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ABSTRACT 
 

ATMOSPHERIC EFFECTS ON SHORT TERM 
WIND POWER FORECASTING 

 
Wind power all over the world are being popularizing unlike decrease in 

conventional sources due to environmental issues. However, power acquired from wind 

is not stable during day and night, which means that intermittent due to nature of the 

source. Forecasting in wind power plant is very challenging compared to forecasting of 

production of conventional power plant. Although there are many robust and site-specific 

models in order to forecast wind power accurately, decrease of deviation in wind power 

forecasting by using statistical, physical and hybrid models is still open to new 

approaches. In this study, four different forecast models based numerical weather 

prediction (NWP) models for three different wind farms which have different 

atmospheric conditions are examined to improve wind farm-based power forecasting. For 

this purpose, wind power forecasting of the providers was categorized based on 

atmospheric effects, which are site temperature and turbulence. Results have been 

compared with real time power production from wind turbine supervisory control and 

data acquisition (SCADA) system. Afterwards, new method based on selecting best 

provider for specific condition was developed by considering atmospheric effects on 

power forecasting. It should be noted that the method is an engineering approach, not a 

new forecast model. In many cases, newly developed method has succeeded to 

outperform in comparison to results belonging to forecast providers. Hourly and daily 

wind power forecasting that have significant role in electricity market has been improved 

for selected wind farms by the help of an engineering approach used in this study. Same 

method is also implementable to another wind farm if required inputs exist.  

Keywords: Wind Power Forecasting, Atmospheric Effects, Temperature, Turbulence 
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ÖZET 
 
 

KISA VADELİ RÜZGAR ENERJİSİ ÜRETİM TAHMİNLERİNDE 
ATMOSFERİK ETKİLER 

 
Rüzgar enerjisinden elektrik üretimi, fosil yakıtlardan elektrik üretimine kıyasla 

giderek tüm dünyada popüler hale gelmeye başlamıştır. Ancak rüzgardan elektrik üretimi, 

fosil yakıtlardan elektrik üretimi gibi gece ve gündüz sürekli olarak devam 

edememektedir. Rüzgarın doğası gereği üretim aralıklı olmaktadır ve bu durum rüzgar 

enerjisinden elektrik üretimini tahminini oldukça zorlaştırmaktadır. Literatürde rüzgar 

enerjisi tahmini için güçlü ve sahaya özgü birçok istatistiksel, fiziksel ve hibrid modeller 

bulunmaktadır. Bu tahmin modellerinin iyileştirmesi üzerine halen çalışmalar devam 

etmekte olup tahminlerin iyileştirilmesi farklı mühendislik yaklaşımlarına açıktır. Bu 

çalışmada da farklı atmosferik koşullara sahip üç farklı rüzgar santrali için farklı nümerik 

hava modellerine dayalı dört farklı tahmin sağlayıcısından elde edilen sonuçlar sıcaklık 

ve türbülans gibi atmosferik etkiler dikkate alınarak değerlendirilmiştir. Tahmin 

sağlayıcısı sonuçları sıcaklık ve türbülans göz önüne alınarak gruplandırılmış, sonuçlar 

türbinlerin gerçek üretim değerleriyle karşılaştırılmıştır. Belirlenen koşullarda en iyi 

tahmin sağlayıcısı seçilerek mühendislik yaklaşımıyla yeni bir metot geliştirilmiştir. Yeni 

geliştirilen metotun yeni bir tahmin modeli olmadığı, yalnızca yeni ve farklı bir 

mühendislik yaklaşımı olduğu unutulmamalıdır. Yeni metot yardımıyla elektrik 

piyasasında önemli bir role sahip saatlik ve günlük rüzgardan elektrik enerjisi üretim 

tahminleri seçilen rüzgar santralleri için iyileştirilmiştir. Geliştirilen metot eğer gerekli 

girdiler mevcut olursa bir başka rüzgar santralinde de uygulanabilir. 

 

Anahtar Kelimeler ve Deyimler: Rüzgar Enerjisi Tahmini, Atmosferik Etkiler, Sıcaklık, 
Türbülans
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CHAPTER 1 
 
 

INTRODUCTION 

Decrease in conventional energy systems, such as fossil fuel plant, thanks to 

opponent on air pollution and global warming has been caused development of renewable 

and sustainable energy sources like wind power. Wind power is one of the renewable 

sources such as hydro, solar and bioenergy power and these kinds of energy sources have 

limitless and cost-free fuel unlike fossil fuels. The fuel of the wind power is the blowing 

wind, which is not continuous during day and night. It always varies in time and for this 

reason predicting the wind is not so simple1. Power production of single wind turbine can 

be related to the wind speed and direction as well as site complexity, air density and time 

of the day. Power production balancing is a critical key component for this kind of 

unstable power plant to take care of power supply and demand. Therefore, accurate wind 

speed forecasting is very important for reliability and efficiency of power production of 

the wind farm in operation1. In addition, accurate power forecasting of the wind farms is 

necessary for maintenance planning during less windy days and cost-effective operation 

in power trading market. There are various methods in literature in order to predict wind 

speed and wind power accurately. These can be categorized into three methods; statistical 

(time series based), physical (numeric weather models), and hybrid methods (combined 

models). Accuracy of the models changes based on time-scale and topography of wind 

farm site2. These can be also categorized based on time-horizon of the forecasting, which 

are very short term, short term, medium term, and long term. Very short-term forecasting 

(a few minutes to 30 minutes) is useful for turbine control purpose and real-time grid 

operation. Short term and medium-term (one hour to one day) forecasting can be also 

used for load dispatch planning and energy trading in electricity market while long-term 

forecasting (up to 1 month) can be used for maintenance planning and operation 

management3. In order to acquire maximum profit on electricity market, operator 

company of the wind farms are especially focused on short-term power forecasting. 

The forecasting methods can forecast the wind speed and corresponding power 

production accurately. Nevertheless, there may be significant amount of deviation in wind 

farm power production if the wind farm is exposed to atmospheric icing and turbulence. 
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In this case, the forecasting the power production of the wind farm is really challenging. 

To overcome this problem, forecasting results acquired by different models can be 

categorized based on icing phenomena that can be related to site temperature, and site 

turbulence intensity that can be related to site wind speed. Thus, different models can be 

used or preferred depending upon atmospheric conditions. For instance, there are two 

forecast models from different forecast providers belonging to specific wind farm. One 

can provide acceptable results during winter times that have icing conditions, other can 

provide satisfactory results in lack of icing phenomenon. Depending upon this selective 

criterion related to atmospheric conditions on the forecast model, some improvement on 

power forecasting can be achieved. In this study, four different short-term forecast models 

based on numerical weather prediction (NWP) model belonging to three wind farms that 

have different topography and site conditions are included to investigate deviation in 

power forecasting due to atmospheric effects. By considering atmospheric conditions 

mentioned above, some improvement in comparison to the forecast models has been 

made. It should be noted that this methodology is an engineering approach, which is not 

newly developed forecasting model. In following sections, literature review regarding 

short term power forecasting and its applications, data and methodology included in this 

study, information about wind farm site and power forecasting providers have been 

shared in detail. 

1.1. Literature Review 

Power supply and demand must be balanced at any time in electricity grid. 

Unbalanced electricity grid could create deviation in power quality. Unlike conventional 

energy sources, wind is non-dispatchable source of energy, which means wind power 

production cannot be decreased or increased based on power supply and demand. 

Fluctuations in wind power can be observed with seasonal and daily as well as short-term 

variations. If the penetration of wind power production increases, fluctuations in 

electricity grid due to intermittent nature of the wind will increase4. Transmission system 

operator (TSO) are in charge of balancing power supply and demand in electricity grid. 

There are two main mechanisms in electricity market. First mechanism is day-ahead 

market, it is spot market where independent power producers (IPPs) submit quantity of 

electricity that will be produced for each hour of upcoming day. Electricity spot price for 
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each hour of following day based on various bids is determined by the help of an auction 

system. Second mechanism is balancing power production. It is controlled by TSO and 

intra-day market is constituted to balance lack and surplus of power production, which 

are mainly caused by failures of power plants and deviation in short term power 

forecasting. By means of the intra-day market there is an additional option for the IPPs to 

prevent the imbalances in their portfolios and even upgrade their profits. TSO determines 

obligations regarding power supply and demand to balance grid operations. If any events 

by IPPs that damage balance on electricity grids are occurred, TSO imposes penalty to 

IPPs. It should be noted that penalties of negative and positive imbalances are not same 

amount of cost for IPPs. Therefore, short-term power forecasting, especially in wind 

power, is needed for reducing imbalance charges and penalties on day-ahead and intra-

day market5. More accurate power forecasting is crucial because of the fact that small 

increase of power performance in electricity market is financially attractive to IPPs6.   

Statistical forecasting methods generally use Numerical Weather Prediction 

(NWP) data including wind speed, wind direction, temperature and wind power produced 

by the wind farms. These methods are specifically focused on linear and non-linear 

relationship among the variables such as wind speed, temperature, and power production. 

In order to create reliable statistical relationship, sufficient amount of historical data as 

input into the models are required. The historical data are imported to linear or non-linear 

model as training data7. After fine-tuning for model accuracy, desired variables can be 

predicted for specific time horizon, however if the time horizon increases, forecasting 

accuracy decreases correspondingly8. Autoregressive Integrated Moving Average 

(ARIMA) model is one of the linear univariate models, which means only one variable is 

included in the model unlike multivariate ones. ARIMA is the most well-known and 

useful model in order to predict the future based on historical time series. There are 

numerous applications regarding ARIMA model in the economics as well as engineering. 

The model has popularized in the 1970s, Box and Jenkins have used the model for time 

series analysis and forecasting. The model that also known as Box-Jenkins method can 

be used for any specific cases such as prediction of power generation, stock market 

demand etc9. Indeed, there are many ARIMA models depending upon purpose of the 

study in the literature such as ARIMA with exogenous variables (ARIMAX) for 

multivariate time series, seasonal ARIMA (SARIMA) for seasonal data modelling10. 

According to simplest non-seasonal ARIMA model, variables to be predicted are 

considered to be equal to linear functions of past variables and their random errors. It 
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includes two main components, which are AR and MA part. AR part indicates order of 

autoregression, while MA part shows order of moving average. Differencing part is also 

identified as I, which transforms the non-stationary time series to stationary ones11. 

ARIMA structure is robust and easy to learn and put into practice due low computational 

time in short-term wind power forecasting however, these models do not provide 

sufficient forecasting performance if the time series are non-stationary, which means that  

mean, variance and covariance of the time series change over time12. Gallego et. al 

focused on AR model with local wind speed and direction measurements and 

demonstrated that importance of local measurement on power forecasting accuracy for 

Horns Rev Wind Farm in Denmark13. Duran et. al used AR model for different Spanish 

wind farms with wind speed as exogenous variable in addition to wind power variable 

and demonstrated that short-term wind power forecasting based on ARX model provides 

lower errors compared to conventional AR model14. 

Artificial neural networks (ANN) are one of the well-known forecasting models 

based upon biological structure of brain. These models can handle complex non-linear 

relationships between the input and output variables. Unlike ARIMA model, these are 

also compatible for working with noisy, non-stationary and incomplete datasets. There 

are many neural networks in the literature, however feedforward and feedback artificial 

neural networks are most popular models for time series forecasting10. The neural 

networks are generally comprised of three layers, which are named as bottom, 

intermediate and top. Input or predictor variables take part in bottom layer, while output 

or forecast variables include in the top layer. In addition, hidden neurons into ANN model 

can be included in the intermediate layer. Unlike feedback neural networks, there are no 

loops among the neurons in the feedforward model. In other words, the feedforward 

model has only one direction data movement. The ANN model can be implemented by 

the means of weights on the input variables, and these are calculated by using learning 

algorithms, which uses cost function like mean squared error (MSE). Backpropagation 

algorithm is one of the learning algorithms. It is based on backpropagation errors, which 

adjusts weights in the hidden layer by decreasing the error between observed and 

predicted values. If there is no hidden layer, simple neural network model resembles 

linear regression. After adding hidden layers, the model will be transformed to the non-

linear form. There can be many hidden neurons in the hidden layer. Every neurons of the 

each layer provides inputs to the neurons in the next layer, that means inputs in the next 

layer are equivalent to the outputs in the previous layer15. Based on the literature, ANN 
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models provide satisfactory results in short-power forecasting2. However, all of these 

models are developed and validated for site specific purpose only. Validated model for 

specific site may not provide accurate power forecasting for another site. For this reason, 

different form of ANN models, for instance back-propagation neural network (BPNN)16 

and long-short-term memory (LSTM)17, can be used to increase accuracy of the 

forecasting that varies from site to site. Pelletier et. al developed multi-stage ANN with 

six inputs, which are wind speed, air density, turbulence intensity, wind shear, wind 

direction and yaw error and improved short-term wind power forecasting for 140 wind 

turbines in Nordic compared to other ANN models, which are parametric, non-parametric 

and discrete models6. Bilal et. al showed that using both temperature and wind speed 

parameter as input to ANN would improve the power forecasting compared to ANN that 

includes only wind speed parameter. The study also shows that additional atmospheric 

variables, such as air density, rainfall etc., can help to improve accuracy of ANN 

models18. Chang worked on BPNN, back-propagation is one of the learning algorithm for 

ANN model, including only wind power output parameter and improved short term power 

forecasting for a single wind turbine in Taiwan compared to conventional ANN model19. 

According to Singh et. al, there are many factors that affect wind turbine power output 

like terrain, air density, wind shear, wind speed and direction. A feed forward neural 

network model based on air density, wind speed and direction parameters was developed 

and the model has outperformed traditional ANN models. The study also demonstrates 

that wind direction has less impact on wind power forecasting in comparison to wind 

speed20.  

Physical forecasting methods are basically explained as downscaling of numerical 

weather prediction (NWP) data. This mechanism requires site boundary, roughness, 

digital elevation and obstacle map of the boundary and historical reanalysis data like wind 

speed, temperature, pressure. Depending upon these variables, atmosphere can be 

modeled by using complex mathematical equations, which are so time-consuming 

compared to statistical methods mentioned before21. Accurate wind speed forecasting can 

be implemented by means of numerical weather prediction models and then turbine power 

curve can be utilized to calculate power production of each turbine in a wind farm. 

However, in complex terrain, NWP model can cause some deviation in wind speed 

forecasting, which leads to errors in wind power forecasting. It should be noted that using 

manufacturing power curve instead of site-specific power curve to calculate power 

production leads to failure in power forecasting22. There are many site-specific NWP 
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models in the literature such as regionally developed Weather Research and Forecasting 

(WRF) model, which gives satisfactory results in short-term power forecasting like 

statistical ANN models. Focken et al. developed physical model to forecast short-term 

wind power up to period of two days. Boundary layer of study was created by considering 

roughness, orography, and wake effect. Change on wind speed depending upon thermal 

effects at the atmosphere was also considered for wind speed forecasting at the hub 

height23. However, NWP models cannot consider site specific power production losses 

caused by environmental impacts such as icing, turbulence intensity. NWP models are 

generally developed for flat terrain like European sites. Even if NWP model in complex 

site, for instance Turkey, gives accurate wind speed forecasting, some power forecasting 

errors can be observed due to low site temperature and considerable turbulence. 

Therefore, power forecasting results acquired by NWP model should be improved and 

corrected by including statistical models such as ANN. 

Hybrid methods consist of combination of different forecasting models, such as 

NWP model supported by statistical models or vice versa. Recently, many researchers 

and companies leading wind energy sector are oriented towards these kinds of hybrid 

forecasting methodologies in order to increase accuracy of short-term power forecasting 

because of the fact that any single forecasting model cannot overcome to provide accurate 

results for the specific site under today’s conditions. It should be noted that combination 

of the forecasting models may not provide better results all the time. However, it should 

be preferred in order to minimize risk on power forecasting22. Lin et al. developed hybrid 

model, combining statistical methods, in order to reveal outliers of wind power 

forecasting. The model used wind speed, nacelle orientation, yaw error, blade pitch angle 

and nacelle temperature parameters from each turbine at an offshore wind farm in 

Scotland24. Lin and Liu also investigated importance of input variables on accuracy of 

wind power forecasting. According to the study, wind direction and air density parameters 

had less significance on wind power forecasting accuracy and blade pitch angle parameter 

had significant effect on the accuracy compared to wind speed and wind shear 

parameters15. De Giorgi et al. developed hybrid method, combining statistical and 

physical models, for a wind farm in Italy. Wind power, wind speed, pressure, temperature, 

and humidity variables were included to the model. Hybrid model provided better results 

compared to single ANN models. Based on the model, pressure and temperature variables 

provided by different NWP providers had significant importance on wind power 

forecasting25.  
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Many hybrid methods on power forecasting have been improved by considering 

site-specific conditions. Most hybrid models that are developed site-specifically have 

been succeeded to provide accurate power forecasting, however it was not possible to 

model power production losses due to atmospheric phenomena. There are many root 

causes that affect wind power production losses, which are turbine and grid availability, 

power and temperature curtailment, maintenance and shut down of the turbines, 

atmospheric events like icing, turbulence, and extreme wind speed. It should be noted 

that atmospheric conditions have significant importance in relation to wind power 

forecasting however there are several parameters regarding atmospheric conditions that 

are stochastic and not controllable. According to study of Pieralli et al., significant amount 

of power production losses is caused by change in wind climate and turbine errors are 

responsible for only 6% of the power production losses. Based on the study, icing has 

considerable effect on power production losses among other variables. The study also 

says that changing in wind conditions has also greater effect, deviation in wind speed and 

wind direction affect wind power output and will cause power production losses. In 

addition to these two parameters, park position of wind turbines in a single wind farm 

creates power production losses26. Based on the study of Pieralli et al., temperature and 

wind speed variables should be considered in order for revealing power production losses 

and improving accuracy of wind power forecasting. 
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CHAPTER 2 
 
 

 WIND FARM SITE DESCRIPTION 

Three operational wind farms in different locations of Turkey have been included 

in this study. These have been referred to in this study as Wind Farm A, B and C. Wind 

Farm A has started to produce electricity in June 2015 and its physical capacity is equal 

to 55.2 MWh. Wind Farm B has been installed in October 2015 and it has 33.9MWh 

physical capacity. Wind Farm C has produced electricity since September 2019 and its 

physical capacity is 91.1 MWh. All of the wind farms mentioned here had produced 

electricity with maximum physical capacity from their installation date to early 2020. 

After change on legislative regulations in 2020, their physical capacities have been 

restrict based on wind farm licenses. If the wind farm has exceeded its license capacity 

limit, operator would pay a penalty. In order to prevent these kinds of penalties, power 

curtailment methodology has been applied to the wind farms since 2020. 

Table 2.1 Installed Capacity of Wind Farm A, B and C 

Wind Farm Physical Capacity (MWm) Capacity Limit (MWe) 
A 55.2 50.0 
B 33.9 30.0 
C 91.1 87.0 

2.1. Wind Farm A 

The wind farm A has been located in Mediterranean Region in middle of Turkey, 

approximately 90 km north from Mediterranean Sea. It consists of 16 Vestas V112 wind 

turbines at 84 m hub height, as shown in Figure 2.1 below. The wind farm site lies on 

open and bare land at an average elevation of approximately 1656 m. The general terrain 

can be described as simple based on the Ruggedness Index27 (RIX) value of 4.2%, which 

means very low percentage fraction of slopes more than 30%(17º). The details belonging 

to the wind farm can be seen below in Table 2.2. Wind turbine information in the Wind 

Farm A has been provided by the investor company. Base elevation and air density at the 

turbine points were calculated to acquire additional environmental information regarding 
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the site. 1 arc Shuttle Radar Topography Mission (SRTM) digital elevation model28 was 

used to calculate RIX value and find base elevation of the turbines. Air density was also 

calculated by the help of engineering method, which enables us to make the calculation 

by using only temperature and elevation data. Formula of the engineering method can be 

seen below. , , , and indicate standard sea level pressure, vertical 

temperature gradient, standard sea level temperature, gravitation constant, molarity of air, 

gas constant, respectively29. 

                                              (2.1) 

Power production of Wind Farm A has been struggling due to turbulence and icing 

phenomenon. The site is included in the study to improve short-term wind power 

forecasting considering these two phenomena. 

 
Figure 2.1 Wind Farm A Layout 

Table 2.2 Wind Farm A General Information 

Turbine Manufacturer 
Rated  
Power 
(MW) 

Rotor  
Diameter 

(m) 

Hub  
Height 

(m) 

Base  
Elevation 

(m) 

Air density 
(kg/m3) 

T1 Vestas 3.45 112 84 1640 1.025 
cont. on next page 
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cont. of table 2.2 
T2 Vestas 3.45 112 84 1644 1.011 
T3 Vestas 3.45 112 84 1637 1.026 
T4 Vestas 3.45 112 84 1659 1.013 
T5 Vestas 3.45 112 84 1643 1.025 
T6 Vestas 3.45 112 84 1659 1.010 
T7 Vestas 3.45 112 84 1616 1.026 
T8 Vestas 3.45 112 84 1625 1.017 
T9 Vestas 3.45 112 84 1653 1.014 

T10 Vestas 3.45 112 84 1675 1.003 
T11 Vestas 3.45 112 84 1652 1.019 
T12 Vestas 3.45 112 84 1649 1.013 
T13 Vestas 3.45 112 84 1655 1.004 
T14 Vestas 3.45 112 84 1701 1.006 
T15 Vestas 3.45 112 84 1700 1.009 
T16 Vestas 3.45 112 84 1693 1.012 

2.2. Wind Farm B 

The wind farm B has been situated in Aegean Region in West of Turkey, 

approximately 110 km east from Aegean Sea. 10 wind turbines have been installed, which 

are Vestas V112 at the hub height of 84 m, in the wind farm. Its layout can be seen in the 

Figure 2.2 below. The wind farm site is located on a very complex terrain with variable 

topography at an average elevation of approximately 1076 m. Ground cover on the site is 

ranging from single bushes and trees to dense forestry. The whole site area is covered by 

vegetation with varying heights, density, and maturity. RIX value of the site is equal to 

38.9%, which explains very high percentage fraction of slopes more than 30%(17º). 

Power production of Wind Farm B has been struggling due to turbulence and icing 

phenomenon caused by complexity and high altitude of the site. The site is included in 

the study to improve short-term wind power forecasting considering these two 

phenomena. The detailed information of the wind farm provided by investor company is 

shown in both Figure 2.2 and Table 2.3 below. As it has been mentioned earlier, additional 

environmental information regarding the site was calculated by means of engineering 

method and 1-arc SRTM digital elevation model. 
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Figure 2.2 Wind Farm B Layout 

Table 2.3 Wind Farm B General Information 

Turbine Manufacturer 
Rated  
Power 
(MW) 

Rotor  
Diameter 

(m) 

Hub  
Height 

(m) 

Base  
Elevation 

(m) 

Air 
Density 
(kg/m3)  

T1 Vestas 3.45 112 84 1102 1.081 
T2 Vestas 3.45 112 84 1135 1.072 
T3 Vestas 3.45 112 84 1129 1.077 
T4 Vestas 3.45 112 84 1060 1.084 
T5 Vestas 3.45 112 84 1032 1.093 
T6 Vestas 3.45 112 84 1074 1.087 
T7 Vestas 3.3 112 84 1104 1.089 
T8 Vestas 3.3 112 84 1013 1.093 
T9 Vestas 3.3 112 84 1015 1.091 
T10 Vestas 3.3 112 84 1100 1.080 

 

2.3. Wind Farm C 

The wind farm C has been located in Marmara Region in West of Turkey, 

approximately 3 km South from Marmara Sea. The wind farm has hybrid layout, which 



 
 

 
 

12 

consists of Vestas V112 and Vestas V90. In total, there are 29 wind turbines at the 

different hub heights of 80 m and 84 m. The site lies on a wide area in the direction of 

east and west. Its layout can be seen in Figure 2.3 below. The wind farm site, at an average 

elevation of 527 m, is covered by forestry with varying heights, density, and maturity. 

RIX value of the site was calculated as 7.3%, which indicates low percentage fraction of 

slopes more than 30%(17º). Wind Farm C is situated on non-complex, and its location is 

relatively close to coastal area so, it has not been struggling due to turbulence and icing 

phenomenon unlike Wind Farm A and B. The site, under influence of lack of icing and 

turbulence, is included in the study to compare improvement of short-term wind power 

forecasting of Wind Farm A and B. General information of Wind Farm C provided by 

investor company are shared in below Table 2.4. Additional information regarding the 

base elevation and air density of the turbines can also be found in Table 2.4. 

 
Figure 2.3 Wind Farm C Layout 

 
Table 2.4 Wind Farm C General Information 

Turbine Manufacturer 
Rated 
Power 
(MW) 

Rotor 
Diameter 

(m) 

Hub 
Height 

(m) 

Base 
Elevation 

(m) 

Air 
density 
(kg/m3) 

T1 Vestas 3 90 80 466 1.167 
cont. on next page 
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cont. of table 2.4 
T2 Vestas 3 90 80 471 1.153 
T3 Vestas 3 90 80 419 1.168 
T4 Vestas 3 90 80 442 1.170 
T5 Vestas 3 90 80 479 1.157 
T6 Vestas 3 90 80 528 1.158 
T7 Vestas 3 90 80 540 1.150 
T8 Vestas 3 90 80 523 1.161 
T9 Vestas 3 90 80 536 1.152 

T10 Vestas 3 90 80 485 1.166 
T11 Vestas 3 90 80 691 1.141 
T12 Vestas 3 90 80 499 1.161 
T13 Vestas 3 90 80 522 1.156 
T14 Vestas 3 90 80 538 1.156 
T15 Vestas 3 90 80 648 1.140 
T16 Vestas 3 90 80 566 1.155 
T17 Vestas 3 90 80 610 1.145 
T18 Vestas 3 90 80 663 1.144 
T19 Vestas 3 90 80 700 1.141 
T20 Vestas 3 90 80 678 1.145 
T21 Vestas 3.45 112 84 393 1.167 
T22 Vestas 3.45 112 84 456 1.158 
T23 Vestas 3.45 112 84 423 1.159 
T24 Vestas 3.45 112 84 467 1.161 
T25 Vestas 3.45 112 84 498 1.155 
T26 Vestas 3.45 112 84 452 1.163 
T27 Vestas 3.45 112 84 473 1.156 
T28 Vestas 3.45 112 84 490 1.153 
T29 Vestas 3.45 112 84 615 1.139 
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CHAPTER 3 
 
 

 WIND FARM SCADA 

Approximately 25-30% of power production cost of a wind farm is originated 

from operation and maintenance of wind turbines. In order to decrease this kind of cost, 

monitoring and fault detection systems are quite necessary for the wind farms. For 

instance, vibration analysis, lubrication analysis and strain measurement should be 

followed up by the help of condition monitoring systems during lifetime of the wind 

turbines. Supervisory control and data acquisition system (SCADA) of the wind farm 

could help to monitor health condition of the wind farm by collecting a large quantity of 

measurements from the wind turbines. SCADA system includes many various parameters 

such as bearing and oil temperature, wind speed and direction, power output, pitch angle 

and rotor speed. By taking these parameters into account, several analyses such as power 

curve and power production loss analysis can be performed30.  

Operational wind farm data belonging to three wind farms, which named here as 

Wind Farm A, B and C, have been provided by the investor, which is a private company 

that leads to renewable energy sector. As it has been mentioned earlier, wind turbine 

SCADA data include various parameters regarding wind turbine operation. Parameters 

that were used in this study has been selected depending upon purpose of the study. 

At the beginning of the study, turbine-based SCADA data between the years of 

2019 and 2020 have been shared. The SCADA data that have 10-minute time steps, 

include 9 different channels regarding condition of the wind turbines. These can be 

categorized as; time stamp with 10 minutes interval; environmental conditions such as 

maximum, minimum, average and standard deviation of wind speed, average wind 

direction and ambient temperature, power production with availability time count as well. 

In addition to these parameters, some additional channels were created to implement this 

study. Reference power for comparing real power production on SCADA data, air density 

for calculating reference power and turbulence intensity for detecting unexpected losses 

in power production were calculated and added as new channels on the SCADA data of 

the wind turbines.  
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Data regarding wind speed conditions are measured by anemometer and wind 

vane on wind turbine nacelle, so there is some decrease in wind speed. To calculate 

turbulence intensity, standard deviation of wind speed is divided by average of the wind 

speed. In descriptive statistic, ratio of standard deviation to the mean is known as 

coefficient of variation (CV) or relative standard deviation (RSD), which is measure of 

dispersion or variability of data around its mean31. Time series of turbulence intensity can 

be created by using this formula mentioned. 

Site specific air density can be calculated by means of engineering method29. This 

method needs only ambient temperature and base elevation of the turbine as input to 

calculate site-specific air density.  

Reference power can be calculated by using air density of the site, average wind 

speed of the turbine and wind turbine manufacturer’s power curve. The reference power 

might be helpful to observe possible issues on wind turbine power production. If the site 

air density, average wind speed and turbine power curve exist, the reference power can 

be acquired easefully by using look-up table of the turbine power curve that includes 

power production at various wind speed and air density. This method is one of the easiest 

ways to calculate reference power for comparing real power production of the wind 

turbines. However, it leads to high uncertainties because of the fact that measurement of 

the average wind speed is affected by wind turbine blades adversely. It should be also 

noted that look-up table of the turbine power curve provided by manufacturer will be 

different from site to site. For this reason, including site specific power curve depending 

upon SCADA data let the reference power calculation more accurate. In this study, 

reference power was calculated based on site specific power curve of each wind turbines. 

To make the calculation more reliable, one of the ready-to-use Python tools was used to 

acquire site specific power curve individually for all wind turbines.  

Data channels on both collected by wind turbine SCADA system and calculated 

manually are included in this study. SCADA channel labels belonging to a wind turbine 

in one of the wind farms is shown Table 3.1 below. 

Table 3.1 SCADA Data Channels 

Abbreviation Label Unit Type 
PCTimeStamp Date/Time 10 minutes Scada 

Amb_WindSpeed_Max Max Wind Speed m/s Scada 
Amb_WindSpeed_Min Min Wind Speed m/s Scada 

cont. on next page 



 
 

 
 

16 

cont. of table 3.1 
Amb_WindSpeed_Avg Average Wind Speed m/s Scada 
Amb_WindSpeed_Std Standard Deviation of Wind Speed m/s Scada 

Amb_WindDir_Abs_Avg Wind Direction Degree Scada 
Amb_Temp_Avg Ambient Temperature Celsius Scada 

Grd_Prod_Pwr_Avg Turbine Power Production/Consumption  kWh Scada 
HCnt_Avg_Tot Time Count seconds Scada 

Power Turbine Power Production kWh Calculated 
Reference Turbine Reference Power  kWh Calculated 

TI Turbulence Intensity - Calculated 

10 minutes SCADA data, covering also calculated channels, have been converted as 

hourly in order to compare hourly forecasting of power production of the wind farms. 

Due to site-based power curtailment at the beginning of 2020, only SCADA data 

belonging to the year of 2019 could be analyzed in this study. Power consumption of the 

wind turbines has been neglected in this study, so the negative values in the SCADA data 

that indicate the power consumption have been changed as zero, which means no 

electricity or power production at the wind turbines. Reference power production has 

been calculated in order for detecting how the wind turbines are far from normal 

operation, which means that there are no power production losses during operation. To 

detect anomalies from normal operation, reference and SCADA power production were 

compared. Reference power production has been also compared with the forecasting of 

power production. Power production of the wind turbines has been analyzed based on 

ambient temperature and turbulence intensity in order to reveal possible deviation of 

forecasting of power production. Apart from the power production, metered data 

belonging to the wind farms have been investigated. There will be some difference 

between the power production and metered data because of electrical losses on cabling 

during electricity transferring from wind farm site to transformer station. Table 3.2 shows 

that total power and metered production of the wind farms in 2019. Power production 

data from SCADA and power forecasting data from forecast providers have been 

examined and investigated how power forecasting can be improved. 

Table 3.2 Total Power Production of Wind Farm A, B and C* 

 
Total Power Production 

[MWh/a] 
Total Metered Production  

[MWh/a] 
Electrical Loss [%] 

Wind Farm A 134012.7 132518.1 1.1% 

Wind Farm B 90501.6 89094.6 1.6% 

Wind Farm C 280118.6 276150.8 1.4% 
* Total power and metered production are calculated by taking missing SCADA data into consideration.   
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CHAPTER 4 
 
 

 WIND FARM POWER FORECASTING 

There are many companies related to wind power forecasting in both local and 

global. They have various methodology in order for providing wind farm power 

forecasting in microscale. However, these companies have common purpose for 

improving their numerical weather prediction (NWP) model and providing more accurate 

forecast by using reanalysis data, which is in mesoscale. During downscaling process 

from mesoscale to microscale, each company has unique process to calculate wind farm-

based power forecasting. Turbine based power forecasting is also thinkable however, this 

methodology will increase deviation of power forecasting. Thus, the companies generally 

give preference to wind farm-based forecasting. In this study, four different forecasting 

providers have been included to compare power production of Wind Farm A, B and C 

and detect possible causes in deviation of power forecasting. Power forecasting data have 

been shared by the owner company of the wind farms and forecasting providers have been 

named as Provider 1, 2, 3 and 4, respectively. 

Some forecast providers only calculate wind farm power production, some 

calculate also meteorological parameters in addition to power production belonging to 

the wind farms. Forecast provider 1 has hourly power production forecasting belonging 

to the wind farms. Apart from the power production, hourly relative humidity, pressure, 

temperature, wind speed and direction forecasting for Wind Farm A, B and C are provided 

by forecast provider 1. Forecast provider 3 just like previous one contains meteorological 

parameters, which are relative humidity, pressure, temperature, wind speed and direction. 

It also provides hourly power production for the wind farms. Forecast provider 2 and 4 

have only hourly power production for the wind farms.  

Detailed information regarding forecast providers can be found in Table 4.1 

below. As stated previously, 10-min SCADA data have been converted to hourly values 

in order for comparing forecasting values and only SCADA data in 2019 have been 

included in this study because of the fact that dispatch quantity to the grid have been 

limited to the licensed capacity since January 2020 by the help of wind farm control units. 
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Control units of Wind Farm A, B and C enable power limited operation mode when it is 

necessary, which can be called as wind farm level curtailment. 

Table 4.1 Forecasting Data Channels 

Forecast 
Provider-1 

Forecast 
Provider-2 

Forecast 
Provider-3 

Forecast 
Provider-4 

Time 
Scale Explanation 

Provider-1 
[MWh] 

Provider-2 
[MWh] 

Provider-3 
[MWh] 

Provider-4 
[MWh] Hourly Power Forecasting 

Provider-1 
WS - Provider-2 

WS - Hourly Wind Speed 
Forecasting 

Provider-1 
WD - Provider-2 

WD - Hourly Wind Direction 
Forecasting 

Provider-1 
T - Provider-2 

T - Hourly Temperature 
Forecasting 

Provider-1 
RH - Provider-2 

RH - Hourly Relative Humidity 
Forecasting 

Provider-1 
P - Provider-2 

P - Hourly Pressure Forecasting 

Forecasting of total power production in 2019 provided by forecast provider 1 and 

provider 2 as well as forecast provider 3 and 4 can be seen below Table 4.2. 

Table 4.2 Forecasting of Total Power Production of Wind Farm A, B and C* 

 
Wind Farm A 
[MWh/a] 

Wind Farm B 
[MWh/a] 

Wind Farm C 
[MWh/a] 

Forecast Provider 1 117529.7 103430.1 283115.0 
Forecast Provider 2 132353.2 98370.2 284940.9 
Forecast Provider 3 134087.8 92453.3 282785.8 
Forecast Provider 4 125286.4 96946.6 281721.0 
SCADA Power Production 134012.7 90501.6 280118.6 

* Forecasting of total power production are calculated based on concurrent SCADA data, excluding missing period. 

Power production forecasting of the wind farms are volatile due to nature of the 

wind and unstable environmental circumstances. Although each forecast providers use 

numerical weather prediction (NWP) method to forecast power production of next hours, 

days and months, these have different models of NWP that are able to model the 

atmosphere in different conditions. Thus, some forecast providers have high deviation 

from actual power production, others have less deviation in power production forecasting. 

In order to investigate reasons of the deviation from actual power production, some 

meteorological parameters such as temperature, wind speed variables are needed. 
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4.1. Calculating Reference Power Production 

Reference power production of the turbines were calculated based on calibrated 

wind speed and reference power curve. Reference power curves were acquired by the 

help of Python tool developed by international expert group IEA Wind Task 1932. Based 

on IEC 61400-12-1 Power Curve Measurements33, wind measurement data from a met 

mast are required for detailed power production calculations, because of the fact that wind 

measurements of nacelle anemometer are disturbed by wind turbine blades. However, it 

is not possible to install the met mast for validating power curve of each wind turbines of 

a wind farm. In that case, wind measurements on nacelle can be calibrated by using site 

air density and air pressure. According to ISO 2533 Standard Atmosphere34, calibration 

of nacelle wind speed can be applied as follows32; 

    (5.1)            

   (5.2)                 

wsite, indicates the calibrated wind speed 

wstd, indicates the nacelle wind speed 

Tsite, is the nacelle temperature 

Pstd, represents the standard air pressure at sea level (101325 Pa) 

Tstd, represents the standard temperature of 15 °C (288.15 K) 

h, is site elevation in meters. 

SCADA data generally does not include air pressure measurement so, static air pressure 

based on site elevation above sea level can be calculated or air pressure of high-resolution 

weather model can be used but measured air pressure is preferred one. After calibration 

of nacelle wind speeds, power production data should be filtered based on the rule, which 

is disregarding the power production data if nacelle temperature less than 3°C. The 

purpose of this rule is to eliminate power production in icing operation due to frosted 

turbine blades. In addition to that, normal operation is identified in the tool as 

 and . According to filtered power production in 

normal operation and calibrated wind speed bin, power curve of each the turbines are 
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calculated.  SCADA data format should be edited as readable input by the Python tool 

and some additional information, which include rated power of the power curve, 

temperature limit of reference power, power level filter, stop limit multiplier, turbine 

elevation, bin size, maximum and minimum of wind speed should be inserted to .ini 

config file handled by Python. These essential parameters that are included in the config 

file as seen Table 4.3, Table 4.4 and Table 4.5. By means of the tool, reference power 

production was calculated in a short time for each turbine of Wind Farm A, B and C.  

Table 4.3 Data Structure of Example Config 

Data Structure Config  Unit 

Timestamp index 0 - 

Wind speed index 1 - 

Wind direction index 2 - 

Temperature index 3 - 

Power index 4 - 

Rated power 3300 kWh 

Site elevation 1642 m 

The index values above represent the column of the SCADA data. Rated power is equal 

to maximum power output from the selected wind turbine. Site elevation above sea level 

indicates altitude of the selected wind turbine. 

Table 4.4 Wind Speed Binning in Example Config 

Binning Config  Unit 

Minimum wind speed 3 m/s 

Maximum wind speed 25 m/s 

Wind speed bin size 0.5 m/s 

Parameters in both binning and filtering config are needed for reference power curve 

output and reference power in normal operation. If the  and 

 then power production will be in normal operation mode. 

Reference temperature value are needed for disregarding power production in icing 

condition. Details can be found in Table 4.5. 

Table 4.5 Data Filtering in Example Config 

Filtering Config  Unit 

Stop limit multiplier 0.005 - 

Power level filter 0.01 - 

Reference temperature 3 °C 
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An exemplary reference power curve calculation of 3.3 MW turbine by the Python tool 

could not share in Table 4.6 without permission of turbine manufacturer because, it is site 

specific power curve, which means that strictly confidential. Corresponding power texts 

represent the turbine power with corresponding wind speeds. The tool used in this study 

can be modified easefully depending upon type of the wind turbine at different wind farm 

site. 

Table 4.6 An Example of Reference Power Curve Calculated by Python Tool 

Wind Speed [m/s] Power [kWh] 
< 3 Corresponding Power* 
3 Corresponding Power* 

3.5 Corresponding Power* 

4 Corresponding Power* 

4.5 Corresponding Power* 

5 Corresponding Power* 

5.5 Corresponding Power* 

6 Corresponding Power* 

6.5 Corresponding Power* 

7 Corresponding Power* 

7.5 Corresponding Power* 

8 Corresponding Power* 

8.5 Corresponding Power* 

9 Corresponding Power* 

9.5 Corresponding Power* 

10 Corresponding Power* 

10.5 Corresponding Power* 

11 Corresponding Power* 

11.5 Corresponding Power* 

12 Corresponding Power* 

12.5 Corresponding Power* 

13 Corresponding Power* 

13.5 Corresponding Power* 

14 Corresponding Power* 

14.5 Corresponding Power* 

15 Corresponding Power* 

15.5 Corresponding Power* 

16 Corresponding Power* 

16.5 Corresponding Power* 

17 Corresponding Power* 

17.5 Corresponding Power* 

18 Corresponding Power* 

cont. on next page 
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cont. of table 4.6 
18.5 Corresponding Power* 

19 Corresponding Power* 

19.5 Corresponding Power* 

20 Corresponding Power* 

20.5 Corresponding Power* 

21 Corresponding Power* 

21.5 Corresponding Power* 

22 Corresponding Power* 

22.5 Corresponding Power* 

23 Corresponding Power* 

23.5 Corresponding Power* 

24 Corresponding Power* 

24.5 Corresponding Power* 
*site-specific power values are confidential. 

After reference power production calculation, 10-min SCADA data have been converted 

to hourly values in order for creating concurrent period with forecasting data. Some 

negative values on grid power production channel due to internal consumption of the 

wind turbines have been replaced as zero. This is because forecast providers do not take 

wind farm consumption into account during process of calculating power production 

forecasting, this kind of consumption cannot be related to power production of the 

turbines. 

4.2. Turbine Based Data to Wind Farm Scale 

For Wind Farm A, reference power curve and reference power production values 

of 16 wind turbines were calculated based on 10-min period. After disregarding the 

negative values in grid power production, SCADA data of Wind Farm A were converted 

from 10-min period to hourly period. To acquire wind farm-based data, grid power 

production and reference power production of 16 wind turbines in total were summed and 

divided by a thousand for conversion of kWh to MWh. Temperature, wind speed, 

turbulence intensity and time count data of each turbines were simply averaged, and wind 

direction data of each turbines were also averaged by vectoral. Thus, power production 

of grid and reference, temperature, speed and direction of wind and turbulence intensity 

data were created at wind farm scale between dates of 01.01.2019 and 01.01.2020. 
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Same methodology for both 10 wind turbines of Wind Farm B and 29 wind turbines of 

Wind Farm C were applied to create hourly wind farm-based SCADA data. An exemplary 

data from Wind Farm A is shown in Table 4.7 below. 

Table 4.7 An Example of Wind Farm Based Scada Data* 

Date/Time 

Turbine 
Power 

Production 
[MWh] 

Turbine 
Reference 

Power 
[MWh] 

Availability 
– Time 
Count 

Average 
Ambient 
Temper

ature 

Average 
Wind 
Speed 

Average 
Wind 

Direction 

Average 
Turbulence 

Intensity 
3/28/2019 

0:00 4.72 7.26 3599.90 8.11 6.32 10.05 0.10 
3/28/2019 

1:00 5.00 6.85 3600.00 7.63 6.26 9.25 0.09 
3/28/2019 

2:00 3.02 3.75 3600.00 8.37 5.30 28.79 0.09 
3/28/2019 

3:00 4.08 5.24 3600.00 8.15 5.86 31.17 0.07 
3/28/2019 

4:00 7.12 8.09 3599.90 7.12 6.69 23.99 0.07 
3/28/2019 

5:00 11.11 13.07 3600.00 6.34 7.89 26.21 0.06 
3/28/2019 

6:00 10.34 11.74 3600.00 5.98 7.60 25.41 0.08 
3/28/2019 

7:00 12.39 13.98 3600.00 5.77 8.05 26.95 0.08 
3/28/2019 

8:00 18.94 21.54 3600.00 5.83 9.70 27.10 0.09 
3/28/2019 

9:00 18.68 21.10 3600.00 6.18 9.53 25.55 0.12 
3/28/2019 

10:00 11.50 12.14 3600.00 7.12 7.60 26.21 0.12 
3/28/2019 

11:00 7.07 7.84 3600.00 7.62 6.62 25.46 0.10 
3/28/2019 

12:00 12.16 13.30 3600.00 7.11 7.91 27.14 0.10 
* Turbine-based SCADA data were converted to wind farm-based SCADA data in order for comparing wind farm-based power 
forecasting. 

In addition to these data above, hourly power forecasting data channels were added as 

seen in  

Table 4.8 to the wind farm-based SCADA data. Thus, comparison between the SCADA 

data and forecasting data were applicable to detect deviation in forecasting of power 

production. Hourly wind farm-based power production should be compared with 

forecasting of power production however, metered production data can also be included 

for this comparison. In this study, the wind farm-based power production was compared 

with forecasting power production as any forecast providers have not utilized this kind of 

metered data input during process of power forecasting. It should be noted that metered 

production data include electrical losses of the wind farm. Difference between the 

metered and SCADA production shows that electrical losses due to cabling in the wind 
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farm. Electrical efficiency of Wind Farm A, B and C were calculated depending upon 1-

year concurrent period of metered and SCADA production data. Results can be seen in 

Table 3.2 in detail. 

Table 4.8 An Example of Wind Farm Based Forecasting Data 

Date/Time 

Forecast 
Provider 1 

[MWh] 

Forecast 
Provider 2 

[MWh] 

Forecast 
Provider 3 

[MWh] 

Forecast 
Provider 4 

[MWh] 
3/28/2019  

0:00 11.79 11.81 10.96 10.34 
3/28/2019  

1:00 8.58 10.71 8.94 8.48 
3/28/2019  

2:00 5.93 9.64 8.22 6.84 
3/28/2019  

3:00 4.32 9.15 7.78 5.77 
3/28/2019  

4:00 4.06 9.10 7.81 6.59 
3/28/2019  

5:00 4.40 9.32 8.93 7.67 
3/28/2019  

6:00 4.51 9.90 10.72 8.44 
3/28/2019  

7:00 5.58 10.40 12.17 9.55 
3/28/2019 

 8:00 5.74 10.64 12.43 9.71 
3/28/2019  

9:00 6.07 10.15 11.86 9.48 
3/28/2019  

10:00 5.47 9.77 10.52 9.06 
3/28/2019  

11:00 4.71 9.91 8.73 8.33 
3/28/2019  

12:00 4.13 10.60 7.97 8.26 
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CHAPTER 5 
 
 

 DATA AND METHODOLOGY  

Scada and power production forecasting data have been shared by the owner 

company of the wind farms. Generally, power production forecasting has relatively high 

deviation from actual power production of the wind farms, so it is considered in this study 

how to decrease the deviation by including four different power forecasting data from 

forecast providers. Atmospheric effects on power production forecasting have been 

investigated by means of temperature and turbulence intensity variables. 

5.1. Wind Farm Power Production Based on Temperature 

Wind Farm A and B has been situated at higher altitude compared to elevation of 

Wind Farm C so, icing events during wind farm operation has been expected, especially 

in winter times. By taking the altitude of Wind Farm C into account, its icing loss is 

expected to be less than Wind Farm A and B however, it cannot be considered that there 

is no icing loss in the wind farm. If the site temperature is low such as close to 0°C or 

below 0°C, icing phenomena on turbine blades can be occurred however, there is no exact 

criteria of temperature limit for icing formation, and this criterion is also depending upon 

relative humidity that can change from site to site. If the relative humidity at the site is 

not high enough, icing phenomena cannot be occurred even if the temperature is below 

0°C. Icing formation will affect normal operation of the wind farm adversely. Ageing on 

the turbines due to extreme ice loads and decrease in power production can be observed. 

For that reason, it is really challenging to provide accurate forecasting of power 

production. To reveal temperature effect on forecasting of power production, each 

forecasting data provided by the forecast providers are grouped by temperature of the 

wind farm site and some iterative selection on forecasting of power production can be 

applied in order for getting more accurate forecasting for the wind farms. 

In order for selecting best forecasting power production in the range of specific 

temperature, SCADA and forecasting power production should be grouped by the 

temperature bin such as 1°C, 2°C or 3°C. However, ambient temperature data from 
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SCADA cannot be used for this kind of process. Ambient temperature from SCADA is 

real-time measurement so, temperature forecasting data are needed for grouping of 

forecasting power production. In this case, temperature forecasting data from one of the 

forecast providers can be included for grouping process. Unfortunately, meteorological 

parameters like temperature have been provided by the forecast provider 1 and 3 only. 

There seems to be two choices in total however, temperature forecasting data should be 

selected and preferred based on relationship with real-time ambient temperature data. To 

examine relationship between the ambient temperature from SCADA and forecasting 

temperature provided by forecast provider 1 and 3, correlation plots below are 

investigated depending upon which correlation is good enough. As seen in the below 

Figure 5.1 and Figure 5.2 for Wind Farm B as an exemplary of temperature correlation 

plots, temperature data of forecast provider 1 has good correlation, which is 

approximately 92% with the ambient temperature of Wind Farm B, in comparison to 

temperature data of forecast provider 3. Temperature data of forecast provider 1 has also 

good correlation with the ambient temperature of Wind Farm A and C, which is 

approximately 93% and corresponding correlation plots are shown in Figure 5.3 and 

Figure 5.4, respectively. This methodology includes high uncertainty due to nature of 

forecasting however, considering forecasting temperature of the provider 1 for grouping 

power production data will cause less uncertainty in comparison to forecasting 

temperature of the provider 3. As a result of this, the power production can be grouped 

by temperature bin based on forecasting temperature of provider 1. The temperature bin 

was selected as 1°C, 2°C and 3°C, respectively and best method has been determined as 

to move forward with temperature bin of 3°C due to the fact that this method has provided 

more accurate power forecasting close to SCADA power production. After grouping the 

forecasting of power production based on the temperature, forecasting of total production 

in each temperature bin are scaled by using SCADA power production. Afterwards, best 

forecast provider can be selected by using scaled production. To support these steps in 

selection of best forecast provider, the data regarding this process is illustrated in Figure 

5.5, Figure 5.6, and Figure 5.7 below. For each wind farm included in this study, SCADA 

power production and forecasting power production data was grouped by the 3°C 

temperature bin and then scaled by SCADA power production. If the scaled power 

forecasting is how close to 1, the power forecasting will be close to SCADA production. 

Best forecast provider in terms of forecasting accuracy is determined by using scaled 

power production. In addition to  Figure 5.5, Figure 5.6, and Figure 5.7 below, to explain 
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the process in detail corresponding data related to the figures are shown right after the 

figures.

 
Figure 5.1 Correlation Plot btw Temperature of Forecast Provider 1 and Site 

Temperature of Wind Farm B 

 

Figure 5.2 Correlation Plot btw Temperature of Forecast Provider 3 and Site  
Temperature of Wind Farm B 

 
Obviously, temperature of forecast provider 3 is more scattered along the best line fit and 

due to this reason, it has less correlation with ambient site temperature. After investigation 

of correlation of temperature of forecast provider 1 for Wind Farm A and C, their 

forecasting of power production were grouped by temperature of forecast provider 1 just 

like process in Wind Farm B.  

Forecast Provider 1 
 
R2= 0.92 
y=1.2+0.99x 
y=1.1x 

Forecast Provider 3 
 
R2= 0.89 
y=0.51+1.1x 
y=1.1x 
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Figure 5.3 Correlation Plot btw Temperature of Forecast Provider 1 and Site 

Temperature of Wind Farm A 

 
Figure 5.4 Correlation Plot btw Temperature of Forecast Provider 1 and Site 

Temperature of Wind Farm C 
 
Table 5.1 Power Production of Wind Farm A Grouped by Temperature 

Temperature 
Range [°C] 

Scada 
Production 
[MWh] 

Forecast 
Provider 1 
[MWh] 

Forecast 
Provider 2 
[MWh] 

Forecast 
Provider 3 
[MWh] 

Forecast 
Provider 4 
[MWh] 

(-10,-7] 825.77 464.05 588.09 699.63 396.92 
(-7,-4] 1461.26 743.17 1026.25 986.00 800.44 
(-4,-1] 4485.82 3129.38 4138.90 4354.23 3684.16 
(-1,2] 19238.51 14467.48 21290.12 21510.91 18692.23 
(2,5] 22479.33 18638.26 23406.03 24139.20 21290.36 

cont. on next page 
  

Forecast Provider 1 
 
R2= 0.93 
y=-2+1.1x 
y=0.96x 

Forecast Provider 1 
 
R2= 0.93 
y=-0.22+1.1x 
y=1.1x 
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cont. of table 5.1 
(5,8] 10872.89 9367.46 11307.27 11140.48 10371.40 
(8,11] 7485.88 6720.88 7833.51 7572.60 7369.69 
(11,14] 8350.19 7830.53 8129.38 8029.76 8070.14 
(14,17] 15021.86 13909.28 13527.98 13638.12 13663.98 
(17,20] 15431.97 14970.98 14299.71 14788.73 14289.61 
(20,23] 12298.83 11971.24 11408.49 11655.29 11436.30 
(23,26] 9469.63 9153.59 8906.41 9251.74 9018.79 
(26,29] 5623.71 5364.68 5528.09 5494.38 5210.40 
(29,32] 967.03 798.76 963.00 826.71 991.98 

Based on the forecast provider 1, ambient temperature of Wind Farm A varies from 

minimum of -10°C to maximum of 32°C.  Forecasting of power production and SCADA 

power production are aggregated by using temperature range, which is at intervals of 3°C. 

Thus, at the specific temperature intervals accurate power forecasting should be revealed.  

 
Figure 5.5 Scaled Power Production Forecasting of Wind Farm A by Temperature of 

Forecast Provider 1 

Data in Table 5.1 can be scaled by using SCADA power production. Figure 5.5 above 

represents scaled forecasting of power production. As is seen from the figure, at low 

temperatures the forecast providers underestimate power production of Wind Farm A. 

Data of the figure above is shown seen in  Table 5.2 and the forecast provider that provides 

more accurate power production forecast at the specific temperature intervals compared 

to other ones are determined. Based on this methodology, new time series of power 

production forecasting can be created. For instance, if the site temperature between -10°C 

and -7°C, forecast provider 3 should be preferred in order to choose most accurate power 

production forecasting. 
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Table 5.2 Scaled Power Production of Wind Farm A Grouped by Temperature 

Temperature 
Range [°C] 

Scaled 
Forecast 
Provider 1 

Scaled 
Forecast 
Provider 2 

Scaled 
Forecast 
Provider 3 

Scaled 
Forecast 
Provider 4 

Best 
Choice 

Forecast 
Provider 

(-10,-7] 0.562 0.712 0.847 0.481 0.847 3 
(-7,-4] 0.509 0.702 0.675 0.548 0.702 2 
(-4,-1] 0.698 0.923 0.971 0.821 0.971 3 
(-1,2] 0.752 1.107 1.118 0.972 0.972 4 
(2,5] 0.829 1.041 1.074 0.947 1.041 2 
(5,8] 0.862 1.040 1.025 0.954 1.025 3 
(8,11] 0.898 1.046 1.012 0.984 1.012 3 
(11,14] 0.938 0.974 0.962 0.966 0.974 2 
(14,17] 0.926 0.901 0.908 0.910 0.926 1 
(17,20] 0.970 0.927 0.958 0.926 0.970 1 
(20,23] 0.973 0.928 0.948 0.930 0.973 1 
(23,26] 0.967 0.941 0.977 0.952 0.977 3 
(26,29] 0.954 0.983 0.977 0.927 0.983 2 
(29,32] 0.826 0.996 0.855 1.026 0.996 2 

Based on the forecast provider 1, ambient temperature of Wind Farm B is between the 

range of minimum of -5°C and maximum of 34°C. Forecasting of power production and 

SCADA power production are aggregated by using 3°C temperature interval. 

Table 5.3 Power Production of Wind Farm B Grouped by Temperature 

Temperature 
Range [°C] 

Scada 
Production 
[MWh] 

Forecast 
Provider 1 
[MWh] 

Forecast 
Provider 2 
[MWh] 

Forecast 
Provider 3 
[MWh] 

Forecast 
Provider 4 
[MWh] 

(-5,-2] 628.00 869.86 511.56 783.48 477.51 
(-2,1] 1293.52 1820.42 1282.22 1662.67 1491.28 
(1,4] 6576.52 8373.61 7067.51 7729.21 7626.23 
(4,7] 10107.37 10457.97 10990.50 10327.55 10448.13 
(7,10] 13451.04 15259.01 15049.21 14606.00 14764.92 
(10,13] 8993.08 10324.57 10501.56 10034.12 10180.40 
(13,16] 7101.31 8185.93 8391.44 7212.90 7544.81 
(16,19] 9775.32 11337.26 10405.42 9161.16 9650.07 
(19,22] 10855.86 12842.17 11589.49 10229.81 11309.87 
(22,25] 10436.84 12356.96 11057.15 10120.52 11369.59 
(25,28] 6895.96 7522.49 7297.48 6666.49 7472.52 
(28,31] 3456.33 3209.90 3311.56 3053.80 3654.34 
(31,34] 930.39 869.97 915.14 865.62 956.91 

Same methodology applied in Wind Farm A is also conducted for Wind Farm B. As is 

seen from the Figure 5.6, at low temperatures the forecast providers generally 

overestimate power production of Wind Farm B.  
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Figure 5.6 Scaled Power Production Forecasting of Wind Farm B by Temperature of 

Forecast Provider 1 
 
New time series of power production forecasting of Wind Farm B is created depending 
upon the best choice column in Table 5.4. 

Table 5.4 Scaled Power Production of Wind Farm B Grouped by Temperature 

Temperature 
Range [°C] 

Scaled 
Forecast 
Provider 1 

Scaled 
Forecast 
Provider 2 

Scaled 
Forecast 
Provider 3 

Scaled 
Forecast 
Provider 4 

Best 
Choice 

Forecast 
Provider 

(-5,-2] 1.385 0.815 1.248 0.760 0.815 2 
(-2,1] 1.407 0.991 1.285 1.153 0.991 2 
(1,4] 1.273 1.075 1.175 1.160 1.075 2 
(4,7] 1.035 1.087 1.022 1.034 1.022 3 
(7,10] 1.134 1.119 1.086 1.098 1.086 3 
(10,13] 1.148 1.168 1.116 1.132 1.116 3 
(13,16] 1.153 1.182 1.016 1.062 1.016 3 
(16,19] 1.160 1.064 0.937 0.987 0.987 4 
(19,22] 1.183 1.068 0.942 1.042 1.042 4 
(22,25] 1.184 1.059 0.970 1.089 0.970 3 
(25,28] 1.091 1.058 0.967 1.084 0.967 3 
(28,31] 0.929 0.958 0.884 1.057 0.958 2 
(31,34] 0.935 0.984 0.930 1.028 0.984 2 

Based on the forecast provider 1, ambient temperature of Wind Farm C is between the 

range of minimum of -4°C and maximum of 32°C. Forecasting of power production and 
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SCADA power production are aggregated in the same manner by using 3°C temperature 

interval. 

Table 5.5 Power Production of Wind Farm C Grouped by Temperature 

Temperature 
Range [°C] 

Scada 
Production 
[MWh] 

Forecast 
Provider 1 
[MWh] 

Forecast 
Provider 2 
[MWh] 

Forecast 
Provider 3 
[MWh] 

Forecast 
Provider 4 
[MWh] 

(-4,-1] 653.28 491.45 644.38 607.91 676.48 
(-1,2] 7261.95 6014.17 6529.72 6311.82 6534.07 
(2,5] 26188.86 23462.38 25940.35 24103.85 25291.77 
(5,8] 37157.51 35955.84 37983.11 36261.97 37548.14 
(8,11] 32742.63 28815.33 31519.18 31319.62 30514.76 
(11,14] 21635.29 20765.75 21796.09 22228.67 21231.40 
(14,17] 23161.44 25700.01 26239.90 25048.92 25048.16 
(17,20] 20649.61 22231.87 22937.90 21929.12 21824.91 
(20,23] 49232.98 55319.60 51161.70 53708.36 51724.97 
(23,26] 42322.37 44263.84 41652.82 42287.93 42273.24 
(26,29] 18120.59 19124.00 17566.68 18036.60 18069.21 
(29,32] 992.08 970.72 969.07 941.00 983.89 

Same methodology applied in Wind Farm A and B is also conducted for Wind Farm C.  

 

Figure 5.7 Scaled Power Production Forecasting of Wind Farm C by Temperature of 
Forecast Provider 1 

New time series of power production forecasting for Wind Farm C is created depending 

upon the best choice column in Table 5.6. As is seen from the Figure 5.7 power production 

forecasting at low temperatures does not deviates much more from SCADA power 

production, which explains why scaled power production values are nearly close to one. 
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Unlike the significant deviation in the Wind Farm A and B, difference between SCADA 

and forecasting production seems acceptable based on Figure 5.7. It can be related to lack 

of icing events in the Wind Farm C site, this is because its altitude is considerably less 

than altitude of Wind Farm A and B. 

Table 5.6 Scaled Power Production of Wind Farm C Grouped by Temperature 

Temperature 
Range [°C] 

Scaled 
Forecast 
Provider 1 

Scaled 
Forecast 
Provider 2 

Scaled 
Forecast 
Provider 3 

Scaled 
Forecast 
Provider 4 

Best 
Choice 

Forecast 
Provider 

(-4,-1] 0.752 0.986 0.931 1.036 0.986 2 
(-1,2] 0.828 0.899 0.869 0.900 0.900 2 
(2,5] 0.896 0.991 0.920 0.966 0.991 2 
(5,8] 0.968 1.022 0.976 1.011 1.011 4 
(8,11] 0.880 0.963 0.957 0.932 0.963 2 
(11,14] 0.960 1.007 1.027 0.981 1.007 2 
(14,17] 1.110 1.133 1.081 1.081 1.081 4 
(17,20] 1.077 1.111 1.062 1.057 1.057 4 
(20,23] 1.124 1.039 1.091 1.051 1.039 2 
(23,26] 1.046 0.984 0.999 0.999 0.999 4 
(26,29] 1.055 0.969 0.995 0.997 0.997 4 
(29,32] 0.978 0.977 0.949 0.992 0.992 4 

5.2. Wind Farm Power Production Based on Turbulence Intensity 

Effect of turbulence intensity on power production forecasting can be investigated 

by following similar methodology mentioned in previous section regarding ambient site 

temperature. Power production forecasting and SCADA power production of the wind 

farms can be grouped by specific turbulence intensity values. However, forecasting of 

turbulence intensity has not been provided by forecast providers. Wind speed at the wind 

farm site can be associated with turbulence intensity. If the wind speed at the site is low, 

turbulence intensity is relatively high. Turbulence intensity is calculated simply as 

standard deviation value of wind speed divided by wind speed value.   

To investigate effect of turbulence intensity, one of the turbines in Wind Farm A, 

B, and C should be selected by considering internal wake effects, in another saying 

selected turbines should be exposed to free wind speed at the site. The turbine wind speed 

and corresponding turbulence intensity can be drawn as plot to observe turbulence at the 

various wind speed. At the specific wind speed range, turbulence intensity can be grouped 
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as very low, moderate, high, and heavy. It should be noted that the turbine wind speed is 

real-time measurement and forecasting of wind speed is also needed for grouping of 

power production based on specific turbulence intensity range. In this case, wind speed 

forecasting and site wind speed can be comparing by looking at the correlations and best 

wind speed forecasting is selected to represent site wind speed.  

 As mentioned before on previous chapters, some forecast providers, in addition to 

power production forecasting for the wind farms, also provide meteorological parameters 

such as temperature, pressure, relative humidity and wind speed. Wind speed forecasting 

from forecast provider 1 as well as forecast provider 3 and average of site wind speed 

from Wind Farm A, B and C can be compared in order to select representative wind speed 

forecasting data. Most representative wind speed forecasting data can be used in place of 

real-time wind speed measurement to identify turbulence intensity range at the site. 

Correlation between wind speed forecasting from forecast provider 1 and average of site 

wind speed from the wind farms are plotted in below.  

 
Figure 5.8 Correlation Between Average Wind Speed of Wind Farm A and Wind Speed 

Forecasting from Forecast Provider 1 

Forecast Provider 1 
 
R2= 0.76 
y=0.36+0.71x 
y=0.75x 
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Another correlation between the site wind speed of Wind Farm A and related wind speed 

forecasting from forecast provider 3 should be investigated. Based on the correlation, the 

best forecast provider, which has less deviation from the site wind speed compared to 

other providers, can be selected to represent site wind speed by using forecasting of wind 

speed. The wind speed correlation plot including forecast provider 3 is shown in below. 

According to Figure 5.9 , deficient correlation between the site wind speed and wind 

speed forecasting for the Wind Farm A is seen clearly. For this reason, in order to 

represent site wind speed at Wind Farm A, wind speed forecasting from forecast provider 

1 should be preferred. 

 

Figure 5.9 Correlation Between Average Wind Speed of Wind Farm A and Wind Speed 
Forecasting from Forecast Provider 3 

For the Wind Farm B and C, correlation plots between average of site wind speed and 

related forecasting wind speed from forecast providers 1 and 3 were drawn, respectively. 

First two graphs show that correlation between site wind speed at Wind Farm B and wind 

speed forecasting of forecast providers 1 and 3. Based on the correlation, similar results 

like in Wind Farm A were observed and wind speed forecasting from forecast provider 1 

Forecast Provider 3 
 
R2= 0.55 
y=0.2+0.42x 
y=0.45x 
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was used to represent the site wind speed at Wind Farm B. Results can be seen from 

Figure 5.10 and Figure 5.11 in detail.   

 
Figure 5.10 Correlation Between Average Wind Speed of Wind Farm B and Wind 

Speed Forecasting from Forecast Provider 1 

Forecast Provider 1 
 
R2= 0.77 
y=1+0.82x 
y=0.93x 
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Figure 5.11 Correlation Between Average Wind Speed of Wind Farm B and Wind 

Speed Forecasting from Forecast Provider 3 

Following plots are belonging to comparisons of site wind speed of Wind Farm C and 

wind speed forecasting from forecast providers 1 and 3. According to Figure 5.12 and 

Figure 5.13, good correlation were observed between wind speed forecasting from 

provider 1 and site wind speed at Wind Farm C. 

 

Forecast Provider 3 
 
R2= 0.62 
y=0.88+0.53x 
y=0.63x 
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Figure 5.12 Correlation Between Average Wind Speed of Wind Farm C and Wind 

Speed Forecasting from Forecast Provider 1 

As a result of these correlation analyses between site wind speed and related forecasting 

wind speed, forecasting provider 1 was selected due to the fact that its wind speed 

forecasting has less deviation from the site wind speed at Wind Farm A, B and C. Based 

on this, turbulence intensity of the wind farms in the study can be categorized into four 

parts as from very low, moderate to high and heavy. To investigate average of turbulence 

intensity of the site, some wind turbines that under exposure of free wind speed at the 

wind farm can be selected and then turbulence intensity can be categorized based on wind 

speed forecasting from forecast provider 1, which is representative of the site wind speed 

for all wind farms.  

 
 

Forecast Provider 1 
 
R2= 0.78 
y=0.84+0.84x 
y=0.92x 
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Figure 5.13 Correlation Between Average Wind Speed of Wind Farm C and Wind 

Speed Forecasting from Forecast Provider 3 

Turbine 16 from Wind Farm A, Turbine 8 from Wind Farm B and Turbine 23 from Wind 

Farm C can be preferred to observe site turbulence without any wake effects caused by 

other wind turbines at the wind farms. These turbines were selected by taking both wind 

farm layout and prevailing wind direction at the wind farm into consideration. The layout 

of the wind farms can be seen in Figure 2.1, Figure 2.2 and Figure 2.3, while wind rose 

of the wind farms that shows prevailing wind direction can be seen in below Figure 5.14, 

Figure 5.15 and Figure 5.16.  

 

 

 
 
 

Forecast Provider 3 
 
R2= 0.74 
y=0.56+0.63x 
y=0.68x 
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Figure 5.14 Exemplary Wind Rose for Wind Farm A 

 

Figure 5.15 Exemplary Wind Rose for Wind Farm B 
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Figure 5.16 Exemplary Wind Rose for Wind Farm C 

In order for detecting turbulence intensity range by considering wind speed value, 

turbulence intensity of Turbine 16 from Wind Farm A, Turbine 8 from Wind Farm B and 

Turbine 23 from Wind Farm C can be visualized based on wind speed forecasting of the 

forecast provider 1 for the wind farms. In Figure 5.17, Figure 5.18 and Figure 5.19, x-

axis shows wind speed forecasting from forecast provider 1, while y-axis shows 

turbulence intensity of the turbine. As seen in below figures, low wind speed generally 

creates high turbulence at the site. Some increase of turbulence intensity at the high wind 

speed in Figure 5.17 and Figure 5.18 might be caused by sensor failure of the anemometer 

on the wind turbine nacelle. In general, turbulence intensity is inversely proportional with 

wind speed. By ignoring this sudden increase of turbulence intensity at the high wind 

speed, categorization of turbulence intensity can be created based on the exemplary 

turbulence intensity figures below for the Wind Farm A, B and C.  
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Figure 5.17 Exemplary Turbulence Intensity Graph for Wind Farm A 

 

Figure 5.18 Exemplary Turbulence Intensity Graph for Wind Farm B 
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Figure 5.19 Exemplary Turbulence Intensity Graph for Wind Farm C 

According to Figure 5.17, Figure 5.18 and Figure 5.19 above, turbulence intensity range 

can be categorized by wind speed bin. If the wind speed is less than 3 m/s, it points out 

very high turbulence at the site. If the wind speed is between the range of 3 m/s and 6 

m/s, it points out moderate turbulence at the site. The wind speed is between the range of 

6 m/s and 12 m/s, it points out high turbulence at the site. The wind speed values that are 

higher than 12 m/s, it points out low turbulence. Based on this categorization of the 

turbulence intensity, power production forecasting and SCADA production data of the 

wind farms can be grouped, and best forecast provider can be selected by considering 

these turbulence intensities at specific wind speed interval. 

Table 5.7 Power Production of Wind Farm A Grouped by Turbulence Intensity 

Turbulence 

Intensity 

Best 

Forecast 

Provider 

Wind 

Speed 

Range 

[m/s] 

Forecast 

Provider

1 

[MWh] 

Forecast 

Provider

2 

[MWh] 

Forecast 

Provider

3 

[MWh] 

Forecast 

Provider

4 

[MWh] 

Scada 

Production 

[MWh] 

Heavy 4 (0,3] 4027.77 5139.78 4838.65 4815.99 4486.05 

High 2 (3,6] 24927.24 31329.11 30755.80 29303.01 31298.50 

Moderate 2 (6,12] 81422.65 89538.99 91887.39 85008.21 90478.20 

Very low 1 (12,20] 7152.07 6345.33 6605.91 6159.18 7749.94 
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According to Table 5.7, if the Wind Farm A has heavy turbulence intensity due to low 

wind speed until 3 m/s, forecast provider 4 gives more accurate power forecasting 

compared to remaining forecast providers, which have more deviation from SCADA 

power production. If high and moderate turbulence exist at the site, forecast provider 2 

can be preferred to acquire more accurate power forecasting, which means less deviation 

from SCADA power production. If the wind speed is higher 12 m/s and turbulence 

intensity is very low, forecast provider 1 will provide more accurate power forecasting. 

By considering the different turbulence intervals based on Table 5.7, new time series of 

power production forecasting can be created to improve accuracy of forecasting and the 

time series can be compared with time series of power production forecasting of the 

forecast providers.  

Same methodology is applied for Wind Farm B and C. In Wind Farm B, forecast 

provider 3 will provide more accurate power forecasting at both heavy and moderate 

turbulence circumstance. At high and very low turbulence, forecast provider 1 and 2 

should be preferred to acquire more accurate power production forecasting of Wind Farm 

B. 

Table 5.8 Power Production of Wind Farm B Grouped by Turbulence Intensity 

Turbulence 

Intensity 

Best 

Forecast 

Provider 

Wind 

Speed 

Range 

[m/s] 

Forecast 

Provider

1 

[MWh] 

Forecast 

Provider

2 

[MWh] 

Forecast 

Provider

3 

[MWh] 

Forecast 

Provider

4 

[MWh] 

Scada 

Production  

[MWh] 

Heavy 3 (0,3] 1752.30 3451.17 1250.77 1896.91 1149.23 

High 1 (3,6] 9424.54 15185.72 10310.82 12123.19 9472.78 

Moderate 3 (6,12] 65227.97 59602.45 58464.07 60314.44 58683.47 

Very low 2 (12,20] 27025.29 20130.90 22427.68 22612.03 21196.06 

In Wind Farm C, selected forecast provider for different turbulence circumstance can be 

seen in Table 5.9 in detail. Forecast provider 4 should be preferred in order to decrease 

deviation in power forecasting in case of high, moderate and very low turbulence at the 

site. If heavy turbulence circumstance at the site is expected, forecast provider 3 should 

be included for acquiring power production forecasting close to SCADA power 

production. 
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Table 5.9 Power Production of Wind Farm C Grouped by Turbulence Intensity 

Turbulence 

Intensity 

Best 

Forecast 

Provider 

Wind 

Speed 

Range 

[m/s] 

Forecast 

Provider 1 

[MWh] 

Forecast 

Provider 2 

[MWh] 

Forecast 

Provider 3 

[MWh] 

Forecast 

Provider 4 

[MWh] 

Scada 

Production  

[MWh] 

Heavy 3 (0,3] 3002.47 5338.51 3414.62 3977.85 3327.38 

High 4 (3,6] 19161.14 27603.77 22587.57 24415.44 23904.19 

Moderate 4 (6,12] 160856.30 156933.90 163411.40 159052.90 158472.20 

Very low 4 (12,20] 100095.10 95064.70 93372.16 94274.82 94414.82 

Based on different turbulence circumstances at the wind farms, criteria of selection for 

best power forecasting are determined and then new time series of power production 

forecasting is created in addition to power production forecasting from forecast providers. 

5.3. Wind Farm Power Production Based on Both Temperature and 
Turbulence Intensity 

In previous section, effect of temperature and turbulence intensity on power 

production forecasting was examined separately. By taking various temperature and 

turbulence intervals into consideration, new time series of power production forecasting 

were created to acquire more accurate power forecasting in comparison to power 

forecasting of forecast providers. However, these two parameters cannot be considered 

separately in the atmosphere. Therefore, new time series of power forecasting just like in 

previous sections can be created by taking these parameters together into account. 

Criterion matrix for best selection of power production forecasting from forecast 

providers should be analyzed to create new time series of power production forecasting. 

These matrixes are shared below for Wind Farm A, B and C, respectively.  

Table 5.10 Power Production of Wind Farm A Grouped by both Temperature and 
Turbulence Intensity  

Forecast  

Provider  

Temperature  

Range [°C] 

(0,3] m/s,  

Heavy 

Turbulence 

(3,6] m/s,  

High 

Turbulence 

(6,12] m/s,  

Moderate 

Turbulence 

(12, ] m/s,  

Very Low 

Turbulence 

Best forecast provider by considering 

temperature only 

Best forecast provider by considering both temperature 

and turbulence intensity 

cont. on next page 
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cont. of table 5.10 

3 (-10,-7] 2 2 3 NA* 

2 (-7,-4] 4 3 2 1 

3 (-4,-1] 1 2 4 1 

4 (-1,2] 4 4 4 3 

2 (2,5] 1 4 2 1 

3 (5,8] 1 3 3 1 

3 (8,11] 3 4 2 4 

2 (11,14] 3 3 3 NA* 

1 (14,17] 1 4 1 NA* 

1 (17,20] 4 3 3 1 

1 (20,23] 4 2 1 NA* 

3 (23,26] 2 2 3 NA* 

2 (26,29] 2 4 3 NA* 

2 (29,32] 3 4 4 NA* 

*data is not available. 

Table 5.11 Power Production of Wind Farm B Grouped by both Temperature and 
Turbulence Intensity 

Forecast  

Provider  

Temperature  

Range [°C] 

(0,3] m/s,  

Heavy 

Turbulence 

(3,6] m/s,  

High 

Turbulence 

(6,12] m/s,  

Moderate 

Turbulence 

(12, ] m/s,  

Very Low 

Turbulence 

Best forecast provider by considering 

temperature only 

Best forecast provider by considering both temperature 

and turbulence intensity 

2 (-5,-2] 4 1 2 3 

2 (-2,1] 3 3 2 2 

2 (1,4] 3 1 2 4 

3 (4,7] 1 3 1 2 

3 (7,10] 3 3 2 2 

3 (10,13] 3 3 1 2 

3 (13,16] 3 3 3 4 

4 (16,19] 3 3 2 4 

4 (19,22] 3 3 2 4 

3 (22,25] 3 3 2 2 

3 (25,28] 3 3 2 2 

2 (28,31] 3 1 4 4 

2 (31,34] 1 2 4 1 

*data is not available. 
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For instance, if turbulence is moderate and temperature is between the range of 4 and 7 

at the site, best forecast provider can be selected at this specific range. It can be conducted 

by comparing power production forecasting and SCADA production of this specific 

range. Table 5.10 and Table 5.11 above show criterion matrixes for Wind Farm A and B, 

while Table 5.12 below shows the criterion matrix for Wind Farm C. Turbulence intensity 

and temperature interval are determined by using wind speed and temperature of forecast 

provider 1 just like in previous sections.  

 

Table 5.12 Power Production of Wind Farm C Grouped by both Temperature and 
Turbulence Intensity 

Forecast  

Provider  

Temperature  

Range [°C] 

(0,3] m/s,  

Heavy 

Turbulence 

(3,6] m/s,  

High 

Turbulence 

(6,12] m/s,  

Moderate 

Turbulence 

(12, ] m/s,  

Very Low 

Turbulence 

Best forecast provider by considering 

temperature only 

Best forecast provider by considering both temperature 

and turbulence intensity 

2 (-4,-1] 1 2 2 NA* 

2 (-1,2] 3 2 4 1 

2 (2,5] 4 2 2 4 

4 (5,8] 1 3 4 4 

2 (8,11] 3 2 3 1 

2 (11,14] 1 4 4 2 

4 (14,17] 4 1 4 3 

4 (17,20] 4 3 4 3 

2 (20,23] 3 3 2 4 

4 (23,26] 3 3 3 2 

4 (26,29] 3 3 3 3 

4 (29,32] 1 2 4 2 

*data is not available. 

According to Table 5.10, Table 5.11 and Table 5.12, new time series of power production 

forecasting are created and, then the time series are compared with power production 

forecasting from forecast providers in order to check if there is an improvement on the 

forecasting. In following chapter, results, and discussions regarding the improvement on 

wind power forecasting are shared in detail.  

 

 



 
 

 
 

48 

CHAPTER 6 
 
 

 RESULTS AND DISCUSSION 

In previous section, power forecasting data from all forecast providers was 

grouped by both site temperature and turbulence intensity and then new time series of 

forecasting were created by selecting best power forecasting compared to real power 

production within specific period. Created new time series were examined by hourly and 

daily as well as seasonal. Thus, it was observed whether there is considerable 

improvement on power forecasting with this methodology used in this study. 

To check the improvement on power forecasting, time series of power production 

forecasting data from all forecast providers and new time series of power forecasting data 

based on atmospheric conditions at the sites were compared with real power production 

on SCADA by checking their coefficient of determination, in another saying R-squared 

value that explains how differences in the dependent variable can be explained by a 

difference in the independent variable. Firstly, relationships among the time series of real 

power production and forecasting data were investigated as both hourly and daily. 

Afterwards, the time series data can be grouped by seasonal based on equinox periods. In 

addition to hourly and daily relationship of the time series with the real power production, 

seasonal relationship was investigated. 

In Table 6.1, relationship based on R-squared value between the time series of real 

power production on SCADA and the time series of power forecasting data including 

newly created forecasting data is shared for Wind Farm A. As seen in below table, there 

is relatively improvement on accuracy of power forecasting for Wind Farm A based on 

the methodology mentioned along this study. Highlighted part in the table shows best 

relationship between the time series of power forecasting and real power production. 

Table 6.1 Different Time Horizon Based Relationship between Power Forecasting and 
Production for Wind Farm A 

Wind Farm A 
R-square 
(Hourly) 

R-square 
(Daily) 

R-square 
(Spring) 

R-square 
(Summer) 

R-square 
(Autumn) 

R-square 
(Winter) 

Forecast 
Provider-1 0.64 0.74 0.85 0.89 0.77 0.63 

cont. on next page 
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cont of table 6.1 
Forecast 
Provider-2 0.70 0.83 0.85 0.87 0.83 0.76 
Forecast 
Provider-3 0.69 0.80 0.79 0.87 0.79 0.73 
Forecast 
Provider-4 0.69 0.81 0.89 0.86 0.82 0.70 
New Forecast-
Temperature 0.70 0.83 0.85 0.89 0.80 0.75 
New Forecast-
Turbulence 0.70 0.83 0.85 0.87 0.82 0.76 
New Forecast-
Combined 0.71 0.84 0.89 0.88 0.82 0.75 

In Table 6.2 and Table 6.3, relationships based on R-squared value between the time 

series of real power production on SCADA and the time series of forecasting data 

including newly created forecasting data are shared for Wind Farm B and C, respectively. 

 
Table 6.2 Different Time Horizon Based Relationship between Power Forecasting and 
Production for Wind Farm B 

Wind Farm B 
R-square 
(Hourly) 

R-square 
(Daily) 

R-square 
(Spring) 

R-square 
(Summer) 

R-square 
(Autumn) 

R-square 
(Winter) 

Forecast 
Provider-1 0.74 0.86 0.87 0.93 0.88 0.79 
Forecast 
Provider-2 0.72 0.83 0.82 0.90 0.89 0.73 
Forecast 
Provider-3 0.74 0.83 0.87 0.92 0.91 0.74 
Forecast 
Provider-4 0.75 0.84 0.89 0.85 0.92 0.77 
New Forecast-
Temperature 0.74 0.85 0.88 0.92 0.91 0.75 
New Forecast-
Turbulence 0.73 0.85 0.85 0.92 0.91 0.77 
New Forecast-
Combined 0.74 0.86 0.85 0.90 0.91 0.80 

According to Table 6.2 above, improvement on power forecasting, especially on daily 

basis, under favour of mentioned methodology in this study has been achieved and more 

accurate power forecasting for Wind Farm B during winter times could be provided by 

the help of this methodology. 

Table 6.3 Different Time Horizon Based Relationship between Power Forecasting and 
Production for Wind Farm C 

Wind Farm C 
R-square 
(Hourly) 

R-square 
(Daily) 

R-square 
(Spring) 

R-square 
(Summer) 

R-square 
(Autumn) 

R-square 
(Winter) 

Forecast 
Provider-1 0.74 0.86 0.84 0.87 0.89 0.82 

cont. on next page 
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cont of table 6.3 
Forecast 
Provider-2 0.79 0.90 0.86 0.88 0.91 0.90 
Forecast 
Provider-3 0.78 0.89 0.85 0.83 0.92 0.89 
Forecast 
Provider-4 0.79 0.90 0.88 0.87 0.93 0.88 
New Forecast-
Temperature 0.79 0.91 0.87 0.89 0.93 0.89 
New Forecast-
Turbulence 0.79 0.90 0.88 0.87 0.93 0.88 
New Forecast-
Combined 0.79 0.91 0.86 0.88 0.93 0.89 

According to Table 6.3, any improvement on power forecasting by the help of the 

mentioned methodology could not be achieved for Wind Farm C so the wind farm is not 

considered to be exposure to low site temperature and high turbulence intensity unlike 

Wind Farm A and B. It can be related to non-complexity of the site. 

To check improvement mathematically, daily power forecasting based on new 

combined method for Wind Farm B can be compared with forecast provider 3. Even if 

the difference depending upon determination coefficient (R2) seems to be small, using 

new combined method will provide accurate power forecasting up to about 4 GWh/a for 

Wind Farm B. Numerical values of the improvement on short-term wind power 

forecasting on daily basis by the help newly developed combined method are shared in 

Table 6.4. Highlighted values indicate the maximum of improvement value as GWh/a 

while using newly developed combined method instead of forecast providers. 

Approximately 10 GWh/a improvement for Wind Farm A by replacing forecast provider 

1 with new combined method and approximately 5 GWh/a improvement for Wind Farm 

B by replacing forecast provider 2 with new combined method were provided on daily 

basis.  

Table 6.4 Improvement in Wind Power Forecasting on Daily Basis  

Hourly Basis Profit (versus) 
New Forecast Combined 
Wind Farm A (GWh/a) 

New Forecast Combined 
Wind Farm B (GWh/a) 

Forecast Provider-1 9.8 1.3 
Forecast Provider-2 1.1 4.7 
Forecast Provider-3 2.0 4.2 
Forecast Provider-4 1.6 3.4 

Up to this point, it was explained how the accuracy of short-term power 

forecasting provided by forecast providers was increased by considering atmospheric 
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effects such as temperature and turbulence. In section 5.1. , power forecasting data was 

grouped based on site temperature and afterwards in section 5.2. , the forecasting data 

was grouped by turbulence intensity due to the fact that real power production could be 

had some losses due to these kinds of atmospheric phenomena. However, effects of these 

two phenomena on the power forecasting are expected to occur at the same time in a 

single wind farm. For this reason, the power forecasting data was grouped in section 5.3. 

by considering both site temperature and turbulence intensity together. In order for 

selecting best forecast provider, grouped power forecasting data was compared with real 

power production on SCADA within same time interval. Based on grouped forecasting 

data by both temperature and turbulence intensity, findings regarding some improvement 

on the forecasts in comparison to other forecast providers were shared in Table 6.5 for all 

wind farms. 

Table 6.5 Comparison of Power Forecasting and Production Based on Cumulative Sum 
for All Wind Farms (Scaled by SCADA Power Production) 

 
Wind Farm A 
[MWh/a] 

Wind Farm B 
[MWh/a] 

Wind Farm C 
[MWh/a] 

SCADA Power Production 1.000 1.000 1.000 

Forecast Provider 1 0.877 1.143 1.011 

Forecast Provider 2 0.988 1.087 1.017 

Forecast Provider 3 1.001 1.022 1.010 

Forecast Provider 4 0.935 1.071 1.006 

Reference Power Production 1.093 1.166 1.033 

New Forecast-Temperature 0.982 1.028 1.011 

New Forecast-Turbulence 0.991 0.986 1.004 

New Forecast-Combined 0.974 1.019 1.004 

Metered Power Production 0.989 0.984 0.986 

Reference power production and metered power production were added the same table 

above. Although, newly developed methodology mentioned in this study has 

outperformed in terms of accuracy of power forecasting compared to some forecast 

providers, this kind of comparison based on cumulative sum of annual production like in 

Table 6.5 would not be sufficient due to the fact that short-term power forecasting on 

hourly and daily basis are generally carried out in electricity trading market. Therefore, 

this study has focused on improvement of hourly daily basis wind power forecasting. 
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Table 6.6 Power Forecasting Review at Different Time Horizon 

Period 
Best Forecast Provider  
for Wind Farm A 

Best Forecast Provider  
for Wind Farm B 

Best Forecast Provider  
for Wind Farm C 

Hourly New Forecast-Combined Forecast Provider-4 New Forecast-Temperature 
Daily New Forecast-Combined New Forecast-Combined New Forecast-Temperature 
Spring Forecast Provider-4 Forecast Provider-4 Forecast Provider-4 
Summer Forecast Provider-1 Forecast Provider-1 New Forecast-Temperature 
Autumn Forecast Provider-2 Forecast Provider-2 New Forecast-Turbulence 
Winter New Forecast-Turbulence New Forecast-Combined Forecast Provider-2 

Hourly power forecasting data was converted as daily and was compared with real power 

production on SCADA.  On daily period, newly developed method considering site 

temperature and turbulence intensity of Wind Farm A and B has been succeeded to 

outperform other power forecasting provided by forecast providers. In comparison to 

turbulence condition of Wind Farm A and B, Wind Farm C may not be suffered from 

turbulent wind condition during power production operation. Thus, the method 

considering only site temperature should be used for Wind Farm C in order to increase 

forecasting accuracy. Based on hourly forecasting accuracy, the newly developed method 

can also be used for Wind Farm A and C. For Wind Farm B, forecast provider 4 was 

outperformed compared to the newly developed method, however, the forecasting 

accuracy that can be related to the determination coefficient in Table 6.2 are very close 

to combined method that was newly developed. During spring, forecast provider 4 should 

be preferred for more accurate forecasting.  For summer and autumn, forecast provider 1 

and forecast provider 2 can be used for Wind Farm A and B, respectively and newly 

developed method can be considered and included in order for increasing forecasting 

accuracy for Wind Farm C. At winter times, it is hard to provide accurate power 

forecasting due the fact that icing conditions at the sites, especially in Wind Farm A and 

B, are expected to occur and many forecast providers suffer from this phenomenon. Most 

forecast provider cannot take power production losses due to icing into account. 

Modelling and forecasting of these kinds of losses are really challenging due to 

uncertainty of environmental conditions, however, improvement on power forecasting for 

the wind farms can be performed by including newly developed method mentioned along 

the study. 



 
 

 
 

53 

CHAPTER 7 
 
 

 CONCLUSION 

Wind power forecasting is very challenging due to stochastic nature of atmosphere. In 

literature, plenty of wind power forecasting models have been developed to improve 

forecasting accuracy. Most of the forecasting models have been succeeded to provide 

better results compared to forecasting models on previous studies, however, there is no 

specific baseline model for benchmarking. The models are generally site-specific, and 

their applicability is not simple for another wind farm sites. Instead of creating new site-

specific forecasting model to the literature, existing forecasting models, which are 

different NWP models from four forecast providers, have been included to this study on 

the purpose of improving forecasting accuracy. Schematic presentation of the study can 

be seen in Figure 7.1.  

 
Figure 7.1 Schematic Presentation of the Study 
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The method mentioned along the study is not a site-specific and can be applicable 

easefully for another wind farm sites. It should not be forgotten that the method is not a 

new forecasting model, it can be considered as a cost-effective engineering approach to 

decrease deviation in power production forecasting. Crucial part of the method is 

detecting parameters that cause power forecasting errors. Root causes of power 

production losses that can affect power forecasting accuracy were investigated in the 

study. There are several parameters regarding power production losses such as turbine 

availability, grid curtailment, maintenance period, wind direction, icing, turbulence, and 

extreme wind speed. Icing and turbulence that have significant effect on power 

production losses are included to this study. Icing and turbulence phenomena can be 

related to ambient temperature and wind speed of the wind farm site, respectively. As 

mentioned earlier, this study considers site temperature and turbulence only because these 

two parameters are responsible for most of the power production losses that leads to 

power forecasting errors. If the site does not suffer from power production losses 

originating from temperature or turbulence, method in the study will not improve power 

forecasting accuracy. In this case, other parameter, wind turbine wake that is also 

responsible for significant amount of power production losses, should be included to 

develop the method explained in this study. Due to limited time frame of the study, most 

important parameters, which are temperature and turbulence, were selected and short-

term wind power forecasting has been improved correspondingly. Wake parameter can 

be examined for further investigation. For future studies, other parameters in addition 

temperature and turbulence can be included to ensemble learning algorithms, which 

enable us rapid computation with a lot of variables. In this way, many additional 

parameters can be studied to observe their effects on wind power forecasting. 
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APPENDICES 
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APPENDIX A 
 
 

 R CODE 

#WIND FARM A 
X0_windfarmA_hourly_Autosaved_ <- read_excel("E:/Scada 
Data/windfarmA_windfarmB_windfarmC/windfarmARES/0 - windfarmA_hourly 
(Autosaved).xlsx", sheet = "All_2019", col_types = c("date", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric")) 
 
windfarmA19<- X0_windfarmA_hourly_Autosaved_ 
View(windfarmA19) 
 
names(windfarmA19)[1]<- "date" 
names(windfarmA19)[2]<- "scadapower" 
names(windfarmA19)[3]<- "reference" 
names(windfarmA19)[4]<- "meter" 
names(windfarmA19)[5]<- "provider1power" 
names(windfarmA19)[6]<- "provider2power" 
names(windfarmA19)[7]<- "provider3power" 
names(windfarmA19)[8]<- "provider4power" 
names(windfarmA19)[16]<- "tempprovider1" 
names(windfarmA19)[13]<- "turb" 
names(windfarmA19)[21]<- "tempprovider3" 
names(windfarmA19)[26]<- "tempprovider2" 
summary(windfarmA19$tempprovider1) 
 
length(windfarmA1999$provider3power) 
summary(windfarmA1999$tempprovider1) 
windfarmA1999 <- filter(windfarmA19, windfarmA19$scadapower >= 0 & 
windfarmA19$provider2power >= 0) 
 
ag111<- aggregate(windfarmA1999$provider1power, FUN=sum, na.rm=TRUE, 
by=list(cut(windfarmA1999$tempprovider1, breaks=c(seq(from= -10, to = 32, by 
=3)), include.lowest=F))) 
 
ag112<- aggregate(windfarmA1999$provider2power, FUN=sum, na.rm=TRUE, 
by=list(cut(windfarmA1999$tempprovider1, breaks=c(seq(from= -10, to = 32, by 
=3)), include.lowest=F))) 
 
ag113<- aggregate(windfarmA1999$provider3power, FUN=sum, na.rm=TRUE, 
by=list(cut(windfarmA1999$tempprovider1, breaks=c(seq(from= -10, to = 32, by 
=3)), include.lowest=F))) 
 
ag114<- aggregate(windfarmA1999$provider4power, FUN=sum, na.rm=TRUE, 
by=list(cut(windfarmA1999$tempprovider1, breaks=c(seq(from= -10, to = 32, by 
=3)), include.lowest=F))) 
 
ag000<- aggregate(windfarmA1999$scadapower, FUN=sum, na.rm=TRUE, 
by=list(cut(windfarmA1999$tempprovider1, breaks=c(seq(from= -10, to = 32, by 
=3)), include.lowest=F))) 
 
agRRR<- aggregate(windfarmA1999$reference, FUN=sum, na.rm=TRUE, 
by=list(cut(windfarmA1999$tempprovider1, breaks=c(seq(from= -10, to = 32, by 
=3)), include.lowest=F))) 
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ag_finalm <- 
cbind.data.frame(ag000$Group.1,ag000$x,ag111$x,ag112$x,ag113$x,ag114$x,agRRR$x
) 
View(ag_finalm) 
 
#reference 
plot(ag_finalm$`ag000$Group.1`, ag_finalm$`agRRR$x`/ag_finalm$`agRRR$x`, lwd=1, 
xlab="Temperature provider1", ylab="Power Forecast (Scaled based on Reference 
Power)", ylim=c(0,3.5),main="windfarmA RES (Reference Power)") 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag111$x`/ag_finalm$`agRRR$x`,col="cyan", lwd=2) 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag112$x`/ag_finalm$`agRRR$x`,col="green", lwd=2) 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag113$x`/ag_finalm$`agRRR$x`,col="blue", lwd=2) 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag114$x`/ag_finalm$`agRRR$x`,col="purple", lwd=2) 
legend("topright",legend=c("Reference Power", 
"provider1","provider2","provider3","provider4"),text.col=c("black","cyan","gr
een","blue","purple")) 
 
#scada 
plot(ag_finalm$`ag000$Group.1`, ag_finalm$`ag000$x`/ag_finalm$`ag000$x`, lwd=1, 
xlab="Temperature°C - Forecast Provider 1", ylab="Power Forecast (Scaled based 
on Scada Power)", ylim=c(0,3.5),main="WIND FARM A (Scada Power)") 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag111$x`/ag_finalm$`ag000$x`,col="cyan", lwd=2) 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag112$x`/ag_finalm$`ag000$x`,col="green", lwd=2) 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag113$x`/ag_finalm$`ag000$x`,col="blue", lwd=2) 
lines(ag_finalm$`ag000$Group.1`, 
ag_finalm$`ag114$x`/ag_finalm$`ag000$x`,col="purple", lwd=2) 
legend("topleft",legend=c("Scada Power", "Forecast Provider 1","Forecast 
Provider 2","Forecast Provider 3","Forecast Provider 
4"),text.col=c("black","cyan","green","blue","purple")) 
 
#3 derece bin 
mm1<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > -10 & 
windfarmA1999$tempprovider1 <= -7) 
mm1_yk <- select(mm1, date, provider3power,scadapower,reference) 
write.table(mm1_yk,file="temp_1.txt",row.names=F,col.names = T, sep="\t") 
 
mm2<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > -7 & 
windfarmA1999$tempprovider1 <= -4) 
mm2_yk <- select(mm2, date, provider2power,scadapower,reference) 
write.table(mm2_yk,file="temp_2.txt",row.names=F,col.names = T, sep="\t") 
 
mm3<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > -4 & 
windfarmA1999$tempprovider1 <= -1) 
mm3_yk <- select(mm3, date, provider3power,scadapower,reference) 
write.table(mm3_yk,file="temp_3.txt",row.names=F,col.names = T, sep="\t") 
 
mm4<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > -1 & 
windfarmA1999$tempprovider1 <= 2) 
mm4_yk <- select(mm4, date, provider4power,scadapower,reference) 
write.table(mm4_yk,file="temp_4.txt",row.names=F,col.names = T, sep="\t") 
 
mm5<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > 2 & 
windfarmA1999$tempprovider1 <= 5) 
mm5_yk <- select(mm5, date, provider2power,scadapower,reference) 
write.table(mm5_yk,file="temp_5.txt",row.names=F,col.names = T, sep="\t") 
 
mm6<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > 5 & 
windfarmA1999$tempprovider1 <= 11) 
mm6_yk <- select(mm6, date, provider3power,scadapower,reference) 
write.table(mm6_yk,file="temp_6.txt",row.names=F,col.names = T, sep="\t") 
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mm7<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > 11 & 
windfarmA1999$tempprovider1 <= 14) 
mm7_yk <- select(mm7, date, provider2power,scadapower,reference) 
write.table(mm7_yk,file="temp_7.txt",row.names=F,col.names = T, sep="\t") 
 
mm8<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > 14 & 
windfarmA1999$tempprovider1 <= 23) 
mm8_yk <- select(mm8, date, provider1power,scadapower,reference) 
write.table(mm8_yk,file="temp_8.txt",row.names=F,col.names = T, sep="\t") 
 
mm9<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > 23 & 
windfarmA1999$tempprovider1 <= 26) 
mm9_yk <- select(mm9, date, provider3power,scadapower,reference) 
write.table(mm9_yk,file="temp_9.txt",row.names=F,col.names = T, sep="\t") 
 
mm10<-windfarmA1999 %>% filter(windfarmA1999$tempprovider1 > 26 & 
windfarmA1999$tempprovider1 <= 32) 
mm10_yk <- select(mm10, date, provider2power,scadapower,reference) 
write.table(mm10_yk,file="temp_10.txt",row.names=F,col.names = T, sep="\t") 
 
sum(length(mm1$provider3power))+ 
sum(length(mm2$provider2power))+ 
sum(length(mm3$provider3power))+ 
sum(length(mm4$provider4power))+ 
sum(length(mm5$provider2power))+ 
sum(length(mm6$provider3power))+ 
sum(length(mm7$provider2power))+ 
sum(length(mm8$provider1power))+ 
sum(length(mm9$provider3power))+ 
sum(length(mm10$provider2power)) 
 
sum(mm1[2])+sum(mm2[2])+sum(mm3[2])+sum(mm4[2])+sum(mm5[2])+sum(mm6[2])+sum(mm
7[2])+sum(mm8[2])+sum(mm9[2])+sum(mm10[2]) 
sum(mm1[3])+sum(mm2[3])+sum(mm3[3])+sum(mm4[3])+sum(mm5[3])+sum(mm6[3])+sum(mm
7[3])+sum(mm8[3])+sum(mm9[3])+sum(mm10[3]) 
sum(mm1[5])+sum(mm2[5])+sum(mm3[5])+sum(mm4[5])+sum(mm5[5])+sum(mm6[5])+sum(mm
7[5])+sum(mm8[5])+sum(mm9[5])+sum(mm10[5]) 
sum(mm1[6])+sum(mm2[6])+sum(mm3[6])+sum(mm4[6])+sum(mm5[6])+sum(mm6[6])+sum(mm
7[6])+sum(mm8[6])+sum(mm9[6])+sum(mm10[6]) 
sum(mm1[7])+sum(mm2[7])+sum(mm3[7])+sum(mm4[7])+sum(mm5[7])+sum(mm6[7])+sum(mm
7[7])+sum(mm8[7])+sum(mm9[7])+sum(mm10[7]) 
sum(mm1[8])+sum(mm2[8])+sum(mm3[8])+sum(mm4[8])+sum(mm5[8])+sum(mm6[8])+sum(mm
7[8])+sum(mm8[8])+sum(mm9[8])+sum(mm10[8]) 
sum(mm1[4])+sum(mm2[4])+sum(mm3[4])+sum(mm4[4])+sum(mm5[4])+sum(mm6[4])+sum(mm
7[4])+sum(mm8[4])+sum(mm9[4])+sum(mm10[4]) 
 
######TURBULENCE############### 
#sum(windfarmAturb$provider1power);sum(windfarmAturb$provider2power);sum(windf
armAturb$provider3power);sum(windfarmAturb$provider4power);sum(windfarmAturb$s
cadapower) 
 
windfarmAturb1<-windfarmA1999 %>% filter(windfarmA1999$provider1_WS > 0 & 
windfarmA1999$provider1_WS <= 3 & windfarmA1999$tempprovider1 > -10 & 
windfarmA1999$tempprovider1 <= 32) 
windfarmAturb1_yk <- select(windfarmAturb1, date, 
provider4power,scadapower,reference) 
write.table(windfarmAturb1_yk,file="turb1.txt",row.names=F,col.names = T, 
sep="\t") 
 
windfarmAturb2<-windfarmA1999 %>% filter(windfarmA1999$provider1_WS > 3 & 
windfarmA1999$provider1_WS <= 6 & windfarmA1999$tempprovider1 > -10 & 
windfarmA1999$tempprovider1 <= 32) 
windfarmAturb2_yk <- select(windfarmAturb2, date, 
provider2power,scadapower,reference) 
write.table(windfarmAturb2_yk,file="turb2.txt",row.names=F,col.names = T, 
sep="\t") 
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windfarmAturb3<-windfarmA1999 %>% filter(windfarmA1999$provider1_WS > 6 & 
windfarmA1999$provider1_WS <= 12 & windfarmA1999$tempprovider1 > -10 & 
windfarmA1999$tempprovider1 <= 32) 
windfarmAturb3_yk <- select(windfarmAturb3, date, 
provider2power,scadapower,reference) 
write.table(windfarmAturb3_yk,file="turb3.txt",row.names=F,col.names = T, 
sep="\t") 
 
windfarmAturb4<-windfarmA1999 %>% filter(windfarmA1999$provider1_WS > 12 & 
windfarmA1999$tempprovider1 > -10 & windfarmA1999$tempprovider1 <= 32) 
windfarmAturb4_yk <- select(windfarmAturb4, date, 
provider1power,scadapower,reference) 
write.table(windfarmAturb4_yk,file="turb4.txt",row.names=F,col.names = T, 
sep="\t") 
 
#WIND FARM B 
library(readxl) 
X1_windfarmB_2018_2019 <- read_excel("E:/Scada 
Data/windfarmA_windfarmB_windfarmC/windfarmBRES/1_windfarmB2018_2019.xlsx", 
sheet = "All_2019", col_types = c("date", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric",  
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric",  "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric")) 
 
windfarmB199 <- X1_windfarmB_2018_2019 
 
names(windfarmB199)[1]<- "date" 
names(windfarmB199)[2]<- "scadapower"  
names(windfarmB199)[3]<- "reference" 
names(windfarmB199)[4]<- "meter" 
names(windfarmB199)[5]<- "provider1power" #; provider1 <- f1 %>% 
filter(f1$provider1power < 50) 
names(windfarmB199)[6]<- "provider2power" 
names(windfarmB199)[7]<- "provider3power" 
names(windfarmB199)[8]<- "provider4power" 
names(windfarmB199)[16]<- "tempprovider1" 
names(windfarmB199)[13]<- "turb" 
names(windfarmB199)[21]<- "tempprovider3" 
names(windfarmB199)[26]<- "tempprovider2" 
 
windfarmB1999 <- filter(windfarmB199, windfarmB199$scadapower >= 0 & 
windfarmB199$provider2power >= 0, windfarmB199$provider1power < 50) 
View(windfarmB1999) 
 
summary(windfarmB1999$tempprovider1) 
 
ag1<- aggregate(windfarmB1999$provider1power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$tempprovider1, breaks=c(seq(from= -5, to = 34, by 
=3)), include.lowest=F))) 
View(ag1) 
 
ag2<- aggregate(windfarmB1999$provider2power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$tempprovider1, breaks=c(seq(from= -5, to = 34, by 
=3)), include.lowest=F))) 
View(ag2) 
 
ag3<- aggregate(windfarmB1999$provider3power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$tempprovider1, breaks=c(seq(from= -5, to = 34, by 
=3)), include.lowest=F))) 
View(ag3) 
 
ag4<- aggregate(windfarmB1999$provider4power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$tempprovider1, breaks=c(seq(from= -5, to = 34, by 
=3)), include.lowest=F))) 
View(ag4) 
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ag0<- aggregate(windfarmB1999$scadapower, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$tempprovider1,breaks=c(seq(from= -5, to = 34, by =3)), 
include.lowest=F))) 
View(ag0) 
 
agR<- aggregate(windfarmB1999$reference, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$tempprovider1,breaks=c(seq(from= -5, to = 34, by =3)), 
include.lowest=F))) 
View(agR) 
 
ag_final <- cbind.data.frame(ag0$Group.1,ag0$x,ag1$x,ag2$x,ag3$x,ag4$x,agR$x) 
View(ag_final) 
write.csv(ag_final, file="ag_final.csv") 
 
#######SCADA POWER###### 
plot(ag_final$`ag0$Group.1`,ag_final$`ag0$x`/ag_final$`ag0$x`, lwd=1, 
xlab="Temperature°C - Forecast Provider 1", ylab="Power Forecast (Scaled based 
on Scada Power)", ylim=c(0,3),main="WIND FARM B (Scada Power)") 
#plot(ag0,col="black", type="l") 
#axis(side=1, at=seq(-5,34,1)) 
#lines(ag0$x/ag0$x,col="black", lwd=2) 
lines(ag_final$`ag0$Group.1`,ag_final$`ag1$x`/ag_final$`ag0$x`,col="cyan", 
lwd=2) 
lines(ag_final$`ag0$Group.1`,ag_final$`ag2$x`/ag_final$`ag0$x`,col="green", 
lwd=2) 
lines(ag_final$`ag0$Group.1`,ag_final$`ag3$x`/ag_final$`ag0$x`,col="blue", 
lwd=2) 
lines(ag_final$`ag0$Group.1`,ag_final$`ag4$x`/ag_final$`ag0$x`,col="purple", 
lwd=2) 
legend("topleft",legend=c("Scada Power", "Forecast Provider 1","Forecast 
Provider 2","Forecast Provider 3","Forecast Provider 
4"),text.col=c("black","cyan","green","blue","purple")) 
 
# 3 derece bin 
aa<-windfarmB1999 %>% filter(windfarmB1999$tempprovider1 > -5 & 
windfarmB1999$tempprovider1 <= 4) 
aa1 <- select(aa,date,provider2power,scadapower,reference) 
write.csv(aa1,file="provider2 -5 4.csv") 
 
bb<-windfarmB1999 %>% filter(windfarmB1999$tempprovider1 > 4 & 
windfarmB1999$tempprovider1 <= 16) 
bb1 <- select(bb,date, provider3power,scadapower,reference) 
write.csv(bb1,file="provider3 4 16.csv") 
 
cc<-windfarmB1999 %>% filter(windfarmB1999$tempprovider1 > 16 & 
windfarmB1999$tempprovider1 <= 22) 
cc1 <- select(cc, date,provider4power, scadapower,reference) 
write.csv(cc1,file="provider4 16 22.csv") 
 
dd<-windfarmB1999 %>% filter(windfarmB1999$tempprovider1 > 22 & 
windfarmB1999$tempprovider1 <= 28) 
dd1 <- select(dd,date, provider3power,scadapower,reference) 
write.csv(dd1,file="provider3 22 28.csv") 
 
ee<-windfarmB1999 %>% filter(windfarmB1999$tempprovider1 > 28 & 
windfarmB1999$tempprovider1 <= 34) 
ee1 <- select(ee, date,provider2power,scadapower,reference) 
write.csv(ee1,file="provider2 28 34.csv") 
 
sum(aa1$provider2power)+ 
sum(bb1$provider3power)+ 
sum(cc1$provider4power)+ 
sum(dd1$provider3power)+ 
sum(ee1$provider2power) 
 
sum(length(windfarmB1999$scadapower)) 
sum(windfarmB1999$reference) 
sum(windfarmB1999$provider1power) 
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sum(windfarmB1999$provider2power) 
sum(windfarmB1999$provider3power) 
sum(windfarmB1999$provider4power) 
sum(windfarmB1999$provider3er) 
summary(windfarmB1999$provider1_WS) 
 
wsti<- aggregate(windfarmB1999$turb, FUN=mean, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks=c(seq(from= 0, to =20 , by =2)), 
include.lowest=F))) 
View(wsti) 
 
plot(wsti$Group.1, wsti$x, xlab=" provider1 Wind Speed ", ylab="Turbulence 
Intensity", main="Turbulence Intensity based on provider1 GL Wind Speed [2 m/s 
bin]") 
#plot(windfarmB1999$provider1_WS,windfarmB1999$turb, type="p" ,xlab=" provider1 
Wind Speed ", ylab="Turbulence Intensity", main="Turbulence Intensity based on 
provider1 GL Wind Speed [1 m/s bin]") 
lines(wsti$Group.1 ,wsti$x, lwd=3, col="red") 
abline(h=0.12, col="red", lwd=1) 
abline(v=15, col="blue", lwd=1) 
 
summary(windfarmB1999$provider1_WS) 
breaks<-c(0,3,6,12,20) 
wsti1<- aggregate(windfarmB1999$provider1power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks, include.lowest=F))) 
View(wsti1) 
 
wsti2<- aggregate(windfarmB1999$provider2power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks, include.lowest=F))) 
View(wsti2) 
 
wsti3<- aggregate(windfarmB1999$provider3power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks, include.lowest=F))) 
View(wsti3) 
 
wsti4<- aggregate(windfarmB1999$provider4power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks, include.lowest=F))) 
View(wsti4) 
 
wsti5<- aggregate(windfarmB1999$scadapower, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks, include.lowest=F))) 
View(wsti5) 
 
wsti6<- aggregate(windfarmB1999$reference, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmB1999$provider1_WS, breaks, include.lowest=F))) 
 
View(wsti6) 
 
windfarmB_ti<-cbind.data.frame(wsti1$Group.1, 
wsti1$x,wsti2$x,wsti3$x,wsti4$x,wsti5$x,wsti6$x) 
View(windfarmB_ti) 
 
 
turba<-windfarmB1999 %>% filter(windfarmB1999$provider1_WS > 0 & 
windfarmB1999$provider1_WS <= 3) 
turba1 <- select(turba,date, provider3power,scadapower,reference) 
write.csv(turba1,file="turb_03.csv") 
 
turbb<-windfarmB1999 %>% filter(windfarmB1999$provider1_WS > 3 & 
windfarmB1999$provider1_WS <= 6) 
turbb1 <- select(turbb,date, provider1power,scadapower,reference) 
write.csv(turbb1,file="turb_36.csv") 
 
turbc<-windfarmB1999 %>% filter(windfarmB1999$provider1_WS > 6 & 
windfarmB1999$provider1_WS <= 12) 
turbc1 <- select(turbc,date, provider3power,scadapower,reference) 
write.csv(turbc1,file="turb_612.csv") 
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turbd<-windfarmB1999 %>% filter(windfarmB1999$provider1_WS > 12) 
turbd1 <- select(turbd,date, provider2power,scadapower,reference) 
write.csv(turbd1,file="turb_13.csv") 
 
sum(turbd$provider4power) 
sum(length(turba$provider3power))+ 
sum(length(turbb$provider1power))+sum(length(turbc$provider3power))+sum(length
(turbd$provider2power)) 
sum(turba$provider3power)+sum(turbb$provider1power)+sum(turbc$provider3power)+
sum( turbd$provider2power) 
 
#WIND FARM C 
X0_windfarmC_hourly <- read_excel("E:/Scada 
Data/windfarmA_windfarmB_windfarmC/windfarmCRES/0-windfarmC_hourly.xlsx", 
sheet = "All_2019", col_types = c("date", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", 
"numeric", "numeric", "numeric")) 
 
windfarmC19 <- X0_windfarmC_hourly 
View(windfarmC19) 
 
names(windfarmC19)[1]<- "date" 
names(windfarmC19)[2]<- "scadapower"  
names(windfarmC19)[3]<- "reference" 
names(windfarmC19)[4]<- "meter" 
names(windfarmC19)[5]<- "provider1power" 
names(windfarmC19)[6]<- "provider2power" 
names(windfarmC19)[7]<- "provider3power" 
names(windfarmC19)[8]<- "provider4power" 
names(windfarmC19)[16]<- "tempprovider1" 
names(windfarmC19)[13]<- "turb" 
names(windfarmC19)[21]<- "tempprovider3" 
names(windfarmC19)[26]<- "tempprovider2" 
 
summary(windfarmC1999$tempprovider1) 
length(windfarmC1999$provider1power) 
windfarmC1999 <- filter(windfarmC19, windfarmC19$scadapower >= 0 , 
windfarmC19$provider2power >= 0 ) #, windfarmB199$provider1power < 50) 
 
ag11<- aggregate(windfarmC1999$provider1power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmC1999$tempprovider1, breaks=c(seq(from= -4, to = 33, by 
=3)), include.lowest=F))) 
 
ag12<- aggregate(windfarmC1999$provider2power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmC1999$tempprovider1, breaks=c(seq(from= -4, to = 33, by 
=3)), include.lowest=F))) 
 
ag13<- aggregate(windfarmC1999$provider3power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmC1999$tempprovider1, breaks=c(seq(from= -4, to = 33, by 
=3)), include.lowest=F))) 
 
ag14<- aggregate(windfarmC1999$provider4power, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmC1999$tempprovider1, breaks=c(seq(from= -4, to = 33, by 
=3)), include.lowest=F))) 
 
ag00<- aggregate(windfarmC1999$scadapower, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmC1999$tempprovider1, breaks=c(seq(from= -4, to = 33, by 
=3)), include.lowest=F))) 
 
agRR<- aggregate(windfarmC1999$reference, FUN=sum, na.rm=FALSE, 
by=list(cut(windfarmC1999$tempprovider1, breaks=c(seq(from= -4, to = 33, by 
=3)), include.lowest=F))) 
 
ag_finalb < -
cbind.data.frame(ag00$Group.1,ag00$x,ag11$x,ag12$x,ag13$x,ag14$x,agRR$x) 
View(ag_finalb) 
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#reference 
plot(ag_finalb$`ag00$Group.1`, ag_finalb$`agRR$x`/ag_finalb$`agRR$x`, lwd=1, 
xlab="Temperature provider1", ylab="Power Forecast (Scaled based on Reference 
Power)", ylim=c(0,3),main="windfarmC RES (Reference Power)") 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag11$x`/ag_finalb$`agRR$x`,col="cyan", lwd=2) 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag12$x`/ag_finalb$`agRR$x`,col="green", lwd=2) 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag13$x`/ag_finalb$`agRR$x`,col="blue", lwd=2) 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag14$x`/ag_finalb$`agRR$x`,col="purple", lwd=2) 
legend("topleft",legend=c("Reference Power", 
"provider1","provider2","provider3","provider4"),text.col=c("black","cyan","gr
een","blue","purple")) 
 
#scada 
plot(ag_finalb$`ag00$Group.1`, ag_finalb$`ag00$x`/ag_finalb$`ag00$x`, lwd=1, 
xlab="Temperature°C - Forecast Provider 1", ylab="Power Forecast (Scaled based 
on Scada Power)", ylim=c(0,3),main="WIND FARM C (Scada Power)") 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag11$x`/ag_finalb$`ag00$x`,col="cyan", lwd=2) 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag12$x`/ag_finalb$`ag00$x`,col="green", lwd=2) 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag13$x`/ag_finalb$`ag00$x`,col="blue", lwd=2) 
lines(ag_finalb$`ag00$Group.1`, 
ag_finalb$`ag14$x`/ag_finalb$`ag00$x`,col="purple", lwd=2) 
legend("topleft",legend=c("Scada Power", "Forecast Provider 1","Forecast 
Provider 2","Forecast Provider 3","Forecast Provider 
4"),text.col=c("black","cyan","green","blue","purple")) 
 
#3 derece bin 
bb1<-windfarmC1999 %>% filter(windfarmC1999$tempprovider1 > -4 & 
windfarmC1999$tempprovider1 <= 5) 
bb1_yk <- select(bb1, date, provider2power,scadapower,reference) 
write.table(bb1_yk,file="temp1.txt",row.names=F,col.names = T, sep="\t") 
 
bb2<-windfarmC1999 %>% filter(windfarmC1999$tempprovider1 > 5 & 
windfarmC1999$tempprovider1 <= 8) 
bb2_yk <- select(bb2, date, provider4power,scadapower,reference) 
write.table(bb2_yk,file="temp2.txt",row.names=F,col.names = T, sep="\t") 
 
bb3<-windfarmC1999 %>% filter(windfarmC1999$tempprovider1 > 8 & 
windfarmC1999$tempprovider1 <= 14) 
bb3_yk <- select(bb3, date, provider2power,scadapower,reference) 
write.table(bb3_yk,file="temp3.txt",row.names=F,col.names = T, sep="\t") 
 
bb4<-windfarmC1999 %>% filter(windfarmC1999$tempprovider1 > 14 & 
windfarmC1999$tempprovider1 <= 20) 
bb4_yk <- select(bb4, date, provider4power,scadapower,reference) 
write.table(bb4_yk,file="temp4.txt",row.names=F,col.names = T, sep="\t") 
 
bb5<-windfarmC1999 %>% filter(windfarmC1999$tempprovider1 > 20 & 
windfarmC1999$tempprovider1 <= 23) 
bb5_yk <- select(bb5, date, provider2power,scadapower,reference) 
write.table(bb5_yk,file="temp5.txt",row.names=F,col.names = T, sep="\t") 
 
bb6<-windfarmC1999 %>% filter(windfarmC1999$tempprovider1 > 23 & 
windfarmC1999$tempprovider1 <= 32) 
bb6_yk <- select(bb6, date, provider4power,scadapower,reference) 
write.table(bb6_yk,file="temp6.txt",row.names=F,col.names = T, sep="\t") 
 
sum(length(bb1$provider2power))+ 
sum(length(bb2$provider4power))+ 
sum(length(bb3$provider2power))+ 
sum(length(bb4$provider4power))+ 



 
 

 
 

68 

sum(length(bb5$provider2power))+ 
sum(length(bb6$provider4power)) 
 
sum(bb1[2])+sum(bb2[2])+sum(bb3[2])+sum(bb4[2])+sum(bb5[2])+sum(bb6[2]) 
sum(bb1[3])+sum(bb2[3])+sum(bb3[3])+sum(bb4[3])+sum(bb5[3])+sum(bb6[3]) 
sum(bb1[5])+sum(bb2[5])+sum(bb3[5])+sum(bb4[5])+sum(bb5[5])+sum(bb6[5]) 
sum(bb1[6])+sum(bb2[6])+sum(bb3[6])+sum(bb4[6])+sum(bb5[6])+sum(bb6[6]) 
sum(bb1[7])+sum(bb2[7])+sum(bb3[7])+sum(bb4[7])+sum(bb5[7])+sum(bb6[7]) 
sum(bb1[8])+sum(bb2[8])+sum(bb3[8])+sum(bb4[8])+sum(bb5[8])+sum(bb6[8]) 
sum(bb1[4])+sum(bb2[4])+sum(bb3[4])+sum(bb4[4])+sum(bb5[4])+sum(bb6[4]) 
 
######TURBULENCE############### 
turbaa<-windfarmC1999 %>% filter(windfarmC1999$provider1_WS > 0 & 
windfarmC1999$provider1_WS <= 3 & windfarmC1999$tempprovider1 > -4 & 
windfarmC1999$tempprovider1 <= 32) 
turbaa_yk <- select(turbaa, date, provider3power,scadapower,reference) 
write.table(turbaa_yk,file="turb1.txt",row.names=F,col.names = T, sep="\t") 
 
turbbb<-windfarmC1999 %>% filter(windfarmC1999$provider1_WS > 3 & 
windfarmC1999$provider1_WS <= 6 & windfarmC1999$tempprovider1 > -4 & 
windfarmC1999$tempprovider1 <= 32) 
turbbb_yk <- select(turbbb, date, provider4power,scadapower,reference) 
write.table(turbbb_yk,file="turb2.txt",row.names=F,col.names = T, sep="\t") 
 
turbcc<-windfarmC1999 %>% filter(windfarmC1999$provider1_WS > 6 & 
windfarmC1999$provider1_WS <= 12 & windfarmC1999$tempprovider1 > -4 & 
windfarmC1999$tempprovider1 <= 32) 
turbcc_yk <- select(turbcc, date, provider4power,scadapower,reference) 
write.table(turbcc_yk,file="turb3.txt",row.names=F,col.names = T, sep="\t") 
 
turbdd<-windfarmC1999 %>% filter(windfarmC1999$provider1_WS > 12 & 
windfarmC1999$tempprovider1 > -4 & windfarmC1999$tempprovider1 <= 32) 
turbdd_yk <- select(turbdd, date, provider4power,scadapower,reference) 
write.table(turbdd_yk,file="turb4.txt",row.names=F,col.names = T, sep="\t") 
 
sum(turbaa$scadapower) 
sum(length(turbaa$provider3power))+ 
sum(length(turbbb$provider4power))+sum(length(turbcc$provider4power))+sum(leng
th(turbdd$provider4power)) 
sum(turbaa$provider3power)+ 
sum(turbbb$provider4power)+sum(turbcc$provider4power)+sum(turbdd$provider4powe
r) 
 
######################windfarmb########################## 
View(T5) 
View(T8) 
library(openair) 
windRose(T5, ws = "ws", wd = "wd") 
windRose(T8, ws = "ws", wd = "wd", col="jet",key.header = "T8 - Wind Farm 
B",key.position = "top") 
 
summary(T8$ws) 
 
TIT8<- aggregate(T8$TI, FUN=mean, na.rm=TRUE, 
by=list(cut(T8$ws, breaks=c(seq(from= 0, to =27 , by =1)), include.lowest=F))) 
View(TIT8) 
 
plot(TIT8$Group.1, TIT8$x, xlab= "Forecast Provider 1 - WindSpeed [m/s]", 
ylab="Turbulence Intensity", main="Turbulence Intensity of T8 - Wind Farm B") 
lines(TIT8$x, col="red", lwd=2) 
 
#Time Series 
T8windfarmb <- read_excel("C:/Users/Yüksel 
Kalay/Desktop/windfarmb.xlsx",sheet="All_2019") 
plot(T8windfarmb$T8_WS, type="l",col="red", lwd="1",ylab="Wind Speed [m/s]") 
lines(T8windfarmb$dnv_WS, type="l",col="purple") 
legend("topright",legend=c("Wind Speed - T8", "Wind Speed - 
provider1"),text.col=c("red","purple")) 
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#Correlation Plot 
ggplot(T8windfarmb,aes(x = T8_WS, y = dnv_WS)) + 
geom_point() + 
geom_smooth(method = "lm", se=FALSE,formula=y~x-1 ) + 
stat_regline_equation(label.y = 25,formula=y~x-1  , aes(label = ..eq.label..)) 
+ 
stat_regline_equation(label.y = 27,formula=y~x-1  , aes(label = ..eq.label..)) 
+ 
stat_regline_equation(label.y = 29, formula=y~x-1 ,aes(label = ..rr.label..))+ 
#stat_cor( label.y=17,method="pearson",cor.coef.name="R") 
labs(title = "Correlation Plot", subtitle = "",x ="Wind Speed - T8", y="Wind 
Speed - provider1") 
 
############windfarmc############################# 
#windRose(T20, ws = "ws", wd = "wd", col="jet",key.header = "T20",key.position 
= "top") 
summary(T23$ws) 
windRose(T23, ws = "ws", wd = "wd", col="jet",key.header = "T23 - Wind Farm 
C",key.position = "top") 
TIT23<- aggregate(T23$TI, FUN=mean, na.rm=TRUE, 
by=list(cut(T23$ws, breaks=c(seq(from= 0, to =27 , by =1)), include.lowest=F))) 
 
View(TIT23) 
plot(TIT23$Group.1, TIT23$x, xlab= "Forecast Provider 1 - WindSpeed [m/s]", 
ylab="Turbulence Intensity", main="Turbulence Intensity of T23 - Wind Farm C") 
lines(TIT23$x, col="red", lwd=2) 
##########################windfarma#############################T13 
#windRose(T1, ws = "ws", wd = "wd", col="jet",key.header = "T1",key.position = 
"top") 
summary(T16$ws) 
windRose(T16, ws = "ws", wd = "wd", col="jet",key.header = "T16 - Wind Farm 
A",key.position = "top") 
 
TIT16<- aggregate(T16$TI, FUN=mean, na.rm=TRUE, 
by=list(cut(T16$ws, breaks=c(seq(from= 0, to =26 , by =1)), include.lowest=F))) 
 
plot(TIT16$Group.1, TIT16$x, xlab= "Forecast Provider 1 - WindSpeed [m/s]", 
ylab="Turbulence Intensity", main="Turbulence Intensity of T16 - Wind Farm A") 
lines(TIT16$x, col="red", lwd=2) 


