] J. B. Mehl, “Acoustic resonance frequencies of deformed spherical
resonators,” J. Acoust. Soc. Amer., vol. 71, no. 5, pp. 1109-1113,

(—1)M3 + (= 1) M32Ms 2T (2) T (2H0EL May 1982.
_ [6] J. B. Mehl, “Acoustic resonance frequencies of deformed spherical
(%M})'r(%) resonators. II,” J. Acoust. Soc. Amer., vol. 79, no. 2, pp. 278-286,

(A.60) Feb. 1986.
[7] J. B. Mehl, “Acoustic eigenvalues of a quasispherical resonator: Second
order shape perturbation theory for arbitrary modes,” J. Res. Nat. Ins.

where C125  are Clebsch—Gordan coefficients, I' denotes

mymais ’ Stand. Tech., vol. 112, no. 3, pp. 163173, May 2007.
the Gamma functlon, My =q+s, M3 =q+s~+m, pimin =  [8] A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately
max(M,, |p — jl), and pa,;, = max(Ms, |p1 — nl|). For the nonspherical particles,” J. Atmospheric Sci., vol. 37, pp. 1291-1307,
; : : Jun. 1980.
cases where the a.ssomated Legendre fun.ctlons have ne'gatlve [9]1 R. J. Martin, “Mie scattering formulae for non-spherical particles,”
degree and negative order encountered in the evaluation of J. Modern Opt., vol. 40, no. 12, pp. 2467-2494, Dec. 1993.
Io—1Is given in (A.43)—(A.49), the integrals are modified by [10] P. P. Silvester and D. Omeragic, “Sensitivity of metal detectors to
using [30], [66] spheroidal targets,” IEEE Trans. Geosci. Remote Sens., vol. 33, no. 6,

pp. 1331-1335, Nov. 1995.
[11] S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse plane-wave scatter-

m m
P —n—1 (x ) =P, n (x ) (A.61) ing from buried perfectly conducting bodies of revolution,” IEEE Trans.
Antennas Propag., vol. 44, no. 2, pp. 143-151, Feb. 1996.
and [12] B. Shanker, A. A. Ergin, K. Aygun, and E. Michielssen, “Analysis of
(n — m)! transient electromagnetic scattering from closed surfaces using a com-
m(x) = (-1 )’" m( ) (A.62) bined field integral equation,” IEEE Trans. Antennas Propag., vol. 48,
(n + m)! no. 7, pp. 1064—1074, Jul. 2000.

It . dditi 1 ltinli . h . [13] S.J. Norton, W. A. SanFilipo, and I. J. Won, “Eddy-current and current-
resulting in additional multiplicative terms in the equations channeling response to spheroidal anomalies,” IEEE Trans. Geosci.

accordingly. The coefficients f7, k;, and hj used in (9), (13), Remote Sens., vol. 43, no. 10, pp. 2200-2209, Oct. 2005.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on May 26,2022 at 07:03:38 UTC from IEEE Xplore. Restrictions apply.



ATES et al.: ANALYTICAL IMPROVEMENT ON THE ELECTROMAGNETIC SCATTERING

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
(31]
(32]

(33]

[34]

[35]

[36]

[37]

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on May 26,2022 at 07:03:38 UTC from IEEE Xplore. Restrictions apply.

J. B. Mehl, “Second-order electromagnetic eigenfrequencies of a triaxial
ellipsoid,” Metrologia, vol. 46, no. 5, pp. 554-559, Oct. 2009.

D. Lyasota, V. M. Morozov, and V. I. Magro, “Recognition of conductive
objects based on the characteristics of reflected electromagnetic wave,”
Radioelectronics Commun. Syst., vol. 59, no. 7, pp. 293-300, Jul. 2016.
Y. Liu, A. C. Yiicel, H. Bagci, A. C. Gilbert, and E. Michielssen,
“A wavelet-enhanced PWTD-accelerated time-domain integral equa-
tion solver for analysis of transient scattering from electrically large
conducting objects,” IEEE Trans. Antennas Propag., vol. 66, no. 5,
pp. 2458-2470, May 2018.

N. L. Tsitsas, G. P. Zouros, G. Fikioris, and Y. Leviatan, “On methods
employing auxiliary sources for 2-D electromagnetic scattering by
noncircular shapes,” IEEE Trans. Antennas Propag., vol. 66, no. 10,
pp. 5443-5452, Oct. 2018.

M. Alian and H. Oraizi, “Electromagnetic multiple PEC object scat-
tering using equivalence principle and addition theorem for spherical
wave harmonics,” [EEE Trans. Antennas Propag., vol. 66, no. 11,
pp. 6233-6243, Aug. 2018.

S. Afifi and R. Dusséaux, “Scattering from 2-D perfect electromagnetic
conductor rough surface: Analysis with the small perturbation method
and the small-slope approximation,” IEEE Trans. Antennas Propag.,
vol. 66, no. 1, pp. 340-346, Jan. 2018.

N. Vojnovic, M. Nikolic Stevanovic, L. Crocco, and A. R. Djordjevic,
“High-order sparse shape imaging of PEC and dielectric targets using
TE polarized fields,” IEEE Trans. Antennas Propag., vol. 66, no. 4,
pp. 2035-2043, Apr. 2018.

G. Edwards and R. Underwood, “The electromagnetic fields of a triaxial
ellipsoid calculated by modal superposition,” Metrologia, vol. 48, no. 3,
pp. 114-122, Mar. 2011.

J. B. Mehl, “Second-order electromagnetic eigenfrequencies of a triaxial
ellipsoid II,” Metrologia, vol. 52, no. 5, pp. 227-232, Oct. 2015.

D.-P. Lin and H.-Y. Chen, “An empirical formula for the prediction
of rain attenuation in frequency range 0.6-100 GHz,” IEEE Trans.
Antennas Propag., vol. 50, no. 4, pp. 545-551, Apr. 2002.

R. Olsen, D. Rogers, and D. Hodge, “The aR’ relation in the calculation
of rain attenuation,” IEEE Trans. Antennas Propag., vol. AP-26, no. 2,
pp- 318-329, Mar. 1978.

H. R. Pruppacher and R. L. Pitter, “A semi-empirical determination
of the shape of cloud and rain drops,” J. Ammos. Sci., vol. 28, no. 1,
pp. 86-94, Jan. 1971.

L. W. Li, P. S. Kooi, M. S. Leong, and T. S. Yeo, “On the simplified
expression of realistic raindrop shapes,” Microw. Opt. Technol. Lett.,
vol. 7, no. 4, pp. 201-205, Mar. 1994.

L.-W. Li, P-S. Kooi, M.-S. Leong, T.-S. Yee, and M.-Z. Gao,
“Microwave attenuation by realistically distorted raindrops: Part II.
Predictions,” IEEE Trans. Antennas Propag., vol. 43, no. 8, pp. 823-828,
Aug. 1995.

L.-W. Li, T.-S. Yeo, P.-S. Kooi, and M.-S. Leong, “An efficient calcula-
tional approach to evaluation of microwave specific attenuation,” /[EEE
Trans. Antennas Propag., vol. 48, no. 8, pp. 1220-1229, Aug. 2000.
C. Yeh, “Perturbation approach to the diffraction of electromagnetic
waves by arbitrarily shaped dielectric obstacles,” Phys. Rev., vol. 135,
no. 5A, pp. A1193-A1201, Aug. 1964.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics.
New York, NY, USA: McGraw-Hill, 1953.

T. Oguchi, “Attenuation of electromagnetic wave due to rain with
distorted raindrops,” J. Radio. Res. Lans., vol. 7, pp. 467-485, 1960.
R. F. Harrington, Field Computation by Moment Methods. New York,
NY, USA: IEEE Press, 1987.

K. Umashankar, A. Taflove, and S. Rao, “Electromagnetic scattering
by arbitrary shaped three-dimensional homogeneous lossy dielectric
objects,” IEEE Trans. Antennas Propag., vol. AP-34, no. 6, pp. 758-766,
Jun. 1986.

A. C. Ludwig, “The generalized multi pole technique,” Comp. Phys.
Com., vol. 68, nos. 1-3, pp. 306-314, 1991.

A. Lakhatakia and G. W. Mulholland, “On two numerical techniques
for light scattering by dielectric agglomerated structures,” J. Res. Nat.
Inst. Standards Technol., vol. 98, no. 6, pp. 699-716, Nov. 1993.

K. Yee, “Numerical solution of initial boundary value problems involv-
ing Maxwell’s equations in isotropic media,” [EEE Trans. Antennas
Propag., vol. AP-14, no. 3, pp. 302-307, May 1966.

J. L. Volakis, A. Chatterje, and L. C. Kempel, “Review of the
finite-element method for three-dimensional electromagnetic scattering,”
J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 11, no. 4, pp. 1422-1433,
1994.

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

8639

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic
scattering,” Phys. Rev. D, Part. Fields, vol. 3, no. 4, pp. 825-839,
Feb. 1971.

D. Petrov, E. Synelnyk, Y. Shkuratov, and G. Videen, “The T-matrix
technique for calculations of scattering properties of ensembles of
randomly oriented particles with different size,” J. Quant. Spectrosc.
Radiat. Transf., vol. 102, no. 1, pp. 85-110, Nov. 2006.

H. Zamani, A. Tavakoli, and M. Dehmollaian, “Scattering from two
rough surfaces with inhomogeneous dielectric profiles,” IEEE Trans.
Antennas Propag., vol. 63, no. 12, pp. 5753-5766, Dec. 2015.

H. Zamani, A. Takavoli, and M. Dehmollaian, “Scattering from layered
rough surfaces: Analytical and numerical investigations,” IEEE Trans.
Geo. Remote Sens., vol. 54, no. 6, pp. 3685-5696, Jun. 2016.

V. A. Erma, “Perturbation approach to the electrostatic problem for irreg-
ularly shaped conductors,” J. Math. Phys., vol. 4, no. 12, pp. 1517-1526,
Dec. 1963.

V. A. Erma, “An exact solution for the scattering of electromagnetic
waves from conductors of arbitrary shape. I. Case of cylindrical sym-
metry,” Phys. Rev., vol. 173, no. 5, p. 1243, Sep. 1968.

V. A. Erma, “Exact solution for the scattering of electromagnetic
waves from conductors of arbitrary shape. II. General case,” Phys. Rev.,
vol. 176, no. 5, pp. 1544-1553, Dec. 1968.

U. Raval and C. P. Gupta, “Electromagnetic scattering due to deformed
inhomogeneous bodies (Part I: Sphere),” Pure Appl. Geophys., vol. 87,
no. 1, pp. 134-145, Dec. 1971.

U. Raval and C. P. Gupta, “Electromagnetic scattering due to deformed
inhomogeneous bodies (Part II: Cylinder),” Pure Appl. Geophys., vol. 87,
no. 1, pp. 146-154, Dec. 1971.

N. C. Skaropoulos and D. P. Chrissoulidis, “On the accuracy of perturba-
tive solutions to wave scattering from rough closed surfaces,” J. Acoust.
Soc. Amer., vol. 114, no. 2, pp. 726-736, Aug. 2003.

J. T. Johnson, “Third-order small-perturbation method for scattering
from dielectric rough surfaces,” J. Opt. Soc. Amer. A, Opt. Image Sci.,
vol. 16, no. 11, pp. 2720-2736, Nov. 1999.

M. A. Demir and J. T. Johnson, “Fourth-and higher-order small-
perturbation solution for scattering from dielectric rough surfaces,”
J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 20, no. 12, pp. 2330-2337,
Dec. 2003.

M. A. Demir, J. T. Johnson, and T. J. Zajdel, “A study of the
fourth-order small perturbation method for scattering from two-layer
rough surfaces,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 9,
pp. 3374-3382, Sep. 2012.

J. Wiersig, “Perturbative approach to optical microdisks with a local
boundary deformation,” Phys. Rev. A, Gen. Phys., vol. 85, no. 6,
Jun. 2012, Art. no. 063838.

M. M. White and S. C. Creagh, “Quality factors of deformed dielec-
tric cavities,” J. Phys. A, Math. Theor., vol. 45, no. 27, Jun. 2012,
Art. no. 275302.

H. Zamani, A. Tavakoli, and M. Dehmollaian, “Second-order pertur-
bative solution of scattering from two rough surfaces with arbitrary
dielectric profiles,” IEEE Trans. Antennas Propag., vol. 63, no. 12,
pp. 5767-5776, Dec. 2015.

H. Zamani, A. Tavakoli, and M. Dehmollaian, “Second-order pertur-
bative solution of cross-polarized scattering from multilayered rough
surfaces,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 1877-1890,
May 2016.

T. Wang, L. Tsang, J. T. Johnson, and S. Tan, “Scattering and transmis-
sion of waves in multiple random rough surfaces: Energy conservation
studies with the second order small perturbation method,” Prog. Elec-
tromagn. Res., vol. 157, pp. 1-20, Oct. 2016.

H.-Y. Xie, M.-Y. Ng, and Y.-C. Chang, “Analytical solutions to light
scattering by plasmonic nanoparticles with nearly spherical shape and
nonlocal effect,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 27, no. 11,
p. 2411, Nov. 2010.

R. Schiffer, “Light scattering by perfectly conducting statistically irreg-
ular particles,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 6, no. 3,
pp. 385-402, Mar. 1989.

T. Nousiainen, K. Muinonen, J. Avelin, and A Sihvola, “Microwave
backscattering by nonspherical ice particles at 5.6 GHz using second-
order perturbation series,” J. Quantum Spect., vol. 70, nos. 4-6,
pp. 639-661, Aug. 2001.

G. A. Farias, E. F. Vasconcelos, S. L. Cesar, and A. A. Maradudin, “Mie
scattering by a perfectly conducting sphere with a rough surface,” Phys-
ica A, Stat. Mech. Appl., vol. 207, nos. 1-3, pp. 315-322, Jun. 1994.
A. Charalambopoulos and G. Dassios, “Scattering of a spherical wave
by a small ellipsoid,” IMA JAM, vol. 62, pp. 117-136, May 1999.



8640

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 12, DECEMBER 2021

G. Perrusson, M. Lambert, D. Lesselier, A. Charalambopoulos, and
G. Dassios, “Electromagnetic scattering by a triaxial homogeneous pen-
etrable ellipsoid: Low-frequency derivation and testing of the localized
nonlinear approximation,” Radio Sci., vol. 35, pp. 463—481, Mar. 2000.
G. Perrusson, D. Lesselier, M. Lambert, B. Bourgeois,
A. Charalambopoulos, and G. Dassios, “Conductive masses in a
half-space earth in the diffusive regime: Fast hybrid modeling of a
low-contrast ellipsoid,” IEEE Trans. Geosci. Remote Sens., vol. 38,
no. 4, pp. 1585-1599, Jul. 2000.

G. D. Kolezas, G. P. Zouros, and J. A. Roumeliotis, “Scattering and
radiation by perturbed spherical metallic bodies of revolution,” IEEE
Antennas Wireless Propag. Lett., vol. 15, pp. 1008-1011, 2016.

D. Sarkar and N. J. Halas, “General vector basis function solution of
Maxwell’s equations,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 56, no. 1, pp. 1102-1112, Jul. 1997.

J. A. Stratton, Electromagnetic Theory. Newyork, NY, USA:
McGraw-Hill, 1941.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicist.
Sacramento, CA, USA: Academic, 2015.

H. J. Eom, Electromagnetic Wave Theory for Boundary Value Prob-
lems, an Advanced Course on Analytical Methods. Berlin, Germany:
Springer-Verlag, 2004.

C. A. Balanis, Advanced Engineering Electromagnetics. New York, NY,
USA: Wiley, 1989.

G. P. Zouros, A. D. Kotsis, and J. A. Roumeliotis, “Electromagnetic
scattering from a metallic prolate or oblate spheroid using asymptotic
expansions on spheroidal eigenvectors,” IEEE Trans. Antennas Propag.,
vol. 62, no. 2, pp. 839-851, Feb. 2014.

R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York,
NY, USA: IEEE Press, 2001.

Y. Mushiake, “Backscattering for arbitrary angles of incidence of a plane
electromagnetic wave on a perfectly conducting spheroid with small
eccentricity,” J. Appl. Phys., vol. 27, no. 12, pp. 1549-1556, Dec. 1956.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[791

[80]

[81]

L. W. Li, X. K. Kang and M. S. Leong, Spheroidal Wave Functions in
Electromagnetic Theory. Newyork, NY, USA: Wiley, 2002.

G. C. Kokkorakis and J. A. Roumeliotis, “Electromagnetic eigenfrequen-
cies in a spheroidal cavity,” J. Electromagn. Waves Appl., vol. 11, no. 3,
pp. 279-292, Jan. 1997.

G. S. Zalevsky, A. V. Muzychenko, and O. I. Sukharevsky, “Method
of radar detection and identification of metal and dielectric objects with
resonant sizes located in dielectric medium,” Radioelectronics Commun.
Syst., vol. 55, no. 9, pp. 393-404, Sep. 2012.

G. P. Zouros, A. D. Kotsis, and J. A. Roumeliotis, “Efficient calculation
of the electromagnetic scattering by lossless or lossy, prolate or oblate
dielectric spheroids,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3,
pp. 864-876, Mar. 2015.

G. P. Zouros, G. D. Kolezas, and J. A. Roumeliotis, “Fast solution
of the electromagnetic scattering by composite spheroidal-spherical
and spherical-spheroidal configurations,” IEEE Trans. Microw. Theory
Techn., vol. 63, no. 10, pp. 3042-3053, Oct. 2015.

A. D. Kotsis and J. A. Roumeliotis, “Electromagnetic scattering by a
metallic spheroid using shape perturbation method,” Prog. Electromagn.
Res., vol. 67, pp. 113-134, 2007.

G. D. Kolezas, G. P. Zouros, and K. L. Tsakmakidis, “Engineering
subwavelength nanoantennas in the visible by employing resonant
anisotropic nanospheroids,” IEEE J. Sel. Topics Quantum Electron.,
vol. 25, no. 3, pp. 1-12, May 2019.

M. Elwenspoek, “Theory of light scattering from aspherical particles
of arbitrary size,” J. Opt. Soc. Amer., vol. 72, no. 6, pp. 747-755,
Jun. 1982.

M. de Podesta et al., “Characterization of the volume and shape of
quasi-spherical resonators using coordinate measurement machines,”
Metrologia, vol. 47, no. 5, pp. 588-604, Sep. 2010.

S.-H. Dong and R. Lemus, “The overlap integral of three associated
legendre polynomials,” Appl. Math. Lett., vol. 15, no. 5, pp. 541-546,
Jul. 2002.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on May 26,2022 at 07:03:38 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


