
APPLICATION OF GRAPH NEURAL NETWORKS

ON SOFTWARE MODELING

A Thesis Submitted to

the Graduate School of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Onur Yusuf LEBLEBİCİ

ii

ACKNOWLEDGEMENTS

First, I would like to thank my supervisors, Assoc. Prof. Dr. Tuğkan Tuğlular and

Prof. Dr. Fevzi Belli, who advised, motivated and shared their experiences with me. Their

guidance helped me in all the time of research and writing of this thesis.

I am grateful to my sister-in-law Assoc. Prof. Dr. Gonca Özçelik Kayseri for her

support.

Finally, I would like to thank my wife Sinem Leblebici for her unconditional and

constant support in this process, and my dear daughters Bade and Öykü, whom I deprived

of the time we spent together in that period, for their patience and support. This thesis is

dedicated to my beloved family

iii

ABSTRACT

APPLICATION OF GRAPH NEURAL NETWORKS ON SOFTWARE

MODELING

Deficiencies and inconsistencies introduced during the modeling of software

systems can cause undesirable consequences that may result in high costs and negatively

affect the quality of all developments made using these models. Therefore, creating better

models will help the software engineers to build better software systems that meet

expectations. One of the software modelling methods used for analysis of graphical user

interfaces is Event Sequence Graphs (ESG). The goal of this thesis is to propose a method

that predicts missing or forgotten links between events defined in an ESG via Graph

Neural Networks (GNN). A five-step process consisting of the following steps is

proposed: (i) data collection from ESG model, (ii) dataset transformation, (iii) GNN

model training, (iv) validation of trained model and (v) testing the model on unseen data.

Three performance metrics, namely cross entropy loss, area under curve and accuracy,

were used to measure the performance of the GNN models. Examining the results of the

experiments performed on different datasets and different variations of GNN, shows that

even with relatively small datasets prepared from ESG models, predicts missing or

forgotten links between events defined in an ESG can be achieved.

iv

ÖZET

GRAFİK YAPAY SİNİR AĞLARININ YAZILIM MODELLEMESİNE

UYGULANMASI

Yazılım sistemlerinin modellemeleri sırasında yapılan eksiklikler ve oluşan

tutarsızlıklar, bu modeller kullanılarak yapılan tüm geliştirmelerde de yüksek maliyetlerle

sonuçlanan istenmeyen sonuçlara sebep olabilmektedir. Yazılım modellemesi sırasında

yazılım mühendislerine verilebilecek öneriler ile daha iyi modeller oluşturulabilir ve bu

sayede kullanıcı beklentilerini daha iyi karşılayan sistemler oluşturulabilir. Yazılım

modellemede kullanılan yöntemlerden bir taneside, grafik kullanıcı arayüzlerinin

analizinde kullanılan olay akış grafikleridir. Bu tezin hedefi olay akış grafikleri üzerinde

yer alan bileşenler arasında unutulmuş veya eksik bağlantıları grafik yapay sinir ağları

kullanarak tahminleyecek bir yöntem öndermektir. Bu yöntem beş basamaktan oluşan bir

süreçten oluşmaktadır: (i) veri toplama, (ii) grafik yapay sinir ağ modelini eğitmek, (iii)

eğitilen modeli doğrulamak ve (v) modeli daha önce görmediği veriler ile test etmek.

Eğitilen grafik yapay sinir ağ modellerinin performansını ölçmek için çapraş entropi

kaybı, eğri altında kalan alan ve doğruluk performans metrikleri kullanılmıştır. Farklı veri

kümeleri ve farklı grafik yapay sinir ağı varyasyonları ile yapılan deneylerin incelenmesi

sonucunda, nispeten küçük ölçekli veri kümelerinde dahi başarı elde edilebildiği

gözlemlenmiştir.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES .. x

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 FUNDAMENTALS .. 4

2.1. Neural Networks .. 4

2.2. Neural Network Models ... 5

2.3. Neural Network Hyper Parameters .. 6

2.4. Metrics to Evaluate Neural Networks .. 7

2.5. Graph Types ... 11

2.6. Graph Kernels .. 15

CHAPTER 3 RELATED WORKS ... 17

3.1. Graph Neural Networks ... 17

3.2. Graph Convolutional Networks ... 20

3.3. Graph Attention Networks ... 23

3.4. Edge and Node Classification on Graphs .. 25

3.5. Link Prediction .. 26

CHAPTER 4 PROPOSED METHOD .. 29

4.1 Data Collection ... 32

4.2 Data Transformation .. 32

4.3 Training Model ... 39

4.3.1 SEAL Framework .. 39

vi

4.3.2. DeepLinker ... 42

CHAPTER 5 Evaluation ... 45

5.1. Experiments ... 45

5.2. Results .. 51

5.3. Discussion .. 54

5.4. Threats to Validity ... 62

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 63

REFERENCES ... 64

APPENDICES

APPENDIX A SEAL – ESG DATASET RESULTS .. 68

APPENDIX B DEEPLINKER – ESG DATASET RESULTS 77

vii

LIST OF FIGURES

Figure Page

Figure 2.1 ROC Curve .. 9

Figure 2.2 Area Under Curve (AUC) ... 10

Figure 2.3 The structure of homogeneous graphs ... 12

Figure 2.4 The structure of heterogeneous graphs .. 12

Figure 2.5 The structure of dynamic graph ... 13

Figure 2.6 The structure of edge/vertex labeled graph ... 13

Figure 2.7 The structure of multigraph ... 14

Figure 2.8 The structure of directed graph ... 14

Figure 2.9 The structure of undirected graph ... 15

Figure 3.1 Variants Of Graph Neural Networks ... 18

Figure 3.2 GNN Localized Functions [22] ... 19

Figure 3.3 Message Passing .. 20

Figure 3.4 Convolutional Neural Network [15] .. 21

Figure 3.5 2D-Convolution. Subsampling over 3x3 filter on 4x4 data 21

Figure 3.6 Graph Convolution. 1 hop filter applied on vertex 1 and 8. 22

Figure 3.7 Single Attention Layer [33] ... 24

Figure 3.8 Difference of GCN and GAT .. 25

Figure 3.9 Architecture of SEAL Framework [12] ... 27

Figure 3.10 Schema showing how the steps of WLNM work [11] 28

Figure 4.1 A GUI Example [45] ... 30

Figure 4.2 ESG model of the GUI [45] .. 30

Figure 4.3 Process Used in this Thesis ... 31

Figure 4.4 Node Embedding ... 33

Figure 4.5 Sample Node Embedding Vectors. Annotations a: Is Required, b: Has Min-

Max Value c: Has Min-Max Length d: Has Condition or Regex 35

Figure 4.6 Sample Application of Node Embedding Vectors for nodes of an ESG 35

Figure 4.7 Content of a mxe file ... 37

Figure 4.8 Mxe Parser ... 38

Figure 4.9 Flatten Graph Generator .. 38

Figure 4.10 Architecture of DGCNN [27] .. 39

file://///Users/onurleblebici/Google%20Drive/IYTE%20Yüksek%20Lisans/Tez3/Thesis-20201116.docx%23_Toc56443501

viii

Figure Page

Figure 4.11 Details of the CNN configuration used in DGCNN………………………40

Figure 4.12 Single Attention Mechanism between two nodes is shown in left, and the

Multiple Head Attention Mechanism between a node an its neighbors is shown in right.

[33] .. 43

Figure 4.13 Architecture of DeepLinker [42] ... 43

Figure 5.1 Bank Account-Base Product (A Sample ESG) ... 50

Figure 5.2 Generated Output Files of Sample Bank Account-Base Product 50

Figure 5.3 SEAL Performance Effects of Parameter Changes On Each Iteration 56

Figure 5.4 DeepLinker Performance Effects of Parameter Changes On Each Iteration 58

Figure 5.5 SEAL – Dataset size Performance Effect .. 59

Figure 5.6 Original Specials ESG ... 59

Figure 5.7 Specials ESG “edit Special” Node Qualitative Link Predictions. 59

Figure 5.8 Specials ESG “delete Special” Node Qualitative Link Predictions. 59

Figure A.1 SEAL - ISELTA Dataset – Training – Iteration.1 .. 69

Figure A.2 SEAL - ISELTA Dataset – Validation – Iteration.1 69

Figure A.3 SEAL - ISELTA Dataset – Test – Iteration.1... 70

Figure A.4 SEAL – Bank Account Dataset – Training – Iteration.2 71

Figure A.5 SEAL – Bank Account Dataset – Validation – Iteration.2 72

Figure A.6 SEAL – Bank Account Dataset – Test – Iteration.2 72

Figure A.7 SEAL – Email Dataset – Training – Iteration.2 ... 74

Figure A.8 SEAL – Email Dataset – Validation – Iteration.2 .. 74

Figure A.9 SEAL – Email Dataset – Test – Iteration.2 .. 74

Figure A.10 SEAL – Student Attendance Dataset – Training – Iteration.2 76

Figure A.11 SEAL – Student Attendance Dataset – Validation – Iteration.2 76

Figure A.12 SEAL – Student Attendance Dataset – Test – Iteration.2 76

Figure B.1 DeepLinker - ISELTA Dataset – Training – Iteration.8 78

Figure B.2 DeepLinker - ISELTA Dataset – Validation – Iteration.8 78

Figure B.3 DeepLinker - ISELTA Dataset – Test – Iteration.8 79

Figure B.4 DeepLinker – Bank Account Dataset – Training – Iteration.8 80

Figure B.5 DeepLinker – Bank Account Dataset – Validation – Iteration.8 80

Figure B.6 DeepLinker – Bank Account Dataset – Test – Iteration.8 81

Figure B.7 DeepLinker – Student Attendance Dataset – Training – Iteration.8 82

Figure B.8 DeepLinker – Student Attendance Dataset – Validation – Iteration.8 82

ix

Figure Page

Figure B.9 DeepLinker – Student Attendance Dataset – Test – Iteration.8 83

Figure B.10 DeepLinker - Email Dataset – Training – Iteration.8 84

Figure B.11 DeepLinker - Email Dataset – Validation – Iteration.8 84

Figure B.12 DeepLinker - Email Dataset – Test – Iteration.8 .. 85

x

LIST OF TABLES

Table Page

Table 2.1. A Sample Confusion Matrix .. 7

Table 2.2. Graph Types ... 11

Table 4.1. Arguments of the SEAL-ESG Framework .. 40

Table 4.2. Parameters of DeepLinker ... 44

Table 5.1. Computer Hardware Specifications ... 45

Table 5.2. Required Installations .. 45

Table 5.3. Required Python Libraries ... 46

Table 5.4. Required Git Repositories .. 46

Table 5.5. Node Features .. 47

Table 5.6. Node Name to Node Feature Mappings .. 47

Table 5.7. Node Feature Distribution of Dataset .. 48

Table 5.8. Arguments of mxe parser ... 48

Table 5.9. Graph Data Details of Dataset Models .. 49

Table 5.10. Parameters used on Experiments ... 51

Table 5.11. SEAL Parameters on Each Iteration (* batch-size 40 is for email dataset) . 52

Table 5.12. DeepLinker Parameters on Each Iteration ... 53

Table 5.13. SEAL Best Performed Iteration Results .. 54

Table 5:14. DeepLinker Best Performed Iteration Results ... 54

Table 5.15. Link Predictions Made by the Trained Model ... 62

Table A.1. SEAL-ESG ISELTA Dataset Iteration Best Results 68

Table A.2. SEAL-ESG Bank Account Dataset Iteration Best Results 70

Table A.3. SEAL-ESG Email Dataset Iteration Best Results ... 73

Table A.4. SEAL-ESG Student Attendance Dataset Iteration Best Results 75

Table B.1. DeepLinker-ESG ISELTA Dataset Iteration Best Results 77

Table B.2. DeepLinker-ESG Bank Account Dataset Iteration Best Results 79

Table B.3. DeepLinker-ESG Student Attendance Dataset Iteration Best Results 81

Table B.4. DeepLinker-ESG Email Dataset Iteration Best Results 83

1

CHAPTER 1

INTRODUCTION

Software applications are generally sophisticated. Those systems may require

many sub-systems and components in it. In order to design a software system, details of

the system are required to be understood at varying levels. Typical software modeling

approaches may not be able to reduce this complexity for engineers. Predicting and giving

recommendations on the connections between software components such as classes,

events, UI elements, user interactions etc. has great importance in modelling. From the

software engineering perspective, deciding and connecting components with each other

require significant effort. It is also error prone. Instead of putting all the workload on the

software engineer, providing some recommendation can help engineers with modeling

the composition and interaction of components in a software system. There are many

different models and tools used in software modeling. Most of these models are graph-

based models and there is a well-established theory of graph transformations [1], which

has a number of system modelling and software engineering applications. The graph-

based modeling technique taken under consideration in this thesis is Event Sequence

Graphs (ESGs) [2].

GUIs can be modeled as sequences of events of the objects defined in GUI. The

operations on components of the GUI, such as buttons, lists, and checkboxes, are

controlled and/or observed by input/output devices. Thus, an event can be a user input or

a system response; both of them are elements of event set V and lead to a sequence of

user inputs and expected desirable system outputs. An ESG is a tuple (V, E, Ξ, Γ), where

V ≠ ∅ is a finite set of nodes (vertices or events) and E ⊆V ×V is a finite set of arcs

(edges), and Ξ, Γ ⊆ V finite sets of distinguished vertices with ξ ∈ Ξ, γ ∈ Γ, called entry

nodes (start events) and exit nodes (finish events), respectively [2]. The semantics of an

ESG is as follows. Any v ϵ V represents an event. For two events v1, v2 ϵ V, the event v2

must be enabled after the execution of v1 if and only if (v1, v2) ϵ E [3]. ESG is chosen in

this thesis as modeling technique because of its simple semantics.

There are many applications of graph-structured data, such as finding friends on

social network [4], [5], molecule interactions in medicine [6], highlighting the product

which a customer is interested in e-commerce [7], relation learning for knowledge graphs

[8], extrapolating paths [9], metabolic network reconstructions [10]. Graph-structured

2

data are different from linear-structured data. Graph-structured data cannot be given to

neural networks by traditional methods as in linear-structured data. The applications of

neural networks on graph-structured data, is getting attraction in recent years. In 2009,

Scarselli et al. proposed a method [11], which makes it possible to work neural networks

on graphs. After this proposal, the studies published in this field has come infrequent until

2016, and then the studies started to gain momentum again. With many researches, graph

classification, node classification, edge classification studies have been carried out using

different types of neural network architectures [12][13][14][15]. Some of the

architectures are as follows, recurrent neural network (RNN), convolutional neural

network (CNN), autoencoders (AE), attention mechanism.

Another important application of graph neural network is link prediction. Zhang

and Chen proposed a next generation approach for link prediction called Weisfeiler-

Lehman Neural Machine [16], which learns the patterns on graphs to predict links. That

was a game changing approach. They used fully connected neural network for learning

the link existence patterns on graphs. After that Zhang and Chen improved their method

and proposed deep graph convolutional neural network (DGCNN) for link prediction

[17]. They extracted local enclosing subgraphs for each vertex and applied DGCNN to

predict edges. Another approach is based on the representation of connections between

nodes is due to the relationship between the features of the nodes, these relationships can

be learned through graph neural networks (GNN). Gu et al. proposed a method [18] based

on that idea an used graph attention network [15] (GAT) as GNN variation.

One of the methods used for link prediction is heuristic methods. This method,

which is based on assumptions such as having common neighbors, can be used to suggest

friends in social networks, but does not show any success in predicting molecule

connections[6] or extrapolating paths [9]. ESGs are considered analogous to molecules,

where events are like atoms and their different combination means a new model.

In this thesis, an application of graph neural network (GNN), which predicts

missing or unnecessary links between events defined in an ESG, is introduced. For an

ESG, a link means a transition between two events. Experiments were performed on four

different datasets with two different GNN variations to predict links that have not been

seen before. The following steps were followed in the experiments: data collection, data

transformation, model training, validation of the trained model, and measurement of the

performance.

3

The motivation in this thesis is to help software engineers during system

modeling. With the developed approach, errors that may arise from models will be

prevented or reduced and quality will be increased. Since these models are used for

coding, testing and design in the software development processes later, and any

deficiencies and errors may occur in this process can cause very high costs. Modeling

quality directly affects the quality of the system.

The outline of the thesis is as follows. Chapter 2 provides fundamental

information about terms and terminologies used in this thesis. Chapter 3 gives an

overview of preliminary research on link prediction using GNN. Chapter 4 introduces

steps of the developed approach with, Chapter 5 presenting the evaluations over different

datasets and different GNN models using proposed approach. The last Chapter provides

conclusions and possible future works.

4

CHAPTER 2

FUNDAMENTALS

2.1. Neural Networks

Machine learning is used to find patterns in data represented by numbers. Neural

networks are models that learn the nonlinear relationship between input and output. The

basic methods used to train neural networks can be listed as follows.

Supervised learning: It is a learning method in which the expected output based

on the given input is predefined and these definitions are used to train the model. In other

words, this method is used to generate a function that produces desired outputs with

respect to the given inputs.

Unsupervised learning: This learning method tries to learn groups according to

the characteristics of the given data. There is no labeling process for data, only data. They

are used to solve problems such as clustering, dimensionality reduction.

Semi-Supervised learning: This learning method is used in cases where only a

certain amount of data is labeled in the existing data set. Labeled data used through the

supervised learning, while the un-labeled data used through the unsupervised learning.

The purpose here is to guess the labels of un-labeled data.

Reinforcement learning: The main purpose in this learning method is to win the

game. A method called policy is used, in which the agent reacts according to the

environment and receives feedback from the environment. The agent tries different

actions each time and must learn to make the best choice according to the reward-penalty

system.

Problem domains handled by neural networks can be listed as follows.

Classification: The classification problem occurs when one or more labels

needed to be generated as output. Neural network model makes predictions based on

previous observations. The purpose of a neural network model specialized for

classification is to approximate the function that describes the discrete outputs based on

the given input values. Predicting the plant species can be given as an example of such

problems.

Regression: The regression problem occurs when continuous value needed to be

generated as output. Neural network model makes predictions based on previous

5

observations. The purpose of a neural network model specialized for regression is to

approximate the function that describes the continues numeric outputs based on the given

input values. Calculating the risk ratio for insurance can be given as an example for such

problems.

Clustering: It is the grouping of data with similar characteristics in a data set.

There are many similarities among clusters created by unsupervised learning, but less

similarities between different clusters.

2.2. Neural Network Models

Feed Forward Neural Networks (FFNN) and Multilayer Perceptron [19]

[20]: This kind of neural network models consist of layers and these layers are named as

input, hidden and output. Models consist of 1 input, 1 output layer and 0 or more hidden

layers. Generally, each layer fully connected to the next. They feed information from

input to output. The simplest model is logic gate and it has two input cells and one output

cell.

Convolutional Neural Networks (CNN) [21]: They are different from other

artificial neural networks. Although they are generally used for image classification

purposes, there are many different usage areas. CNN processes a given input by passing

it through the following steps; there are convolution layer, non-linear function and

pooling layer those are arranged one after the other. After passing through those layers,

data pass through the final fully connected layer and generates numbers on output layer

that explain the possibility of being a certain class. The Convolution layer is the basic

building component of CNNs where the most calculations are made. In the conversion of

the convolution layer, each learnable filter with size n x n x k (where n is height-width

and k is depth) is slide (with a given factor) on the input data. The filter and the input data

segment at the current position and size of the filter are subjected to matrix operation and

an activation map is created as output. The point is that learnable filters are activated

when they see certain patterns. ReLU is widely used as a non-linear function. In the

pooling layer, the method of max-pooling is also widely used.

Recurrent Neural Networks (RNN) [22] [23]: They are neural network models

that uses outputs of the previous layers as the input of the next layers, recurrently.

Although RNN models are generally used in natural language processing, there are many

other application areas. RNNs have different types according to the number of inputs and

6

outputs. For example, one-to-many (one input-multiple output) source code generation,

many-to-one (multiple input-one output) sentiment classification, many-to-many

(multiple input-multiple output) language translation. RNNs are difficult to train due to

vanishing and exploding gradient problems. The difficulties arising from these problems

have been reduced with the Long Short Term Memory (LSTM) [24].

Autoencoders (AE) [25]: Autoencoders represents compressed knowledge of the

original input data and used for representation learning tasks. They learn the hidden

representation of the input data in an unsupervised manner. The architecture of

autoencoders consists of hidden layers that are symmetrically structured between input

and output layers.

Generative Adversarial Networks (GAN) [26]: These are models in which two

different networks, one generative and the other discriminative, work together. The

generative network in the model generates data, the discriminative network consumes this

generated data. Training process of this models as follows, while the purpose of the

generative network is to fool the discriminative network, the purpose of the discriminative

network is to ensure if the given input real or fake. The problem encountered in this model

is that the tuning process for both networks is handled separately. Because of that the

performance of one of the two models is lower than the other, affects the overall

performance of the system.

Graph Neural Networks (GNN) [11]: Graph structured data are different from

data in matrix or vector structures. When each data kept in matrix or vector structure

considered as a cell, changing the order of these cells breaks the integrity of the data. In

contrast, graph structured data is isomorphic. The nodes defined on the graph and the

links between these nodes contain very valuable data. GNNs are neural networks

specialized for learning over graph structed data.

2.3. Neural Network Hyper Parameters

Epoch: Giving the entire training set to the neural network model once is called

one epoch. The number of epochs expresses how many times the training set will pass

through to the neural network model.

Batch Size: It represents the amount of data that will be used in each iteration in

neural network trainings. If batch size is equal to all dataset, it is called batch-mode, if it

7

is greater than one and less than the whole dataset, it is called mini-batch, and if it is one,

it is called stochastic-mode.

Dropout: It is the random removal of the connections of neurons in MLP layers

at a given rate. The main purpose of the parameter is to prevent the overfitting (model

learns the training data but cannot makes predictions on unseen data).

Number of Hidden Units: It expresses, how many neurons will be defined in a

hidden layer.

Learning Rate: On neural networks, parameter values are updated via

backpropagation process. Parameter value modification of a perceptron is performed by

finding the difference by taking derivatives and multiplying the difference with the given

learning rate. This parameter is a tuning parameter of optimization algorithms.

2.4. Metrics to Evaluate Neural Networks

One of the most crucial part working with neural network is evaluation of the

model performance. Most of the time accuracy metric is used to measure the performance

of the model, but it is not enough just using one metric. Some of the metrics used to

evaluate neural network models can be listed as follows.

Confusion Matrix: It is a table that shows the total number of inputs, actual

outputs and predicted inputs to visualize complete performance. An example is given in

Table 2.1. True positive (45), true negative (45), false positive (55) and false negative

(55) values can be seen in the given table below. this metric visualizes prediction and

expected value made by model.

Table 2.1. A Sample Confusion Matrix

Input: 100 Predicted # Class A Predicted # Class B

Actual # Class A 30 45

Actual # Class B 10 15

Classification Accuracy: It is the ratio of the number of inputs given for

estimation to the neural network and the number of outputs correctly predicted by the

model. In order to provide reliable results, an equal or close to the number of inputs for

8

each class should be given. In this way, how accurately the trained model can predict is

measured. Since GNNs have not been used to predict a software model before, random

baseline is used for comparison.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number Of Correct Predictions

Total Number Of Input

F1 Score: When the distribution of classes in dataset is not balanced,

classification accuracy is not a good performance measurement choice. To overcome this

issue there are two sub metrics used in F1 score, one is recall which is the ratio of the sum

of true positive and false negative to true positive, and the other one is precision which is

the ratio of the sum of true positive and false positive to true positive. F1 Score tries to

find a balance between precision and recall and combines them into a single metric.

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Possitive

True Possitive + False Negative

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Possitive

True Possitive + False Possitive

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 x
Pression x Recall

Pression + Recall

Area Under Curve (AUC): To understand AUC, it is necessary to explain the

ROC Curve first. Neural networks assign a certain probability to each class in their

outputs, while making class selections, either the class with the highest probability is

selected or the classes above a predetermined threshold value are specified as output. As

the threshold value changes (increases or decreases) the outputs of the model to be used

as predicted classes will naturally change. ROC shows the ratio between true positive rate

9

and false positive rate for different threshold values as shown in Figure 2.1. Since GNNs

have not been used to predict a software model before, random baseline is used for

comparison.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
True Positive

True Positive + False Negative

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
False Positive

False Positive + True Negative

Figure 2.1. ROC Curve

AUC is a metric of performance of a binary classifier on any threshold values, so

the metric does not change by threshold. AUC specifies the area under ROC Curve shown

in Figure 2.2. The value of AUC is between 0 and 1, and higher values are better.

10

Figure 2.2. Area Under Curve (AUC)

Cross Entropy Loss (Log Loss): It is the measurement of the distance between

the values (which are between 0 and 1) produced by the output layer of a neural network,

from the expected values. For example, suppose that a neural network model has two

units in the output layer, the expected output for this network is 1 for the first unit and 0

for the second unit. If the predicted output is 0.01 for the first unit, which is said to be a

high loss value. For the best results, the loss should converge to zero.

Mean Absolute and Squared Error: It is the average distance between

predictions and actual outputs only difference between absolute and squared one is, mean

squared error takes the square of the distance. This metrics are used to measure accuracy

for continuous variables. However, it does not talk about whether the predictions are

overestimating or underestimating.

11

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ | 𝑦𝑗 − 𝑦′𝑗 |

𝑁

𝑗=1

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑(𝑦𝑗 − 𝑦′𝑗)2

𝑁

𝑗=1

2.5. Graph Types

A graph (G) is a pair of sets of vertices (V) and set of edges (E). A vector n(v)

represents neighbors of vertex v. In addition, vertices and edges may have features and/or

labels stored in a feature vector. Graphs can be divided into two groups, namely

homogeneous and heterogeneous. Moreover, graphs can also be separated as dynamic,

static, directed, undirected, weighted, vertex labeled, and edge labeled graphs, given in

Table 2.2.

Table 2.2. Graph Types

 Homogeneous Heterogenous

Dynamic Graph

Static Graph

Directed

Undirected

Weighted

Vertex Labeled

Edge Labeled

In the following, all the items given in Table 2.2. are explained.

12

Homogeneous Graphs: All the vertices and all the edges of a homogeneous

graph have the same types. Vertices share the same identity space and feature vector as

seen in Figure 2.3.

Figure 2.3. The structure of homogeneous graphs

Heterogeneous Graphs: A heterogeneous graph can have vertices and edges of

different types. Vertices/Edges of different types have independent identity space and

feature vectors. For example, as illustrated in the Figure 2.4., the user and tweet vertices

have different identifiers, and both have different features.

Figure 2.4. The structure of heterogeneous graphs

13

Static Graphs: They are the graphs that do not change over time. In the literature,

most of the studies on graph theory is based on static graph structure. A wealth of such

literature has been developed for static graph theory [27].

Dynamic Graphs: The authors [27] proposed dynamic graphs, which changes

over time. In many science disciplines, dynamic graphs are considered. This is especially

true for computer science, where almost always the data structures (modeled as graphs)

change as the program runs as shown in Figure 2.5.

Figure 2.5. The structure of dynamic graph

Edge/Vertex Labeled Graph: Graphs those edges and/or vertices have labels

shown in Figure 2.6.

Figure 2.6. The structure of edge/vertex labeled graph

14

Multigraph: As shown in Figure 2.7, in case that there is more than one type of

edge defined between two vertices those kinds of graphs are called multigraph. Each color

on edges represents a different type of edge.

Figure 2.7. The structure of multigraph

Directed Graph: The arrangement of the node pairs is significant in a directed

graph. Therefore, u is adjacent to v only if the pair <u, v> is in the edge set. The vertices

are usually linked with each other by arrows. An arrow from u to v is drawn only if <u,

v> is in the edge set. An example directed graph is shown in Figure 2.8.

Figure 2.8. The structure of directed graph

15

Undirected Graph: In undirected graph structure, the arrangement of the vertex

pairs in the edge set does not cause any problem. Given graph in Figure 2.9. can be

written [{4, 6}, {4, 5}, {3, 4}, {3, 2}, {2,5}, {1,2}, {1, 5}] or [{6, 4}, {5, 4}, {4, 3},

{2, 3}, {5,2}, {2,1}, {5, 1}]. The vertices are usually linked with each other by straight

lines. The adjacency matrix is symmetric, so if u ~ v then it is also the case that v ~ u

where ~ represents being connected.

Figure 2.9. The structure of undirected graph

Graphs are matched in many real-life problems. For example, if we consider the

objects we want to model as vertex and the relationship between those objects as edges,

graphs are very suitable data structures used to meet such needs. The questions within

this scope can be grouped under 2 items, (i) "How similar are the graphs given to each

other?" and (ii) "How similar are the vertices in a given graph?".

The needs such as finding similarity between graphs, classifying vertices,

suggesting new connections have influenced the studies in this field. These studies

historically started with graph kernels and evolved towards graph neural networks.

2.6. Graph Kernels

Many different approaches are proposed to find the similarity of the given graphs.

Most valid method is to check if the topologies are identical or not, in other words they

16

are isomorphic. Graph isomorphism problem is in NP, but there is no efficient algorithm

for it except heuristic ones. Graph kernels bridge the gap between graph-structured data

and a large spectrum of machine learning algorithms called kernel methods. Informally,

a kernel is a function of two objects that quantifies their similarity.

Random walk [28] and Weisfeiler-Leman graph kernel [29] can be given as

examples of a kernel between graphs.

All the graph kernels suffer computational complexity and cost inefficiency.

Another drawback of these approaches is that they cannot generate repetitively usable

models and all the computations must be repeated for each graph. To overcome these

issues researches working on this topic have begun to evolve into neural networks.

17

CHAPTER 3

RELATED WORKS

3.1. Graph Neural Networks

Graphs are isomorphic data structures and there is no fixed ordering in them. For

example, when the pixel information of a picture is mixed, that picture does not give the

same information as before, but graphs contain the same information in every way due to

their isomorphic structure. Due to the isomorphic structures of graphs, it is very unlikely

that they will be fed directly to neural networks.

The general purpose of graph neural networks is to solve classification and

regression problems of a graph that has not been encountered before with a pre-trained

model. Previous studies attempt to add learning capability over statistical methods, which

assume that the dataset contains patterns and relationships between those patterns.

Some of the significant research studies and variations of GNNs are given in

Figure 3.1.

18

Figure 3.1. Variants Of Graph Neural Networks

19

Scarselli et al., 2009 introduced Graph Neural Network (GNN) in [11], which

applies neural networks to graphs, non-Euclidean data. They extended and applied RNN

so it could be applicable to variants of graphs, directed or undirected, cyclic or acyclic.

However, the proposed method only works for static graphs and cannot be used for

dynamic ones. The proposed method needs to be run separately for all vertices, feeding

the information of neighboring vertices to the recurrent neural network consecutively,

and to continue this process until the model is stable. The localized functions for GNNs

are described in the equation given in Figure 3.2.

Figure 3.2. GNN Localized Functions [11]

Another important concept in graph neural networks is message passing. As

shown in Figure 3.3., each vertex transmits its own state information to its neighbor

vertices. In each iteration, state information from neighbors is given to a function and the

hidden state information of the vertex is updated. This function can be a sum, mean etc.

The number of steps a vertex collects information from its neighbors is defined as a

parameter. This parameter is called a hop.

20

Figure 3.3. Message Passing

The first studies were based on working with a method in which all vertices

iteratively publish the information of all their neighbors and this process is repeated until

the highest possible stability is reached. However, this process causes very high

calculation costs, especially in large graphs. At the same time, it couldn’t reach expected

accuracy. Although recent studies manage to overcome some of the issues, it is still an

open research area.

3.2. Graph Convolutional Networks

Since convolutional neural networks [21] are more effective and highly successful

methods compared to other neural network methods, their popularity has increased

exponentially in recent years. Convolutional neural networks apply filters to given input

data and subsamples them as shown in Figure 3.4. These sampling can be done over a

function like average, min, max etc.

21

Figure 3.4. Convolutional Neural Network [21]

The usage of convolutions on graphs can be compared to the usage on image data.

If pixels on the image are considered as vertices, all the vertices are fully connected with

the vertices around them. The application of how to apply a filter to such data can be seen

in Figure 3.5.

Figure 3.5. 2D-Convolution. Subsampling over 3x3 filter on 4x4 data

22

Due to its isomorphic structure, the same method cannot be applied on graphs in

the same way as it is applied in other data types. However, if the filter to be applied is

defined as a hop instead of defining it in (a x a) size and if the neighbor vertices for each

vertex are included into a given filter of a hop, then this convolution method is applied to

graphs. As shown in Figure 3.6., 1 hop filter applied to vertex no 1, 1 hop neighbors 3, 4,

6, 7 will be included. If a 2-hop filter to vertex no 1 was applied, then 3, 4, 6, 7 vertices

from the first-degree neighbor, 2, 8, 12 vertices from the second degree neighbor will be

included into the filter. Applying these filters to vertices generates sub-graphs for each

vertex.

Figure 3.6. Graph Convolution. 1 hop filter applied on vertex 1 and 8.

Convolutional Graph Neural Networks can be divided into two main categories,

spectral methods and spatial methods. Spectral models have a theoretical foundation in

23

graph signal processing and rely on graph Fourier base generalization. Hammond et al.

proposed a spectral model called ChebNet [30], they defined a wavelet transform on

feature vectors of vertices of a weighted graph. Spatial-based models combine the

messaging passing method used by RecGNN [11] with convolution. These models, on

the other hand, perform graph convolutions locally on each vertex, where weights can be

easily shared across different locations and structures. Spectral models show very low

performance on new graphs, which is completely contrary to the philosophy of neural

networks. Unlike spectral methods, spatial methods are generalizable, efficient and

flexible models.

Zhang et al. proposed Deep Graph Convolutional Neural Network DGCNN [31].

They innovated the Sort Pooling mechanism which makes it possible to use classical

CNN on graph structured data. Defferrard et al. combined spectral method with CNN

[13]. They used Graph Fourier Transform to find localized convolution filters and cluster

similar vertices.

GraphSAGE [32] has made very serious improvements over the original GCN.

With these improvements, it has provided solutions to problems such as the high

computation cost of applying GCN to large graphs due to its structure, and the necessity

of applying it to static graphs. While the original GCN uses the features of all neighbors

belonging to a vertex, GraphSAGE has passed the features of the predefined number of

neighbors into the aggregator function to identify general representation of a vertex.

GraphSAGE has suggested 3 different aggregate functions such as, mean, LSTM and

pooling.

FastGCN [33] made improvements on the sampling algorithm. Instead of

randomly choosing a fixed number of vertices, it includes the important vertices into the

sample set. To do this, instead of sampling directly on the neighbors of the vertex, an

importance function for the receptive field in each layer is used.

3.3. Graph Attention Networks

Attention mechanisms are a de facto when we need to deal with sequential data.

One of the most important features of the attention mechanism is that it can process

variable-size inputs and make decisions using the most relevant pieces of the input. When

24

attention mechanism is used in conjunction with RNN or CNN, great success has been

achieved in learning sentence structures [34] and language translation [35] .

Inspired by the success of the attention mechanism on sequential data Veličković

et al. proposed an graph attention network (GAT) [15] for vertex classification tasks. The

main idea in their proposed work is that they calculate the information of each vertex

using their neighbors and use the principles of self-attention strategy while doing this.

Figure 3.7. Single Attention Layer [15]

Left part of Figure 3.7. describes the single-attention layer, used in GAT

architecture. Right part of Figure 3.7. shows the multi (3) head attention which increases

the expressive capability of the model. Each color represents independent attention.

Calculated values from each attention are averaged or concatenated to compute the result.

GAT considers that each attention head is of equal weighted. Zhang et al. proposed The

Gated Attention Networks (GaAN) [14] model and took this one step further by giving a

score to each attention head to improving performance.

25

Figure 3.8. Difference of GCN and GAT

Main difference between graph convolutional network and graph attention

network is that GCN assigns explicit nonparametric weight to the nearby vertices during

the aggregation process, whereas GAT implicitly learns the weights via neural network,

in that way more imported vertices have more effects on the learning process.

3.4. Edge and Node Classification on Graphs

Node and Edge classification is a task where the model evaluates the class by the

features of the neighbor nodes and/or edges.

The DeepWalk [36] method proposed in 2014 was the first significant deep

learning method proposed for node classification. DeepWalk takes samples using random

walks (lengths are given as parameters) for each node, to generate embeddings to learn

nodes hidden features which represent it. LINE [37] proposed by Tang et al. and node2vec

26

[38] proposed by Grover and Leskovec extended DeepWalk by changing the embedding

generation strategy. DeepWalk [36], GCN [39] , GAT [15] achieved success rates of

67.2%, 81.5%, and 83.1%, respectively, on the CoRA dataset.

In 2017 Muhan Zhang and Yixin Chen proposed Weisfeiler-Lehman Neural

Machine (WLNM) [11] for link prediction. WLNM extracts subgraphs from edges’

neighbors to train neural networks and uses this model for link prediction.

Kim et al. - 2019 [40] and Gong and Cheng - 2019 [41] proposed multi-

dimensional edge feature prediction models. Both proposed works consolidate graph

convolutional network and graph attention network models to prediction edge labels

and/or features.

3.5. Link Prediction

Link prediction is the prediction of whether there is a link between the nodes

defined on the graph [4]. One of the existing approaches for link prediction is heuristic

methods. Although this method works for some specific scenarios, it generally performs

poorly. For example, whether there is a possible link between two nodes is estimated by

looking at the number of shared neighbors. Although this method is successful in social

networks, it does not show any success in methods such as predicting intramolecular

bonds. [42].

Zhang and Chen proposed SEAL framework [17] for link prediction task which

uses sub-graphs, attributes and embedding (uses node2vec for this purpose) features of

the graph. SEAL Framework extracts sub-graphs of related nodes and learns the features

of these sub-graphs via DGCNN and uses the learned model for link prediction. As seen

in figure – 16, this process is achieved in 3 steps.

1. Sub-graph extraction, positive and negative link sampling for training data.

2. Nodes feature vector construction for each sub-graph.

3. DGCNN learning.

27

Figure 3.9. Architecture of SEAL Framework [17]

Veličković et al. proposed GAT model for graphs and in 2019 Gu et al. specialized

this model for link prediction tasks. When the total number of nodes in a graph is defined

as N, then node classification has an O(N) complexity, while link prediction has O(N2)

[18]. Original GAT model needs entire graph data at once on node classification task.

Those limitations cause memory bottlenecks. It can be thought that this problem can be

overcome by using small mini batches, but this strategy reduces link prediction accuracy

very much [18]. Gu et al. proposed DeepLinker [18] which uses fixed neighborhoods on

mini batch sampling strategy. DeepLinker shares similar architecture with GraphSAGE.

Differences between them are in sampling strategy and using GAT instead of GCN. The

proposed DeepLinker model is used to create a hidden representation of each node, using

the attention mechanism that is shared by the node's neighbors.

Zhan and Chen proposed Weisfeiler-Lehman Neural Machine [16] which

combines neural networks with Palette WL which is a variation of Weisfeiler-Lehman

algorithm to extract encoded sub-graph patterns. As seen in Figure 3.10., this process is

achieved in 3 steps:

1. K-hope neighboring sub-graph extraction.

2. Sub-graph pattern encoding via Palette-WL.

3. Neural network training for classification.

28

Figure 3.10. Schema showing how the steps of WLNM work [16]

29

CHAPTER 4

PROPOSED METHOD

In software development, the analysis and design phase are very important, since

mistakes made in this phase are very costly. One of the most important factors in the

analysis and design phase is to understand user needs very well. In this context, the

software development team, which may be composed of requirements, software, and

quality engineers, defines the usage characteristics and scenarios with different user

profile types that will use the software system. Depending on the project size, there may

be more than one software development team. This kind of variety should be managed to

create complete and consistent specifications. Deficiencies and inconsistencies that may

occur in the modeling step can cause serious errors in the entire software system. Many

sub-software development processes, from software developments to graphical interface

designs, workflows, security scenarios, software testing processes, are affected through

the models created at the analysis and design phase.

When developing a software system, the process usually starts with the creation

of the model of the system to be developed [43]. In this way, it makes that possible to

look at the general view of the designed system and it becomes clear whether the user

requirements are met as expected. System modeling requires the ability to distinguish

between important and necessary information from others.

There are many different models and tools used in software modeling. Some of

these models can be listed as follows: Business Process Modeling and Notation, UML

Diagrams, Flowcharts, Event Sequence Graphs. All of these models are graph-based

models and there is a well-established theory of graph transformations [1] which has a

number of applications to system modelling and software engineering based on concrete

specification languages and supporting tools. It is possible to transform software models

to their graph representations.

One of the modelling methods used for analysis of graphical user interfaces is

Event Sequence Graphs (ESG) proposed by Belli in 2001 [2], which is also used in this

thesis. GUIs can be modeled as sequences of events of the objects defined in GUI as given

in Figure 4.1. and Figure 4.2.

30

Figure 4.1. A GUI Example [2]

Figure 4.2. ESG model of the GUI [2]

31

In this thesis, models are considered as the designs of software systems and

systems are developed based on these designs. Creating better models will help the

software engineers to build better software systems that meet user expectations. The goal

of this thesis is to propose a method that finds missing connections between nodes defined

in ESG. As in other modeling methods, also in ESG, the missing or forgotten relationships

between the components on the model naturally affect all processes to be made through

this model.

Figure 4.3. Process Used in this Thesis

The process used in this thesis is described in Figure 4.3. On the data collection

stage, a bank account [44] (Öztürk - 2020), email [44] (Öztürk - 2020), student attendance

[44] (Öztürk - 2020) and reservation system models [45] (Tuglular et al. - 2016) are used.

These models are drawn by “Test Suite Designer” (TSD) [45] tool. This tool generates a

xml file with mxe extension. The proposed data transformation method reads a mxe file

and transforms it to desired graph data that graph neural network models need. At the

training stage, GAT and GCN neural network models are used. Three performance

metrics, cross entropy loss, area under curve and accuracy are used to measure the

performance of trained models.

In the following sections, details of the collected data, how they transformed into

required data format and GNN variations and the parameters used are mentioned.

32

4.1 Data Collection

One of the most challenging processes when working on neural networks is to

find or create the data sets. For this purpose, previously prepared data sets using the ESG

method were used. The data sets used in thesis are listed as follows.

Bank Account: Transactions such as withdrawal, viewing balance, depositing

money, withdrawing money and requesting interest rates are modeled.

Email: Commands such as preparing new messages, viewing the mailbox,

answering and forwarding messages, creating an address book, and creating an auto

response messages are modeled.

Student Attendance: An attendance/nonattendance tracking application is

modeled. In this model, there are two different roles as student and teacher. Students can

enter and follow attendance information, and teachers can organize and monitor classes

and calendar.

Iselta: It is a model of an application that you can edit and view your profile, list

hotels and make reservations.

4.2 Data Transformation

Important part of the data transformation is embeddings [46]. Neural network

embeddings are useful because they can reduce the dimensionality of categorical

variables and meaningfully represent categories in the transformed space. Embeddings

have 3 main purposes; (i) making a recommendation based on categories, finding closest

neighbors in embedding vector, (ii) for supervised learning task, converting data to feed

to a neural network model, (iii) for the visualization of relations between categories. In

this thesis embeddings are used for neural network inputs. As shown in Figure 4.4., each

node transformed into its low-dimensional representations.

33

Figure 4.4. Node Embedding

Many software systems that we encounter in real life are complex structures with

many details. Regardless of their level of experience, people have an upper limit on their

ability to analyze. Since the complexity of software systems makes it impossible to handle

all aspects of the system by one person at once, such systems must be designed in parts.

Each sub-part to be designed is handled and prepared separately by domain experts and

software engineers. The models created as a result of these designs are relatively small.

The graphs transformed from these models are naturally small. As the number of

embedding vectors and the number of elements within the embedding vectors are

increased, it naturally grows the representation space of a node. Therefore, the number of

embedding vectors should be selected carefully for the proper representation of small

graphs.

According to the number of embedding vectors used and the number of elements

defined in each embedding vector, the number of elements in the representation space

that will be represent a node can be calculated with the following formula.

34

𝐸 = ∏ ∑ 1

𝑘

𝑖=0

𝑛

𝑣=1

Equation 4.1.

Where k is the number of elements in embedding vector v, n is the number of

embedding vectors defined.

As the number of nodes in graphs decreases, it is necessary to keep the

representation space smaller in order to infer the patterns of connections between nodes.

In this context, embedding vectors and their number of elements should be selected

carefully. If the representation space to represent nodes on small graphs becomes larger,

the representation will not be able to switch from high dimensionality to low

dimensionality, although embedding is applied. One of the main purposes of the

embeddings is the transition from high dimensionality representation to low

dimensionality one. The size of this representation space (E) must be much less than the

number of nodes (G (n)) in the graph.

E << G(n)

As the number of nodes in graphs decreases, it is necessary to keep the

representation space smaller in order to infer the patterns of connections between nodes.

In this context, embedding vectors and their number of elements should be selected

carefully. If the representation space to represent nodes on small graphs becomes larger,

the representation will not be able to switch from high dimensionality to low

dimensionality, although embedding is applied. One of the main purposes of the

embeddings is the transition from high dimensionality representation to low

dimensionality one. The size of this representation space (E) must be much less than the

number of nodes (G (n)) in the graph.

35

Figure 4.5. Sample Node Embedding Vectors.

Annotations a: Is Required, b: Has Min-Max Value c: Has Min-Max Length

d: Has Condition or Regex

Figure 4:6. Sample Application of Node Embedding Vectors for nodes of an ESG

1 Error 1 None 1 None

2 Info 2 Entry 2 Numeric

3 Action 3 Exit 3 Bool

4 Input 4 Text

5 Success 5 Date/Time

6 Enum

7 File

1 Data Input 1 Yes 1 {}

2 Help/Info/Message 2 No 2 a

3 Save 3 b

4 Cancel 4 a,b

5 Process 5 c

6 Calculate 6 a,c

7 Validate 7 b,c

8 Navigate 8 a,b,c

9 Delete 9 d

10 Get 10 a,d

11 Load 11 b,d

12 Select 12 a,b,d

13 c,d

14 a,c,d

15 b,c,d

16 a,b,c,d

Annotation

Node Type Entry-Exit Value Type

Is A Form ElementEvent Type

4 1 2 1 1 3

1 1 6

Save Data

Name Input

ESG - Node Is A Form Elem. Annotation

3 1 1 3 1 1

Node Type Entry-Exit Value Type Event Type

4 1 4

Age Input

36

Embedding vectors that can be used in an ESG model are defined in Figure 4.5.

In Figure 4.6, these embedding vectors are applied on sample nodes. When all the

embedding vectors defined in the Figure 4.5. are used for an ESG model, the size of the

representation space can be calculated with Equation 4.1. The number of embedding

vectors and the number of elements in each embedding vector is given in the Figure 4.5.

are as follows: Node Type: 5, Entry-Exit: 2, Value Type: 7, Action Type: 12, Is A Form

Element: 2, Annotation: 16. In this case, the representation space size is

5x2x7x12x2x16=26.880. There will be a relatively large graph needed to learn the edge

patterns of graph nodes represented by elements in a representation space of this size.

However, as mentioned earlier, models in a software system are designed smaller in

nature. To prevent this undesirable situation, it would be more appropriate to represent

the nodes belonging to Event Sequence Graphs with a single embedding vector. In this

context, the "Event Type" embedding vector is chosen as the most suitable embedding

vector for learning since it expresses the patterns between nodes best by the neural

network. Moreover, transformation from node names defined in an ESG to "Event Types"

embedding elements can be performed with a simple mapping operation. For these

reasons "Event Type" embedding is used in this thesis. Of course, embeddings can be

learned and reused in different models. But in this thesis, embedding vectors generated

manually.

Files generated by TSD have mxe extension and they are formed in xml notation.

Key elements used in this xml are <mxGraphModel> which represents a graph, and

<mxCell>, which represents a vertex if <vertex=1> attribute is defined or an edge if

<edge=1> attribute is defined. TSD allows to define sub-graph via <mxCell> elements,

which contains child <mxGraphModel>. <mxCell> elements have an <id> attribute,

which is unique in container <mxGraphModel>, but it is not globally unique. When a

child graph is defined in a graph, <mxCell> defined in that graph have their own id

sequences. Sample snapshot of a mxe file shown in Figure 4.7.

37

Figure 4.7. Content of a mxe file

Child graphs in a mxe file represented as grouping vertices in their parents. ESGs

should be flattened to be analyzed properly. To accomplish this task, a mxe model parser

tool is implemented. This tool has two main part; one parses mxe and extracts graphs’

edges and vertices and second one flattens the cascade graphs. The algorithm for the tool

is shown in Figure 4.8. and Figure 4.9.

38

Figure 4.8. Mxe Parser

Figure 4.9. Flatten Graph Generator

39

4.3 Training Model

4.3.1 SEAL Framework

SEAL [17] is a specialized framework for link prediction. With an innovative

approach, the authors transform the link prediction problem into a sub-graph

classification problem. For each edge, a surrounding sub-graph extracted at n-hop

distance. In addition, negative samples containing wrong connections were created. These

generated sub-graphs and node feature matrix (which contains k features for each node)

feed to a GNN for classification. In this way, both node features and graph structure were

used during the learning process.

SEAL implemented by Zhang [47]. This implementation consists of the following

steps; read graph data and node attributes (if use_attribute argument has been given) from

file, load them into compressed sparse column matrix, sampling both positive and

negative train/test links from loaded matrix, if embedding learning enabled, node2vec

[38] is used to create node information. If the library runs on training mode (is default

behavior) then for each target link, SEAL extracts its n-hop (via hop argument) enclosing

subgraph and creates its node information matrix. SEAL uses deep graph convolutional

neural network (DGCNN) [31] model for classification. SEAL transforms the link

prediction problem into graph a classification problem and each subgraph (positive and

negative samples) generated by SEAL passes through DGCNN for classification task.

The architecture of DGCNN is given in Figure 4.10.

Figure 4.10. Architecture of DGCNN [31]

In DGCNN [31] architecture, Sort Pooling layer is the key innovation, which

differentiates it from other GCNs. On traditional GCN, feature values of neighboring

40

nodes are summed up before passing them to CNN, but in DGCNN, Sort Pooling layer

organizes node features in a solid order. In this way, it makes it possible to keep more

information about different node features. Input of this layer is node features and feature

channels and the output are sorted node features and output channels of each feature.

Details of the CNN used in DGCNN is shown in Figure 4.11.

Figure 4.11. Details of the CNN configuration used in DGCNN

Original SEAL implementation is extended in some aspects as follows.

Parameters of DGCNN model are hidden and couldn’t be tuned externally. The ability to

tune hyperparameters of neural network is crucial. Some minor bugs are fixed which

prevents the application to run on training data format except mat file format. Training,

validation and test results were printed on the screen by the application. Working in this

way was challenging to evaluate results between iterations. For this reason, all the results

are written in a csv formatted file at the end of the each iteration. Extended version of the

SEAL is published to github as SEAL-ESG and can be accessible publicly from

https://github.com/onurleblebici/SEAL-ESG. Available parameters of the SEAL-ESG

implementation and their explanations are given in Table 4.1. If embeddings are enabled,

then node2vec software is needed to run the application.

Table 4.1. Arguments of the SEAL-ESG Framework

https://github.com/onurleblebici/SEAL-ESG

41

Argument Name Explanation Default

Value

data-name Data filename which has mat extension

train-name Training data file name which is formatted as plain text

test-name Test data file name which is formatted as plain text. This

is an optional parameter, it is also possible to use some

part of training data as test data.

only-predict If True, will load the saved model and output predictions

for links in test-name; you still need to specify train-name

in order to build the observed network and extract

subgraphs

batch-size Number of data feed to model on each iteration 50

max-train-num Set maximum number of train links (to fit into memory) 100000

no-cuda Disables CUDA training False

seed Random seed to initialize the pseudo-random number

generator.

1

test-ratio Ratio of test data to be used in training data 0.2

no-parallel If True, use single thread for subgraph extraction, by

default use all CPU cores to extract subgraphs in parallel

False

all-unknown-as-negative If True, regard all unknown links as negative test data;

sample a portion from them as negative training data.

Otherwise train negative and test negative data are both

sampled from unknown links without overlap

False

hop Enclosing subgraph hop number 1

max-nodes-per-hop If > 0, upper bound the number of nodes per hop by

subsampling

None

use-embedding Whether to use node2vec node embeddings False

use-attribute Whether to use node attributes False

save-model Save the final model

sortpooling_k Specifies how many percent of the output of sort pooling

layer will be fed to CNN, number of nodes kept after

SortPooling

0.6

latent_dim Dimensions of latent layer. Linear transformation for

SortPooling layer output

[32, 32,

32, 1]

hidden Number of hidden units in dense layer 128

out_dim Auto calculate input size for dense layer, graph

embedding output size

0

(cont. on next page)

42

Table 4.1. (cont.)

dropout Dropout enabled for dense layer True

num_class Binary classification- link exists or not 2

num_epochs Number of times training data will feed to model 50

learning_rate Update weight coefficient 1e-4

validation-size Validation dataset size (percentage of training dataset) 0.1

4.3.2. DeepLinker

DeepLinker [18] is an extension of GAT [15], which is specialized for link

prediction. The input of a GAT is features of each node and the output is learned features

of each node produced by GAT. A shared linear transformation with a weight matrix

which is applied to each node is required to transform the input node features into a

learned output feature. A single layer feed forward neural network (FFNN) with weight

vector called attention mechanism is used to find out which neighbors of a node are more

important (softmax function is used for ranking). Importance factor calculation between

node i and node j is shown in Equation 4.2. where W is weight matrix, h is set of node

features, T is transposition and || is the concatenation operation. Schema of the attention

mechanism, which is formulated in Equation 4.2. is shown in Figure 4.12.

Equation 4.2. Attention mechanism [15]

43

Figure 4.12. Single Attention Mechanism between two nodes is shown in left, and the

Multiple Head Attention Mechanism between a node an its neighbors is shown in right.

[15]

Figure 4.13. Architecture of DeepLinker [18]

The architecture of DeepLinker is shown in Figure 4.13. DeepLinker creates a

data set for a given graph by creating positive (nodes those have connections) and

negative (nodes those have no connection) edge samples. The following operations are

44

performed for each of the node pairs in the data set; for current node pair (for example 1

and 2) find the first (3, 4) and second level (1, 2, 5) neighbors of each node. DeepLinker

uses fixed sized neighborhood sampling for optimum memory usage, and then calculates

the edge vector representation of the node pair over their and their neighbor’s initial

features using GAT. Following that, DeepLinker calculates the Hadamard distance of the

output of the GAT, which is an edge vector representation of the node pair and makes

link predictions via training a logistic regression function.

Original DeepLinker implementation is extended in some aspects as follows.

There was and no parametric data input support to work with other training data. Along

with this, a feature that can load the outputs of the mxe_parser application has been added.

Only gpu support was available, cpu support is added. Test evaluation metrics are

calculated at the end of the each epoch. Training, validation and test results were printed

on the screen by the application, all the results are written in a csv formatted file at the

end of each iteration. Extended version of the DeepLinker is published to github as

DeepLinker-ESG and can be accessible publicly from

https://github.com/onurleblebici/DeepLinker-ESG. Available parameters of the

DeepLinker-ESG (also used for GAT) implementation are given in Table 4.3.

Table 4.2. Parameters of DeepLinker

Parameter Explanation Value

epochs Number of epochs to train. 100

lr Initial learning rate-Adam Optimizer 5e-4

weight_decay Weight decay, L2 loss on parameters-Adam Optimizer 5e-4

hidden Number of hidden units 32

K Number of attention-Multiheaded Attention 8

dropout Dropout rate 0.5

batchSize 32

trainAttention Train attention weight or not True

dataset-name Name of the dataset

validation-size Validation dataset size (percentage of training dataset) 0.1

https://github.com/onurleblebici/DeepLinker-ESG

45

CHAPTER 5

Evaluation

SEAL-ESG and DeepLinker-ESG link prediction approaches are performed on

Software models, Bank Account, Student Attendance, Email and ISELTA drawn by ESG

Tool. The studies performed to predict possible missing links on a given ESG. In addition,

results and discussion, threats to validity is explained in this section.

5.1. Experiments

The experiment steps can be listed as follows: preparing the environment,

determining node features and creating an embedding file to find node feature, parsing

the files with mxe extension, transforming them into files containing the edge and node

information of the graph, and training the model using these output files.

First step is to prepare the environment. The hardware configuration of the

computer used in experiments is presented in Table 5.1. Required installations is listed in

Table 5.2. Installed Python libraries are given in Table 5.3. Git repositories to be cloned

are listed in Table 5.4.

Table 5.1. Computer Hardware Specifications

CPU Intel(R) Core (TM) i7-9750H CPU @ 2.60GHz

RAM 16 GB, 2667 Mhz

Disk PM981 NVMe Samsung 512 GB

GPU NVIDIA GeForce GTX 1650, Dedicated GPU memory 4.0 GB

Table 5.2. Required Installations

Ubuntu 20 Operating System

Python 3.8/2.7 Python is an interpreted, high level and general purpose programming

language.

CUDA Toolkit 11 CUDA is a parallel computing platform and programming model that makes

using a GPU for general purpose computing

Conda 4.8.4 Package management and environment management system

46

Table 5.3. Required Python Libraries

Library Name SEAL-ESG Version DeepLinker-ESG Version

python 3.8.x 2.7.x

pytorch 1.6 -

torch - 1.4

numpy 1.18.1 1.16.6

scipy 1.4.1 1.2.3

networkx 2.4 2.2

tqdm 4.42.1 -

sklearn 0.0 0.0

gensim 3.8.3 -

tensorboardX 2.1 2.1

future - 0.18.2

Table 5.4. Required Git Repositories

Repository Name Repository URL

SEAL-ESG https://github.com/onurleblebici/SEAL-ESG

DeepLinker-ESG https://github.com/onurleblebici/DeepLinker-ESG

mxeParser-ESG https://github.com/onurleblebici/mxeParser-ESG

Second step is determining the node features, which defines the node best. This is

a manual process depending on ESGs under consideration because different domain may

require different kinds of node features. The chosen features for the evaluation are listed

in Table 5.5. and they are determined as generic as possible for a regular application.

Mapping table used for the conversion of node names to node features is listed in Table

5.6. This is a manual process. Table 5.6 should be stored row by row in a file with txt

extension, separated by commas. The first column specifies the numeric identifier of the

feature, the second column contains the friendly name of the feature, and the other

columns hold regular expressions to be used for node name matching. A sample line

belonging to an embeddings.txt file is defined as: "2, Info, confirm*, prompt*, receive *".

Node feature distribution of all dataset is given in Table 5.7.

https://github.com/onurleblebici/SEAL-ESG
https://github.com/onurleblebici/DeepLinker-ESG
https://github.com/onurleblebici/mxeParser-ESG

47

Table 5.5. Node Features

Numeric Identifier of The Node Feature Friendly Name of the Node Feature

0 [,]

1 Error

2 Info

3 Input

4 Help

5 Save

6 Edit

7 Add

8 Ok

9 Cancel

10 Process

11 Calculate

12 Validate

13 Navigate

14 Delete

15 Get

16 Load

17 Select

18 Print

19 Access

20 View

Table 5.6. Node Name to Node Feature Mappings

Id Name Regular Expressions (Matching Node Names)

0 [,] [,]

1 Error error

2 Info info, confirm, prompt, receive

3 Input input, data, characteristics, contingents, prices, special, change, enter, pay*,

~free, read

4 Help help

5 Save save, send, put, take, submit

6 Edit edit, update

7 Add add, new, compose, create

(cont. on next page)

48

Table 5.6. (cont.)

8 Ok ok

9 Cancel cancel

10 Process process, encrypt, sign, server*, returnMoney

11 Calculate calculate

12 Validate validation, verify

13 Navigate navigate, link, overview, continue, pause, finish, release

14 Delete delete

15 Get get, open, request

16 Load load

17 Select select

18 Print print

19 Access log*in, log, sing*in, access

20 View view, trace, monitor

Table 5.7. Node Feature Distribution of Dataset

Third step is generation of dataset. mxe_parser application and mxe files can be

found in mxeParser-ESG git repository, given in Table 5.4. Available arguments of the

mxe_parser application is listed in Table 5.8. Details of graphical models used in this

thesis are given in Table 5.9.

Table 5.8. Arguments of mxe parser

Argument Explanation

--input Path of the mxe file

--output Prefix name of the output files.

(cont. on next page)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[
O

R
]

Er
ro

r

In
fo

In
pu

t

H
el

p

Sa
ve

Ed
it

A
dd

O
k

Ca
nc

el

Pr
oc

e
ss

Ca
lc

ul
at

e

V
al

id
at

e

N
av

ig
at

e

D
el

et
e

G
et

Lo
ad

Se
le

ct

Pr
in

t

Lo
gi

n

V
ie

w

ISELTA 2 5 0 19 0 5 2 1 3 6 0 0 3 20 0 0 0 0 0 2 0 68

Student Attendance System 26 0 47 48 0 43 81 17 0 0 5 0 0 0 8 43 0 51 0 30 48 447

Bank Account 16 8 18 28 0 16 0 0 0 10 0 0 0 0 0 16 0 16 0 0 0 128

Email 26 0 54 40 0 13 0 13 0 0 2 0 0 0 0 13 0 13 0 0 0 174

Total Labels 70 13 119 135 0 77 83 31 3 16 7 0 3 20 8 72 0 80 0 32 48

To
ta

l N
od

es

49

Table 5.8. (cont.)

--number-of-node-features Number of node feature will be added to output

--number-of-edge-features Number of edge feature will be added to output

--as-undirected Converts directed graph to undirected graph

--generate-edge-symmetry Generates edge symmetry on adjacency matrix

--embeddings Path of the embeddings file

--tab-to-eol Adds extra tab to end of each line

--add-info-firstline Adds number of edges, nodes and features of them as first line into

relevant output files.

--add-node-labels Adds the node labels to the last column of the nodes output file.

(This is required for DeepLinker-ESG)

--duplicate-node-features If arg > 1 then clones same feature given n times. (This is required

for DeepLinker-ESG to use in attentions)

Table 5.9. Graph Data Details of Dataset Models

Dataset Number of Nodes Number of Edges

ISELTA 68 249

Student Attendance System 50 95

Bank Account 21 38

Email 19 35

Output graphs generated by mxe_parser is created as directed (via --as-undirected

False argument). For each mxe input file, application generates three output files, which

are nodes, edges and mappings. Node output file is a tab separated file and each line

represents a node and features of the node except the first line, first line represents the

number of nodes and number of node features that this graph contains. Edge output file

is also a tab separated file, first line represents the number of edges and number of edge

features defined for this graph. Other lines are structured like, first column is the source

node identifier and the second column are the target node identifier for the edge, other

columns represent the features of the edge if exists. Node mapping output file shows the

mappings of nodes defined in ESG and node identifier generated by mxe_parser

application. An example input is given in Figure 5.1 and the output files of this input are

given in Figure 5.2.

50

Figure 5.1. Bank Account-Base Product (A Sample ESG)

Figure 5.2. Generated Output Files of Sample Bank Account-Base Product

Fourth step is to train models. Two different model used in this step; one is SEAL

Framework that uses GCN as neural network model and the other is DeepLinker that uses

GAT as neural network model. To run on isolated environments, conda virtual

environment (detailed information can be reached from

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html)

for each workspace should be created. Before start using the virtual environments for

SEAL-ESG python version should be set to 3.8 and 2.7 for the DeepLinker.

In the original SEAL and DeepLinker projects, extra tuning arguments were

added, add-ons were made to use mxe_parser outputs, performance metrics were saved

in csv files and some bug fixes were made. As such, they were published on github as

SEAL-ESG and DeepLinker-ESG. Tuned parameters of SEAL and DeepLinker in

experiments is given in Table 5.10.

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

51

Table 5.10. Parameters used on Experiments

 SEAL-ESG DeepLinker-ESG

Batch size X X

Dropout Ratio X X

Number of Hidden Units X X

Learning Rate X X

Number of Epochs X X

Test Ratio X X

Hop X

SortPooling K X

Number of Attention X

Weight Decay X

5.2. Results

Parameter value table for SEAL and DeepLinker is listed in Table 5.11 and Table

5.12, respectively. In case of using combinations of all values entered in the parameter

value table, it is necessary to run too many iterations. These combinations result in 576

iteration for SEAL and 648 iteration for DeepLinker. First five parameters (batch size,

dropout, hidden units, learning rate, number of epochs) of each model are same, and those

parameters are common for many neural networks.

Therefore, default values defined by the authors (SEAL by Zuhan, DeepLinker

by Villafly) are used to decrease to total number of iterations to be run. For the remaining

parameters (hop, max nodes per hop, sortpooling K parameters for SEAL and number of

attentions and weight decay for DeepLinker), combinations of given values are

considered. The values of parameters used in each iteration for the training of SEAL and

DeepLinker models are listed in the Table 5.11. and Table 5.12. respectively.

52

Table 5.11. SEAL Parameters on Each Iteration (*batch-size 40 is for email dataset)

SEAL-ESG
It

er
a

ti
o

n

B
at

ch
 S

iz
e

D
ro

p
o

u
t

H
id

d
en

U
n

it
s

L
ea

rn
in

g

R
at

e

E
p

o
ch

s

H
o

p
s

S
o

rt
p

o
o

li
n

g

k

T
es

t
R

at
io

1 50* 0.5 128 0.001 50 1 0.6 0.2

2 25 0.5 128 0.001 50 1 0.6 0.2

3 10 0.5 128 0.001 50 1 0.6 0.2

4 1 0.5 128 0.001 50 1 0.6 0.2

5 50* 0.5 128 0.0005 50 1 0.6 0.2

6 25 0.5 128 0.0005 50 1 0.6 0.2

7 10 0.5 128 0.0005 50 1 0.6 0.2

8 1 0.5 128 0.0005 50 1 0.6 0.2

9 50* 0.5 128 0.0001 50 1 0.6 0.2

10 25 0.5 128 0.0001 50 1 0.6 0.2

11 10 0.5 128 0.0001 50 1 0.6 0.2

12 1 0.5 128 0.0001 50 1 0.6 0.2

13 50* 0.5 128 0.001 50 1 0.6 0.2

14 25 0.5 128 0.001 50 1 0.6 0.2

15 10 0.5 128 0.001 50 1 0.6 0.2

16 1 0.5 128 0.001 50 1 0.6 0.2

17 50* 0.5 64 0.0005 50 2 0.6 0.2

18 25 0.5 64 0.0005 50 2 0.6 0.2

19 10 0.5 64 0.0005 50 2 0.6 0.2

20 1 0.5 64 0.0005 50 2 0.6 0.2

21 50* 0.5 64 0.0001 50 2 0.6 0.2

22 25 0.5 64 0.0001 50 2 0.6 0.2

23 10 0.5 64 0.0001 50 2 0.6 0.2

24 1 0.5 64 0.0001 50 2 0.6 0.2

25 50* 0.5 64 0.0005 50 2 0.6 0.2

26 25 0.5 64 0.0005 50 2 0.6 0.2

27 10 0.5 64 0.0005 50 2 0.6 0.2

28 1 0.5 64 0.0005 50 2 0.6 0.2

29 50* 0.5 64 0.0001 50 2 0.6 0.2

30 25 0.5 64 0.0001 50 2 0.6 0.2

31 10 0.5 64 0.0001 50 2 0.6 0.2

32 1 0.5 64 0.0001 50 2 0.6 0.2

53

Table 5.12. DeepLinker Parameters on Each Iteration

DeepLinker-ESG
It

er
a

ti
o

n

B
at

ch
 S

iz
e

D
ro

p
o

u
t

H
id

d
en

 U
n

it
s

L
ea

rn
in

g
 R

at
e

E
p

o
ch

s

N
u

m
b

er
 o

f
A

tt
en

ti
o

n

(K
)

T
es

t
R

at
io

W
ei

g
h

t
D

ec
ay

1 16 0.5 32 0.001 50 2 0.2 0.001

2 16 0.5 32 0.001 50 2 0.2 0.0001

3 16 0.5 32 0.001 50 8 0.2 0.001

4 16 0.5 32 0.001 50 8 0.2 0.0001

5 16 0.5 32 0.0001 50 2 0.2 0.001

6 16 0.5 32 0.0001 50 2 0.2 0.0001

7 16 0.5 32 0.0001 50 8 0.2 0.001

8 16 0.5 32 0.0001 50 8 0.2 0.0001

9 16 0.5 32 0.0005 50 2 0.2 0.001

10 16 0.5 32 0.0005 50 2 0.2 0.0001

11 16 0.5 32 0.0005 50 8 0.2 0.001

12 16 0.5 32 0.0005 50 8 0.2 0.0001

13 32 0.5 32 0.001 50 2 0.2 0.001

14 32 0.5 32 0.001 50 2 0.2 0.0001

15 32 0.5 32 0.001 50 8 0.2 0.001

16 32 0.5 32 0.001 50 8 0.2 0.0001

17 32 0.5 32 0.0001 50 2 0.2 0.001

18 32 0.5 32 0.0001 50 2 0.2 0.0001

19 32 0.5 32 0.0001 50 8 0.2 0.001

20 32 0.5 32 0.0001 50 8 0.2 0.0001

21 32 0.5 32 0.0005 50 2 0.2 0.001

22 32 0.5 32 0.0005 50 2 0.2 0.0001

23 32 0.5 32 0.0005 50 8 0.2 0.001

24 32 0.5 32 0.0005 50 8 0.2 0.0001

Best performed results of SEAL-ESG iterations of the all datasets are listed in

Table 5.13. Performance of the SEAL-ESG trainings for each iteration measured by loss,

accuracy and auc. Graphical representation of best performed iteration metrics are also

listed in Table 5.13. The rest of the iteration results are given in APPENDIX A.

54

Table 5.13. SEAL Best Performed Iteration Results
D

a
ta

se
t

It
er

a
ti

o
n

 SEAL-ESG –Best Iteration Results on Datasets

Training Validation Test

loss acc auc loss acc auc loss acc auc

Iselta 5 0.360 0.856 0.921 0.306 0.875 0.957 0.462 0.800 0.884

Student 2 0.467 0.840 0.862 0.721 0.667 0.500 0.613 0.719 0.740

Bank 4 0.331 0.868 0.932 0.451 0.800 NaN 0.617 0.786 0.755

Email 4 0.085 0.977 NaN 0.085 NaN NaN 0.378 0.900 0.920

Results of DeepLinker -ESG iterations of the all datasets are listed in below tables.

Performance of the DeepLinker-ESG trainings for each iteration measured by loss,

accuracy and auc (only available for test). Graphical representation of best performed

iteration metrics are also listed in Table 5.14. The rest of the iteration results are given in

APPENDIX B.

Table 5.14. DeepLinker Best Performed Iteration Results

D
a

ta
se

t

It
er

a
ti

o
n

 DeepLinker-ESG –Best Iteration Results on Datasets

Training Validation Test

loss acc auc loss acc auc loss acc auc

Iselta 8 0.693 0.552 NaN 0.652 0.875 NaN 0.688 0.594 0.587

Student 8 0.684 0.574 0.000 0.646 0.571 0.000 0.683 0.625 0.625

Bank 8 0.675 0.643 NaN 0.671 0.667 NaN 0.681 0.781 0.703

Email 8 0.676 0.594 0.000 0.668 1.000 0.000 0.687 0.607 0.577

5.3. Discussion

In this thesis, the experiments are performed on the datasets explained above.

Each of these software models have their own specific domain and the components of

these software models are observed to contain certain patterns. It is considered that these

55

patterns can be revealed through graph neural networks, which are specialized for the

graph structured data. The experiments are performed under these considerations.

First impressions of the experimental results are as follows: when examining the

results of the experiments performed on different datasets using SEAL and DeepLinker

applications which are using two different variations of GNN and they use completely

different architectural designs. SEAL uses DGCNN as a GNN model under the hood. It

converts the link existence problem into a sub-graph classification problem by dividing a

given graph into its sub-graphs (with samples created with negative and positive

neighbors for each node). It performed much better than DeepLinker (uses GAT as a

GNN model), which tries to solve the link existence problem by learning the hidden

representations of nodes' relations with their neighbors.

Before evaluating the experimental results, it is necessary to briefly mention how

the metrics are used in evaluating the results. Auc (area under curve) can be considered

as summary of the model performance and gives the distribution of classes within the

dataset for all classification thresholds. The wider the area under the roc (receiver

operating characteristic) curve, the higher the model's ability to distinguish classes. Auc

value of 0.5 means random estimation, the closer this value is to 1, the higher the model's

ability to distinguish between classes. Acc (accuracy) is the basic performance metric that

expresses how many of the observations made as a result of the model are correct, but

most of the cases it is not sufficient to measure the performance of the model alone (for

example, where the distribution of the dataset between classes is not balanced). Loss

(cross entropy) gives the difference between the estimation made by the model and the

actual value. Classification results generated by a neural network falls into [0,1] interval

for each class. Based on the given input values to the neural network model, it assigns a

value between [0,1] for each class. Among these assigned values, the class with the

highest value or above the specified threshold is taken as the result. While the accuracy

metric evaluates the results as true or false, the loss metric measures how far the value

assigned by the model for the correct class is from 1.

56

Figure 5.3. SEAL Performance Effects of Parameter Changes on Each Iteration

The performance outputs of the parameters used in SEAL iterations is given in

Figure 5.3. Regardless of the size of the datasets, iterations 9, 21 and 29 show the worst

performance. As the dataset size getting smaller, performance began to be negatively

affected in all iterations between 17-32. When looking at the effects of the hop parameter

57

changes on performance, it can be said that all the first-order neighbors of a component

belonging to a software model, the representation is learned best by DGCNN. A special

case occurs in the 16th iteration, setting the batch size to minimum value 1 and learning

rate to 0.001 (which is the biggest learning rate used in experiments) even the model

overfits in large datasets, small positive effect was observed on performance in small

datasets. When the iterations with the best results are examined, the performance is higher

in the iterations 1, 2, 5, 8, 11 and 26 in large datasets, while the iterations 3, 4, 7, 12 and

16 showed higher performance in smaller iterations. When the results are examined in

general, it has been observed that giving the batch size value as 1 increases the possibility

of overfitting. It has been observed that changing the batch size value and the learning

rate values inversely increases the performance. As the size of the dataset grows, using a

larger value batch size and a smaller learning rate affects the performance positively.

58

Figure 5.4. DeepLinker Performance Effects of Parameter Changes on Each Iteration

When the parameters used in DeepLinker iterations and the performance outputs

of these parameters are compared in Figure 5.4, performance is distributed around 0.5,

which is closed to random estimation, even if the tunings performed by changing the

parameters, it makes a +-10% performance changes. While the model was being trained,

59

the distribution of the dataset between negative and positive classes (negative meaning

no link and positive meaning there is a link between nodes) was made equally and at the

same time, the distribution within batches was adjusted to be equal. In such a result, it

can be thought that software models are relatively small models and there is not enough

data for GAT to learn the relationships between nodes. When the datasets used in the

article where GAT model is used for link prediction are examined, it is seen that large

scale graphs are used. For example, the cora dataset used in the article [18] consists of

2708 nodes, 5429 edge and 1433 node features. On the other hand, ISELTA, which is the

largest dataset used in this thesis, has 68 nodes, 249 edge and 1 node feature.

Figure 5.5. SEAL – Dataset size Performance Effect

As expected, as the size of the dataset increases, the learning and prediction

performance of the model also increases as shown in Figure 5.5. On average, when the

size of the dataset is increased from 100 to 250, the loss value decreases by 30% and the

auc value increases by 12%. Dataset sizes have been listed in Table 5.9.

Experiments on two different machine learning models with 4 different datasets

have shown that one of the best ways to understand how components used in software

models is to form a pattern with neighboring components through the sub-graphs (in other

words, micro-models) they create with the neighboring components, but not through the

attributes of the component and the attributes of its neighboring components. In this way,

even with relatively small datasets, success can be achieved.

60

One of the disadvantages of SEAL is that when a disconnected graph is given, it

is not possible to make edge prediction from scratch (without any edge definition) since

it cannot generate sub-graphs for this graph. However, this is possible with GNN model,

which learns the feature representation of these nodes, and performs link prediction by

learning the relationships between the hidden representation of the nodes, not the edges.

As a result, although GAT model showed higher performance than GCN models

in large datasets, realizing graph similarity estimation approach using deep graph

convolutional neural networks results in higher performance in predicting connections

between components of software models.

Figure 5.6. Original Specials ESG

Figure 5.7. Specials ESG “edit Special” Node Qualitative Link Predictions

.

61

Figure 5-8 Specials ESG “delete Special” Node Qualitative Link Predictions.

Figure 5.7 and Figure 5.8 shows the qualitative link prediction results for specials

ESG given in Figure 5.6. A SEAL-ESG model is trained using ISELTA dataset. Using

this trained model two link prediction scenarios are executed for the nodes "edit Special"

and "delete Special". Green dotted arrows are the new links predicted by the trained model

those are not defined in original ESG. For the “edit Special” node, link predictions and

the probabilities generated by trained model are listed in Table 5.15 given in the Figure

5.7. For the “delete Special” node, link predictions and the probabilities generated by

trained model are also listed in Table 5.15 given in the Figure 5.8. The results suggested

by the model can be evaluated as follows. There are two new possible connection

suggestions for the ‘edit Special’ node with probabilities %79 and %73. These

suggestions should be taken into consideration by the modeler. In addition, a suggestion

with probability value %49 is presented for the connection between ‘edit Special’ and

‘cancel’. This suggestion may be thought as “don’t care” and the connection can be left

as it is or removed by the discretion of the modeler. For the ‘delete Special’ node, it is

seen that two new connections and one low-probability connection are offered. The

connection from 'cancel' to 'delete Special' has a probability value %31, it may be

considered as to break this existing connection entirely.

62

Table 5.15. Link Predictions Made by the Trained Model

Node Link Probability Of Existence

E
d

it
 S

p
ec

ia
l

{‘[‘, ’edit Special’} %79

{ ‘Ok’, ‘edit Special’} %73

{‘add’, ‘edit Special’} %60

{‘edit Special’, ‘save’} %73

{‘edit Special’, ‘SpecialData2’} %78

{‘edit Special’, ‘cancel’} %49

{‘cancel’, ‘edit Special’} %73

D
el

et
e

S
p

ec
ia

l

{‘[‘, ’delete Special’} %95

{‘delete Special’, ‘Ok’} %94

{‘delete Special’, ‘Cancel’} %78

{‘save’, ‘delete Special’} %78

{‘SpecialData2’, ‘delete Special’} %70

{‘add’, ‘delete Special’} %61

{‘cancel’, ‘delete Special’} %31

5.4. Threats to Validity

Internal Validity: To make the studies in this thesis trustworthy, all the datasets

are selected from different domains and different size of software applications. Two

different GNN models which are applicable to link prediction problem, are selected for

experiments. The performance of these models are measured with different set of

parameter values. All the software applications modeled by ESG and drawn by TSD.

External Validity: It is unlikely to say that proposed method in this thesis will

work on different software modelling tools and methods, even if it's possible. Considering

a class diagram which is modeled with UML notation, they are heterogenous directed

multi graphs but ESGs are homogenous directed graphs. Connection between classes has

completely different meanings in comparison with ESGs.

63

CHAPTER 6

CONCLUSION AND FUTURE WORK

Enterprise software applications are generally sophisticated. Such systems can

have many sub-systems and components in them. In order to design, configure, update or

implement a software system, the details of the system are required to be understood at

varying levels of management, design, implementation of the system. Typical software

modeling systems may not be able to reduce this complexity for engineers. Predicting the

connections between software components has great importance in modelling. From the

software engineering perspective, deciding and connecting components with each other

require significant effort. It is also error prone. Instead of putting all the workload on the

software engineer, giving some recommendation can help engineers with modeling the

composition and interaction of components in a software system.

The method proposed in this thesis is to help software engineers on software

modelling. The modeling technique used in this thesis is ESG, which is used to model

transition between GUI components. The goal of this thesis is to propose a method that

finds missing or forgotten transitions between components defined in ESG. Graph neural

network models (GNN) are used to solve this problem. Selected GNN variations are graph

convolutional neural networks (GCN) and graph attention neural networks (GAT). Steps

of the process to find missing links between components are listed as follows: (i) find the

ESG models, (ii) transform ESG models into graph structured data and extract features

of the components, (iii) train the GNN model, (iv) evaluate the performance of the trained

model. Experiments are performed on different datasets with different GNN models. The

results show that there are hidden patterns between ESG components. It is possible to

extract them over machine learning algorithms, which are specialized for graphs, and

make recommendations on missing links or edges of the graph-based system model.

This thesis is focused on ESG models to find missing links between components.

Four datasets are used in this study. Diversifying datasets and evaluating their results in

larger datasets could be the of the subject to future studies. There are many software

modelling tools and methods in literature. Other methods used for software modeling

could be worked on in the future. As another application area, it can be used to increase

the accuracy of models created automatically with the ripping method.

64

REFERENCES

[1] G. ROZENBERG, Handbook of graph grammars and computing by graph

transformation. World Scientific, 1997.

[2] F. Belli, “Finite state testing and analysis of graphical user interfaces,” in

Proceedings 12th International Symposium on Software Reliability Engineering,

Hong Kong, China, 2001, pp. 34–43, doi: 10.1109/ISSRE.2001.989456.

[3] F. Belli, C. J. Budnik, and L. White, “Event-based modelling, analysis and testing

of user interactions: approach and case study,” Softw. Test. Verification Reliab., vol.

16, no. 1, pp. 3–32, Mar. 2006, doi: 10.1002/stvr.335.

[4] D. Liben-Nowell and J. Kleinberg, “The Link-Prediction Problem for Social

Networks,” p. 23.

[5] L. A. Adamic and E. Adar, “Friends and neighbors on the Web,” Soc. Netw., vol.

25, no. 3, pp. 211–230, Jul. 2003, doi: 10.1016/S0378-8733(03)00009-1.

[6] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed Membership

Stochastic Blockmodels,” p. 34.

[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques for

Recommender Systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009, doi:

10.1109/MC.2009.263.

[8] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A Review of Relational

Machine Learning for Knowledge Graphs,” ArXiv150300759 Cs Stat, Sep. 2015,

doi: 10.1109/JPROC.2015.2483592.

[9] J.-B. Cordonnier and A. Loukas, “Extrapolating paths with graph neural networks,”

ArXiv190307518 Cs Stat, Mar. 2019, Accessed: Oct. 13, 2020. [Online]. Available:

http://arxiv.org/abs/1903.07518.

[10] T. Oyetunde, M. Zhang, Y. Chen, Y. Tang, and C. Lo, “BoostGAPFILL: improving

the fidelity of metabolic network reconstructions through integrated constraint and

pattern-based methods,” Bioinformatics, p. btw684, Oct. 2016, doi:

10.1093/bioinformatics/btw684.

[11] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini, “The

Graph Neural Network Model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61–

80, Jan. 2009, doi: 10.1109/TNN.2008.2005605.

65

[12] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning Convolutional Neural Networks

for Graphs,” ArXiv160505273 Cs Stat, Jun. 2016, Accessed: Oct. 22, 2020. [Online].

Available: http://arxiv.org/abs/1605.05273.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks

on Graphs with Fast Localized Spectral Filtering,” ArXiv160609375 Cs Stat, Feb.

2017, Accessed: Oct. 15, 2020. [Online]. Available:

http://arxiv.org/abs/1606.09375.

[14] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “GaAN: Gated Attention

Networks for Learning on Large and Spatiotemporal Graphs,” ArXiv180307294 Cs,

Mar. 2018, Accessed: Oct. 22, 2020. [Online]. Available:

http://arxiv.org/abs/1803.07294.

[15] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

Attention Networks,” ArXiv171010903 Cs Stat, Feb. 2018, Accessed: Oct. 15, 2020.

[Online]. Available: http://arxiv.org/abs/1710.10903.

[16] M. Zhang and Y. Chen, “Weisfeiler-Lehman Neural Machine for Link Prediction,”

in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Halifax NS Canada, Aug. 2017, pp. 575–583, doi:

10.1145/3097983.3097996.

[17] M. Zhang and Y. Chen, “Link Prediction Based on Graph Neural Networks,” p. 18.

[18] W. Gu, F. Gao, X. Lou, and J. Zhang, “Link Prediction via Graph Attention

Network,” ArXiv191004807 Cs, Oct. 2019, Accessed: Oct. 13, 2020. [Online].

Available: http://arxiv.org/abs/1910.04807.

[19] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain.,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958, doi:

10.1037/h0042519.

[20] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and classification,” IEEE

Trans. Neural Netw., vol. 3, no. 5, pp. 683–697, Sep. 1992, doi: 10.1109/72.159058.

[21] Y. LeCun, Y. Bengio, and T. B. Laboratories, “Convolutional Networks for Images,

Speech, and Time-Series,” p. 15.

[22] S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget, “Recurrent Neural Network

Based Language Modeling in Meeting Recognition,” p. 4.

[23] J. L. ELMAN, “Finding structure in time,” 1990.

[24] S. Hochreiter and J. Schmidhuber, “LONG SHORT-TERM MEMORY,” 1997.

66

[25] H. Bourlard, “Auto-association by multilayer perceptrons and singular value

decomposition,” 2000.

[26] I. Goodfellow et al., “Generative Adversarial Nets,” p. 9.

[27] F. Harary and G. Gupta, “Dynamic graph models,” Math. Comput. Model., vol. 25,

no. 7, pp. 79–87, Apr. 1997, doi: 10.1016/S0895-7177(97)00050-2.

[28] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,

“Graph Kernels,” 2010.

[29] N. Shervashidze, “Weisfeiler-Lehman Graph Kernels,” p. 23.

[30] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via

spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150,

Mar. 2011, doi: 10.1016/j.acha.2010.04.005.

[31] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An End-to-End Deep Learning

Architecture for Graph Classification,” p. 8, 2018.

[32] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning on

Large Graphs,” p. 19.

[33] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learning with Graph Convolutional

Networks via Importance Sampling,” ArXiv180110247 Cs, Jan. 2018, Accessed:

Oct. 25, 2020. [Online]. Available: http://arxiv.org/abs/1801.10247.

[34] Z. Lin et al., “A Structured Self-attentive Sentence Embedding,” ArXiv170303130

Cs, Mar. 2017, Accessed: Oct. 25, 2020. [Online]. Available:

http://arxiv.org/abs/1703.03130.

[35] A. Vaswani et al., “Attention is All you Need,” p. 11.

[36] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social

Representations,” Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. -

KDD 14, pp. 701–710, 2014, doi: 10.1145/2623330.2623732.

[37] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale

Information Network Embedding,” ArXiv150303578 Cs, Mar. 2015, doi:

10.1145/2736277.2741093.

[38] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,”

in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco California USA, Aug. 2016, pp. 855–

864, doi: 10.1145/2939672.2939754.

67

[39] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph

Convolutional Networks,” ArXiv160902907 Cs Stat, Feb. 2017, Accessed: Oct. 15,

2020. [Online]. Available: http://arxiv.org/abs/1609.02907.

[40] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-Labeling Graph Neural Network for

Few-Shot Learning,” p. 10.

[41] L. Gong and Q. Cheng, “Exploiting Edge Features for Graph Neural Networks,” in

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

Long Beach, CA, USA, Jun. 2019, pp. 9203–9211, doi: 10.1109/CVPR.2019.00943.

[42] István A. Kovács et al., “Network-based prediction of protein interactions,” 2019,

doi: https://doi.org/10.1038/s41467-019-09177-y.

[43] B. Shneiderman, Designing the User Interface. 1998.

[44] D. Öztürk, “A MODEL-BASED TEST GENERATION APPROACH FOR AGILE

SOFTWARE PRODUCT LINES,” M.Sc. Thesis, İzmir Institute of Technology,

2020.

[45] T. Tuglular, F. Belli, and M. Linschulte, “Input Contract Testing of Graphical User

Interfaces,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 02, pp. 183–215, Mar. 2016,

doi: 10.1142/S0218194016500091.

[46] Y. Bengio, R. Ducharme, and P. Vincent, “A Neural Probabilistic Language

Model,” p. 7.

[47] M. Zhang, SEAL. 2018.

68

APPENDIX A

SEAL – ESG DATASET RESULTS

Table A.1. SEAL-ESG ISELTA Dataset Iteration Best Results

It
er

a
ti

o
n

 SEAL-ESG – ISELTA Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.326 0.872 0.934 0.267 0.938 0.969 0.474 0.813 0.874

2 0.324 0.880 0.933 0.317 0.875 0.949 0.488 0.800 0.866

3 0.341 0.896 0.928 0.351 0.906 0.953 0.529 0.738 0.873

4 0.522 0.767 0.813 0.482 0.813 0.859 0.461 0.863 0.870

5 0.360 0.856 0.921 0.306 0.875 0.957 0.462 0.800 0.884

6 0.358 0.855 0.921 0.298 0.875 0.953 0.497 0.800 0.863

7 0.370 0.850 0.914 0.324 0.875 0.965 0.531 0.750 0.869

8 0.386 0.837 0.906 0.339 0.906 0.961 0.492 0.788 0.896

9 0.639 0.696 0.746 0.627 0.719 0.805 0.651 0.688 0.845

10 0.569 0.731 0.809 0.545 0.750 0.836 0.565 0.775 0.834

11 0.407 0.825 0.899 0.336 0.844 0.945 0.478 0.800 0.874

12 0.390 0.830 0.908 0.299 0.906 0.965 0.534 0.750 0.860

13 0.338 0.868 0.932 0.369 0.844 0.918 0.549 0.750 0.826

14 0.323 0.884 0.939 0.384 0.844 0.922 0.535 0.750 0.832

15 0.341 0.868 0.929 0.392 0.844 0.918 0.577 0.738 0.819

16 0.422 0.813 0.882 0.453 0.781 0.879 0.683 0.650 0.776

17 0.389 0.836 0.908 0.429 0.750 0.871 0.578 0.775 0.795

18 0.326 0.884 0.937 0.397 0.844 0.922 0.559 0.738 0.821

19 0.336 0.882 0.931 0.400 0.844 0.898 0.604 0.713 0.799

20 0.376 0.851 0.910 0.410 0.844 0.922 0.635 0.688 0.801

21 0.594 0.712 0.763 0.689 0.688 0.660 0.681 0.588 0.597

22 0.500 0.778 0.853 0.606 0.688 0.754 0.641 0.650 0.750

23 0.431 0.811 0.885 0.492 0.688 0.848 0.595 0.688 0.794

24 0.332 0.861 0.929 0.449 0.813 0.902 0.645 0.688 0.825

25 0.399 0.844 0.906 0.420 0.813 0.879 0.568 0.750 0.800

26 0.347 0.865 0.929 0.377 0.844 0.918 0.504 0.750 0.849

27 0.364 0.857 0.917 0.411 0.844 0.922 0.589 0.750 0.806

28 0.380 0.833 0.911 0.358 0.875 0.945 0.548 0.750 0.837

(cont. on next page)

69

Table A.1. (cont.)

29 0.589 0.716 0.760 0.691 0.656 0.637 0.681 0.588 0.573

30 0.534 0.745 0.825 0.625 0.625 0.758 0.645 0.600 0.714

31 0.454 0.793 0.876 0.501 0.750 0.848 0.599 0.675 0.781

32 0.366 0.851 0.918 0.397 0.844 0.918 0.559 0.750 0.839

Figure A.1. SEAL - ISELTA Dataset – Training – Iteration.1

Figure A.2. SEAL - ISELTA Dataset – Validation – Iteration.1

70

Figure A.3. SEAL - ISELTA Dataset – Test – Iteration.1

Table A.2. SEAL-ESG Bank Account Dataset Iteration Best Results

It
er

a
ti

o
n

 SEAL-ESG – Bank Account Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.380 0.880 0.903 0.695 0.400 NaN 0.646 0.786 0.714

2 0.329 0.880 0.924 0.696 0.400 NaN 0.665 0.786 0.673

3 0.261 0.900 0.964 0.745 0.600 NaN 0.659 0.786 0.796

4 0.331 0.868 0.932 0.451 0.800 NaN 0.617 0.786 0.755

5 0.457 0.820 0.896 0.686 0.400 NaN 0.658 0.643 0.673

6 0.387 0.860 0.907 0.687 0.400 NaN 0.660 0.786 0.694

7 0.317 0.880 0.932 0.711 0.400 NaN 0.654 0.786 0.776

8 0.363 0.887 0.921 0.734 0.400 NaN 0.630 0.786 0.694

9 0.644 0.780 0.844 0.678 NaN NaN 0.675 0.643 0.694

10 0.609 0.780 0.810 0.679 NaN NaN 0.663 0.643 0.673

11 0.473 0.840 0.916 0.683 0.600 NaN 0.657 0.643 0.714

12 0.427 0.849 0.876 0.701 0.400 NaN 0.646 0.786 0.714

13 0.400 0.880 0.920 0.616 0.600 NaN 0.702 0.500 0.449

14 0.371 0.880 0.925 0.519 0.800 NaN 0.702 0.500 0.510

15 0.261 0.900 0.968 0.465 0.600 NaN 0.720 0.500 0.592

16 0.471 0.811 0.874 0.330 0.800 NaN 0.601 0.714 0.735

17 0.476 0.820 0.885 0.653 0.600 NaN 0.701 0.571 0.388

(cont. on next page)

71

Table A.2. (cont.)

18 0.438 0.860 0.883 0.605 0.600 NaN 0.699 0.571 0.449

19 0.343 0.880 0.942 0.533 0.600 NaN 0.710 0.500 0.490

20 0.263 0.906 0.961 0.362 NaN NaN 0.706 0.571 0.490

21 0.609 0.740 0.825 0.728 0.000 NaN 0.700 0.500 0.367

22 0.589 0.860 0.844 0.724 0.400 NaN 0.700 0.571 0.408

23 0.537 0.820 0.839 0.718 0.600 NaN 0.703 0.571 0.408

24 0.458 0.849 0.864 0.534 0.600 NaN 0.703 0.500 0.429

25 0.555 0.820 0.846 0.671 0.600 NaN 0.694 0.571 0.449

26 0.481 0.820 0.862 0.623 0.800 NaN 0.695 0.571 0.449

27 0.393 0.860 0.899 0.532 0.800 NaN 0.699 0.500 0.469

28 0.427 0.830 0.901 0.418 0.800 NaN 0.695 0.500 0.551

29 0.643 0.680 0.812 0.722 0.000 NaN 0.695 0.500 0.510

30 0.630 0.800 0.838 0.722 0.000 NaN 0.695 0.571 0.469

31 0.586 0.760 0.828 0.729 0.400 NaN 0.696 0.571 0.408

32 0.494 0.811 0.864 0.586 0.800 NaN 0.695 0.500 0.449

Figure A.4. SEAL – Bank Account Dataset – Training – Iteration.2

72

Figure A.5. SEAL – Bank Account Dataset – Validation – Iteration.2

Figure A.6. SEAL – Bank Account Dataset – Test – Iteration.2

73

Table A.3. SEAL-ESG Email Dataset Iteration Best Results

It
er

a
ti

o
n

 SEAL-ESG – Email Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.454 0.825 0.877 0.326 NaN NaN 0.588 0.600 0.880

2 0.400 0.920 0.936 0.371 NaN NaN 0.573 0.900 0.800

3 0.150 0.975 0.997 0.074 NaN NaN 0.454 0.700 0.880

4 0.085 0.977 NaN 0.085 NaN NaN 0.378 0.900 0.920

5 0.588 0.775 0.827 0.541 0.750 NaN 0.659 0.600 0.880

6 0.560 0.840 0.929 0.565 0.750 NaN 0.631 0.700 0.800

7 0.369 0.900 0.947 0.270 NaN NaN 0.608 0.700 0.800

8 0.146 0.955 0.998 0.022 NaN NaN 0.470 0.700 0.920

9 0.676 0.725 0.764 0.674 0.500 NaN 0.682 0.600 0.880

10 0.668 0.720 0.865 0.671 0.500 NaN 0.678 0.600 0.840

11 0.658 0.750 0.835 0.647 0.750 NaN 0.675 0.600 0.800

12 0.523 0.795 0.835 0.391 NaN NaN 0.638 0.600 0.800

13 0.627 0.775 0.754 0.690 0.750 0.750 0.679 0.700 0.600

14 0.617 0.760 0.821 0.673 0.750 0.750 0.675 0.700 0.600

15 0.468 0.875 0.880 0.371 0.750 NaN 0.666 0.700 0.640

16 0.487 0.818 0.837 0.559 0.750 NaN 0.599 0.700 0.920

17 0.650 0.750 0.777 0.688 0.750 0.750 0.683 0.700 0.600

18 0.652 0.840 0.885 0.680 0.750 0.750 0.690 0.700 0.560

19 0.599 0.800 0.815 0.650 0.750 0.750 0.666 0.700 0.800

20 0.428 0.818 0.888 0.522 0.750 NaN 0.678 0.700 0.800

21 0.674 0.675 0.719 0.693 0.500 0.500 0.693 0.500 0.640

22 0.664 0.720 0.827 0.691 0.500 0.500 0.695 0.500 0.640

23 0.675 0.725 0.764 0.691 0.750 0.750 0.688 0.600 0.680

24 0.595 0.705 0.806 0.689 0.750 0.750 0.689 0.500 0.760

25 0.661 0.725 0.749 0.690 0.750 0.750 0.684 0.700 0.840

26 0.648 0.760 0.821 0.689 0.750 0.750 0.689 0.700 0.760

27 0.622 0.700 0.782 0.621 0.750 0.750 0.689 0.700 0.760

28 0.606 0.773 0.769 0.657 0.750 0.750 0.635 0.700 0.840

29 0.673 0.675 0.682 0.689 0.750 0.750 0.692 0.700 0.600

30 0.665 0.720 0.827 0.689 0.750 0.500 0.693 0.700 0.560

31 0.671 0.675 0.704 0.689 0.750 0.750 0.691 0.700 0.600

32 0.630 0.750 0.754 0.689 0.750 0.750 0.688 0.600 0.880

74

Figure A.7. SEAL – Email Dataset – Training – Iteration.2

Figure A.8. SEAL – Email Dataset – Validation – Iteration.2

Figure A.9. SEAL – Email Dataset – Test – Iteration.2

75

Table A.4. SEAL-ESG Student Attendance Dataset Iteration Best Results

It
er

a
ti

o
n

 SEAL-ESG – Student Attendance Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.451 0.800 0.875 0.564 0.667 0.844 0.680 0.656 0.709

2 0.467 0.840 0.862 0.721 0.667 0.500 0.613 0.719 0.740

3 0.241 0.909 0.968 0.473 0.833 0.906 0.674 0.719 0.764

4 0.319 0.862 0.935 0.416 0.917 0.906 0.665 0.719 0.803

5 0.553 0.720 0.788 0.719 0.583 0.719 0.676 0.688 0.689

6 0.563 0.720 0.779 0.708 0.583 0.625 0.683 0.625 0.824

7 0.508 0.764 0.830 0.702 0.583 0.813 0.684 0.688 0.773

8 0.321 0.879 0.937 0.408 1.000 1.000 0.682 0.688 0.826

9 0.660 0.600 0.747 0.721 0.333 0.563 0.687 0.563 0.686

10 0.644 0.670 0.761 0.721 0.417 0.594 0.683 0.656 0.697

11 0.573 0.736 0.790 0.716 0.667 0.563 0.661 0.750 0.732

12 0.510 0.776 0.849 0.537 0.750 0.813 0.652 0.656 0.717

13 0.261 0.910 0.968 0.498 0.833 0.875 0.689 0.656 0.658

14 0.119 0.970 0.996 0.507 0.833 0.844 0.691 0.688 0.695

15 0.174 0.936 0.985 0.389 0.833 0.938 0.690 0.719 0.734

16 0.382 0.836 0.913 0.605 0.833 0.906 0.689 0.594 0.623

17 0.519 0.770 0.847 0.520 0.750 0.781 0.687 0.656 0.660

18 0.404 0.830 0.901 0.558 0.833 0.750 0.687 0.594 0.682

19 0.155 0.955 0.993 0.289 0.917 1.000 0.689 0.719 0.715

20 0.110 0.966 0.991 0.371 0.917 0.938 0.660 0.719 0.709

21 0.645 0.680 0.739 0.683 0.583 0.719 0.693 0.531 0.605

22 0.625 0.690 0.770 0.665 0.667 0.688 0.692 0.500 0.607

23 0.600 0.691 0.770 0.603 0.750 0.750 0.690 0.563 0.639

24 0.350 0.853 0.934 0.545 0.833 0.781 0.691 0.656 0.684

25 0.567 0.720 0.800 0.613 0.667 0.719 0.684 0.594 0.645

26 0.456 0.820 0.882 0.621 0.833 0.719 0.691 0.594 0.619

27 0.257 0.909 0.969 0.388 0.917 0.938 0.650 0.688 0.725

28 0.289 0.888 0.950 0.456 0.833 0.844 0.653 0.688 0.740

29 0.649 0.680 0.729 0.705 0.500 0.750 0.694 0.500 0.588

30 0.649 0.690 0.718 0.686 0.500 0.750 0.692 0.500 0.602

31 0.616 0.700 0.759 0.664 0.583 0.781 0.692 0.531 0.576

32 0.379 0.836 0.924 0.593 0.833 0.750 0.692 0.625 0.672

76

Figure A.10. SEAL – Student Attendance Dataset – Training – Iteration.2

Figure A.11. SEAL – Student Attendance Dataset – Validation – Iteration.2

Figure A.12. SEAL – Student Attendance Dataset – Test – Iteration.2

77

APPENDIX B

DEEPLINKER – ESG DATASET RESULTS

Table B.1. DeepLinker-ESG ISELTA Dataset Iteration Best Results

It
er

a
ti

o
n

 DeepLinker-ESG – ISELTA Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.690 0.553 NaN 0.683 0.750 NaN 0.689 0.563 0.590

2 0.693 0.502 NaN 0.693 0.500 NaN 0.694 0.479 0.526

3 0.692 0.542 NaN 0.683 0.625 NaN 0.691 0.604 0.642

4 5.274 0.539 NaN 0.655 0.625 NaN 0.763 0.547 0.500

5 0.692 0.547 NaN 0.674 0.813 NaN 0.694 0.469 0.605

6 2.767 0.561 NaN 0.699 0.500 NaN 0.899 0.547 0.548

7 0.691 0.530 NaN 0.615 0.938 NaN 0.691 0.656 0.705

8 0.693 0.552 NaN 0.652 0.875 NaN 0.688 0.594 0.587

9 0.693 0.547 NaN 0.691 0.563 NaN 0.683 0.688 0.653

10 0.693 0.517 NaN 0.686 0.688 NaN 0.693 0.557 0.603

11 0.691 0.531 NaN 0.616 0.500 NaN 0.702 0.526 0.585

12 0.612 0.642 NaN 0.577 0.750 NaN 0.626 0.708 0.684

13 0.691 0.555 NaN 0.686 0.594 NaN 0.693 0.599 0.559

14 0.679 0.613 NaN 0.921 0.406 NaN 0.851 0.547 0.456

15 0.692 0.538 NaN 0.689 0.625 NaN 0.690 0.682 0.646

16 0.652 0.641 NaN 0.664 0.781 NaN 0.622 0.729 0.777

17 0.691 0.534 NaN 0.667 0.594 NaN 0.695 0.516 0.587

18 0.691 0.553 NaN 0.678 0.594 NaN 0.692 0.578 0.627

19 0.674 0.567 NaN 0.689 0.719 NaN 0.645 0.708 0.761

20 0.747 0.563 NaN 0.623 0.750 NaN 0.687 0.656 0.653

21 0.519 0.000 NaN 0.531 0.000 NaN 0.479 0.535 0.519

22 0.692 0.536 NaN 0.676 0.688 NaN 0.694 0.604 0.599

23 0.637 0.617 NaN 0.571 0.813 NaN 0.633 0.703 0.732

24 0.707 0.545 NaN 0.654 0.625 NaN 0.695 0.578 0.665

78

Figure B.1. DeepLinker - ISELTA Dataset – Training – Iteration.8

Figure B.2. DeepLinker - ISELTA Dataset – Validation – Iteration.8

79

Figure B.3. DeepLinker - ISELTA Dataset – Test – Iteration.8

Table B.2. DeepLinker-ESG Bank Account Dataset Iteration Best Results

It
er

a
ti

o
n

 DeepLinker-ESG – Bank Account Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.668 0.607 NaN 0.671 0.667 NaN 0.689 0.688 0.672

2 0.647 0.652 NaN 0.663 0.500 NaN 0.676 0.656 0.578

3 0.578 0.714 NaN 0.566 0.833 NaN 0.695 0.656 0.594

4 0.678 0.616 NaN 0.684 0.667 NaN 0.688 0.781 0.766

5 0.676 0.554 NaN 0.692 0.500 NaN 0.693 0.500 0.660

6 0.679 0.589 NaN 0.596 0.667 NaN 0.695 0.531 0.551

7 0.667 0.616 NaN 0.686 0.667 NaN 0.693 0.781 0.738

8 0.675 0.643 NaN 0.671 0.667 NaN 0.681 0.781 0.703

9 0.685 0.563 NaN 0.683 0.833 NaN 0.688 0.516 0.695

10 0.666 0.589 NaN 0.684 0.833 NaN 0.685 0.594 0.641

11 0.605 0.696 NaN 0.693 0.667 NaN 0.692 0.656 0.648

12 N/A N/A N/A N/A N/A N/A N/A N/A N/A

13 0.720 0.555 NaN 0.627 0.833 NaN 0.696 0.500 0.715

14 0.684 0.563 NaN 0.728 0.500 NaN 0.676 0.500 0.600

15 0.956 0.719 NaN 1.030 0.667 NaN 1.606 0.641 0.637

16 2.543 0.617 NaN 0.693 0.500 NaN 0.696 0.563 0.586

17 0.771 0.594 NaN 0.660 0.500 NaN 0.647 0.625 0.678

(cont. on next page)

80

Table B.2. (cont.)

18 0.652 0.547 NaN 0.623 0.500 NaN 0.693 0.500 0.602

19 0.647 0.633 NaN 0.627 0.833 NaN 0.721 0.656 0.570

20 0.685 0.617 NaN 0.691 0.833 NaN 0.685 0.719 0.633

21 0.669 0.633 NaN 0.683 0.667 NaN 0.691 0.500 0.687

22 0.679 0.602 NaN 0.670 0.833 NaN 0.692 0.594 0.531

23 0.594 0.680 NaN 0.694 0.667 NaN 0.677 0.750 0.652

24 0.680 0.594 NaN 0.696 0.833 NaN 0.690 0.750 0.682

Figure B.4. DeepLinker – Bank Account Dataset – Training – Iteration.8

Figure B.5. DeepLinker – Bank Account Dataset – Validation – Iteration.8

81

Figure B.6. DeepLinker – Bank Account Dataset – Test – Iteration.8

Table B.3. DeepLinker-ESG Student Attendance Dataset Iteration Best Results

It
er

a
ti

o
n

 DeepLinker-ESG – Student Attendance Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.702 0.563 0.000 0.627 0.714 0.000 0.662 0.521 0.685

2 0.685 0.518 0.000 0.650 0.714 0.000 0.676 0.521 0.659

3 0.688 0.585 0.000 0.562 0.714 0.000 0.691 0.635 0.670

4 0.688 0.581 0.000 0.659 0.643 0.000 0.694 0.531 0.711

5 0.883 0.577 0.000 0.590 0.786 0.000 0.686 0.552 0.667

6 0.689 0.540 0.000 0.684 0.571 0.000 0.691 0.552 0.524

7 0.689 0.551 0.000 0.686 0.714 0.000 0.690 0.479 0.703

8 0.684 0.574 0.000 0.646 0.571 0.000 0.683 0.625 0.625

9 0.690 0.526 0.000 0.685 0.571 0.000 0.692 0.563 0.568

10 0.683 0.540 0.000 0.681 0.571 0.000 0.673 0.646 0.708

11 0.686 0.559 0.000 0.706 0.571 0.000 0.688 0.542 0.634

12 0.681 0.559 0.000 0.679 0.714 0.000 0.686 0.583 0.607

13 0.689 0.573 0.000 0.665 0.714 0.000 0.681 0.573 0.688

14 0.693 0.566 0.000 0.666 0.786 0.000 0.684 0.646 0.664

15 0.681 0.566 0.000 0.619 0.571 0.000 0.667 0.656 0.664

16 0.681 0.576 0.000 0.677 0.643 0.000 0.693 0.615 0.582

17 0.691 0.528 0.000 0.672 0.714 0.000 0.685 0.583 0.758

(cont. on next page)

82

Table B.3. (cont.)

18 4.665 0.545 0.000 0.653 0.571 0.000 0.775 0.479 0.539

19 0.694 0.573 0.000 0.659 0.643 0.000 0.703 0.594 0.495

20 0.670 0.573 0.000 0.591 0.571 0.000 0.684 0.583 0.640

21 0.685 0.569 0.000 0.691 0.643 0.000 0.662 0.646 0.638

22 0.688 0.535 0.000 0.687 0.643 0.000 0.693 0.531 0.531

23 0.686 0.573 0.000 0.623 0.714 0.000 0.696 0.573 0.533

24 1.443 0.601 0.000 0.698 0.571 0.000 0.690 0.594 0.627

Figure B.7. DeepLinker – Student Attendance Dataset – Training – Iteration.8

Figure B.8. DeepLinker – Student Attendance Dataset – Validation – Iteration.8

83

Figure B.9. DeepLinker – Student Attendance Dataset – Test – Iteration.8

Table B.4. DeepLinker-ESG Email Dataset Iteration Best Results

It
er

a
ti

o
n

 DeepLinker-ESG – Email Dataset

Training Validation Test

loss acc auc loss acc auc loss acc auc

1 0.662 0.635 0.000 0.671 0.600 0.000 0.682 0.571 0.699

2 0.681 0.521 0.000 0.655 0.600 0.000 0.653 0.500 0.561

3 0.642 0.646 0.000 0.620 1.000 0.000 0.676 0.714 0.643

4 0.645 0.625 0.000 0.535 0.600 0.000 0.673 0.500 0.694

5 0.666 0.615 0.000 0.694 0.600 0.000 0.697 0.464 0.316

6 0.671 0.594 0.000 0.538 0.600 0.000 0.690 0.571 0.717

7 0.687 0.604 0.000 0.656 1.000 0.000 0.681 0.679 0.633

8 0.676 0.594 0.000 0.668 1.000 0.000 0.687 0.607 0.577

9 0.649 0.615 0.000 0.681 0.600 0.000 0.683 0.643 0.781

10 0.667 0.583 0.000 0.525 0.800 0.000 0.669 0.500 0.531

11 0.654 0.604 0.000 0.672 0.600 0.000 0.681 0.679 0.704

12 0.673 0.594 0.000 0.610 0.800 0.000 0.705 0.643 0.546

13 0.683 0.625 0.000 0.692 0.600 0.000 0.688 0.571 0.500

14 6.214 0.604 0.000 1.663 0.600 0.000 1.803 0.500 0.500

15 0.678 0.573 0.000 0.644 0.800 0.000 0.674 0.607 0.668

16 0.677 0.573 0.000 0.596 0.800 0.000 0.629 0.821 0.883

(cont. on next page)

84

Table B.4. (cont.)

17 0.687 0.552 0.000 0.687 0.600 0.000 0.692 0.571 0.592

18 0.673 0.552 0.000 0.676 0.600 0.000 0.693 0.571 0.541

19 0.673 0.583 0.000 0.669 0.800 0.000 0.693 0.714 0.612

20 0.673 0.604 0.000 0.678 1.000 0.000 0.691 0.750 0.684

21 0.690 0.594 0.000 0.692 0.800 0.000 0.680 0.607 0.546

22 0.663 0.594 0.000 0.605 0.600 0.000 0.683 0.607 0.556

23 0.674 0.567 0.000 0.689 0.719 0.000 0.645 0.708 0.761

24 0.747 0.563 0.000 0.623 0.750 0.000 0.687 0.656 0.653

Figure B.10. DeepLinker - Email Dataset – Training – Iteration.8

Figure B.11. DeepLinker - Email Dataset – Validation – Iteration.8

85

Figure B.12. DeepLinker - Email Dataset – Test – Iteration.8

