APPLICATION OF GRAPH NEURAL NETWORKS
ON SOFTWARE MODELING

A Thesis Submitted to
the Graduate School of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Onur Yusuf LEBLEBICI

ACKNOWLEDGEMENTS

First, I would like to thank my supervisors, Assoc. Prof. Dr. Tugkan Tuglular and
Prof. Dr. Fevzi Belli, who advised, motivated and shared their experiences with me. Their
guidance helped me in all the time of research and writing of this thesis.

I am grateful to my sister-in-law Assoc. Prof. Dr. Gonca Ozgelik Kayseri for her
support.

Finally, I would like to thank my wife Sinem Leblebici for her unconditional and
constant support in this process, and my dear daughters Bade and Oykii, whom I deprived
of the time we spent together in that period, for their patience and support. This thesis is

dedicated to my beloved family

il

ABSTRACT

APPLICATION OF GRAPH NEURAL NETWORKS ON SOFTWARE
MODELING

Deficiencies and inconsistencies introduced during the modeling of software
systems can cause undesirable consequences that may result in high costs and negatively
affect the quality of all developments made using these models. Therefore, creating better
models will help the software engineers to build better software systems that meet
expectations. One of the software modelling methods used for analysis of graphical user
interfaces is Event Sequence Graphs (ESG). The goal of this thesis is to propose a method
that predicts missing or forgotten links between events defined in an ESG via Graph
Neural Networks (GNN). A five-step process consisting of the following steps is
proposed: (i) data collection from ESG model, (ii) dataset transformation, (iii) GNN
model training, (iv) validation of trained model and (v) testing the model on unseen data.
Three performance metrics, namely cross entropy loss, area under curve and accuracy,
were used to measure the performance of the GNN models. Examining the results of the
experiments performed on different datasets and different variations of GNN, shows that
even with relatively small datasets prepared from ESG models, predicts missing or

forgotten links between events defined in an ESG can be achieved.

il

OZET

GRAFIK YAPAY SINIiR AGLARININ YAZILIM MODELLEMESINE
UYGULANMASI

Yazilim sistemlerinin modellemeleri sirasinda yapilan eksiklikler ve olusan
tutarsizliklar, bu modeller kullanilarak yapilan tiim gelistirmelerde de yiiksek maliyetlerle
sonuc¢lanan istenmeyen sonuglara sebep olabilmektedir. Yazilim modellemesi sirasinda
yazilim miihendislerine verilebilecek oneriler ile daha iyi modeller olusturulabilir ve bu
sayede kullanic1 beklentilerini daha iyi karsilayan sistemler olusturulabilir. Yazilim
modellemede kullanilan yontemlerden bir taneside, grafik kullanici arayiizlerinin
analizinde kullanilan olay akis grafikleridir. Bu tezin hedefi olay akis grafikleri lizerinde
yer alan bilesenler arasinda unutulmus veya eksik baglantilar1 grafik yapay sinir aglari
kullanarak tahminleyecek bir yontem dndermektir. Bu yontem bes basamaktan olusan bir
stirecten olugmaktadir: (i) veri toplama, (i1) grafik yapay sinir ag§ modelini egitmek, (iii)
egitilen modeli dogrulamak ve (v) modeli daha 6nce gormedigi veriler ile test etmek.
Egitilen grafik yapay sinir ag modellerinin performansin1 6lgmek icin ¢apras entropi
kaybu, egri altinda kalan alan ve dogruluk performans metrikleri kullanilmigtir. Farkli veri
kiimeleri ve farkli grafik yapay sinir ag1 varyasyonlari ile yapilan deneylerin incelenmesi
sonucunda, nispeten kiiclik Olcekli veri kiimelerinde dahi basar1 elde edilebildigi

gozlemlenmistir.

v

TABLE OF CONTENTS

LIST OF FIGURES ..ottt sttt et vii
LIST OF TABLES ...ttt sttt ettt sttt et X
CHAPTER 1 INTRODUCTIONccoiiiiiiieieeieneeieetese ettt eae s enne e 1
CHAPTER 2 FUNDAMENTALS......ootiteteeieeee ettt 4
2.1 NEUTal NEIWOTKScocuviiiiiiieeiie ettt e tae et e e svaeessaee e areeesnreeenns 4
2.2. Neural Network MOdelS.......ccuieiuiiiiiiiiieiieiie ettt ettt 5
2.3. Neural Network Hyper Parameters..........cccecveeiienieeciieniecieeieeieeeee e 6
2.4. Metrics to Evaluate Neural Networks...........ccoecveviiiiiiinieiiiiiecccee e 7
T €121 o) 1 T I o T PSPPSR 11
2.6. Graph KEeINeISeiiiiiiiiiiieciie ettt eaae e s be e e b e e enseeees 15
CHAPTER 3 RELATED WORKS......ccoioiiiieiesiee ettt 17
3.1. Graph Neural NetWOrKScccceceriiriiiiniiieiiencseect e 17
3.2. Graph Convolutional NetWorkscccceeieriiiiiiiiniiiiiieceeeeeee e 20
3.3. Graph Attention NetWorksS........coeviiiiiiiiiiiieieeeeee e 23
3.4. Edge and Node Classification on Graphscccoeeeeriierieniienienieenieeie e 25
3.5. LANK PrediCtioncccveiiiiieiiiee ettt ettt e e e e e e e 26
CHAPTER 4 PROPOSED METHOD........ccooiiiiiiiiieciieeeee ettt 29
4.1 Data CollECtION. ...couuiiiiiiiieiie ettt e 32
4.2 Data Transformationcc.cueoiieiiiiiienie ettt 32
4.3 Training MOdel........cooiiiiiiiiiieiecie e 39
4.3.1 SEAL FramewWorKcccuieiiiiiiiiiieeiieiie ettt ettt et e s e 39

4.3.2. DEEPLINKET ...eeeviiiiiieiiieiii ettt ettt et e b taeebeenaaaens 42

CHAPTER 5 EVAIUATION ...t e e e e e e e e e e e e e e e aeaaeaeaes 45
I B 254 153 5 138155 LSRR 45
S R ESUILS et a e ————— 51
5.3 DIISCUSSION vt e et e e e e e et eaaa e aaaeeeeeeeenaaaaaens 54
5.4. Threats to Validifycoeeeiiieiieiiieiieeie ettt 62

CHAPTER 6 CONCLUSION AND FUTURE WORK ...ccooiiiiiiiiii 63

REF E R EN CES ..o 64

APPENDICES

APPENDIX A SEAL — ESG DATASET RESULTS ..ottt 68

APPENDIX B DEEPLINKER — ESG DATASET RESULTS ...ooveeieiiieeeeeeeeeeeeeeeeeeeeee 77

Vi

LIST OF FIGURES

Figure Page
Figure 2.1 ROC CUIVEoiiiiiiiiieiieieseetee ettt sttt et st 9
Figure 2.2 Area Under CUrve (AUC)ccviieeiieeiie ettt evee e evee e e 10
Figure 2.3 The structure of homogeneous graphs.........ccccceeeevieecieeeciieeiieecee e 12
Figure 2.4 The structure of heterogeneous graphs..........cccceeeeeeieeiiienieeneenieeieesre e 12
Figure 2.5 The structure of dynamic graph..........cccoeeveeviieriieiiieniieiienieeeeeee e 13
Figure 2.6 The structure of edge/vertex labeled graphcccoeiiiiiiiiiiiiniiiiies 13
Figure 2.7 The structure of multigraph..........cccooouieiiiiiiiiiiiiieee e 14
Figure 2.8 The structure of directed graphcccevvieviieiiiiiiiiiniieicieeecee e 14
Figure 2.9 The structure of undirected graphcccecveriiiiiiniiieiieieeeeeee e, 15
Figure 3.1 Variants Of Graph Neural Networks........cccocevvieviniininiiniiniiiceeeen 18
Figure 3.2 GNN Localized Functions [22]ccceeiieiiiiiiienieeiieeie e 19
Figure 3.3 Message Passing........cccviieiiiiiiiieeiie ettt 20
Figure 3.4 Convolutional Neural Network [15].......ccooivieiieiiiiieieecieeeeeee e 21
Figure 3.5 2D-Convolution. Subsampling over 3x3 filter on 4x4 datacocceuneee. 21
Figure 3.6 Graph Convolution. 1 hop filter applied on vertex 1 and 8..........c.ccoeeuneee. 22
Figure 3.7 Single Attention Layer [33].....cccooiiiiiiiiieeeee e 24
Figure 3.8 Difference of GCN and GATcoiiiiiiiiiiiiiiieeeeeee e 25
Figure 3.9 Architecture of SEAL Framework [12]......cccoooiiriiiiiiiiiiieiiiceeceees 27
Figure 3.10 Schema showing how the steps of WLNM work [11]....cccccoceeviniininnennn. 28
Figure 4.1 A GUI EXamMPIe [45] cuveeeoiiieeiie ettt e 30
Figure 4.2 ESG model of the GUI [45] ...evviiiiieeeeeeeeeeeeeeeeee e 30
Figure 4.3 Process Used 1n this Thesiscoouiiiiiiiiiiiiiiieieeieiceeeee e 31
Figure 4.4 Node EMbedding........c.c.coiiviiiiiiiniiienieecieeeeesee e 33
Figure 4.5 Sample Node Embedding Vectors. Annotations a: Is Required, b: Has Min-

Max Value c: Has Min-Max Length d: Has Condition or RegeX.......cc.ccceveeviiiiiennens 35
Figure 4.6 Sample Application of Node Embedding Vectors for nodes of an ESG....... 35
Figure 4.7 Content of @ MXe fleccceeviiiiiiiiiiiiiee e 37
Figure 4.8 MXE ParSeI.......couiiuiiiiiiieiiieieeieeee ettt st 38
Figure 4.9 Flatten Graph Generator.........c.eeeueeeiieeeiiieesieeecieeeireeeeeeeree e eveeeeveeeeevee s 38
Figure 4.10 Architecture of DGCNN [27]..cccuiiiiiiiieiieeciee ettt e 39

vii

file://///Users/onurleblebici/Google%20Drive/IYTE%20Yüksek%20Lisans/Tez3/Thesis-20201116.docx%23_Toc56443501

Figure Page
Figure 4.11 Details of the CNN configuration used in DGCNN...................coaee. 40
Figure 4.12 Single Attention Mechanism between two nodes is shown in left, and the

Multiple Head Attention Mechanism between a node an its neighbors is shown in right.

L33 ettt ettt sttt e b ettt aene s 43
Figure 4.13 Architecture of DeepLinker [42]cccveviieiierieeiierieeieeree e 43
Figure 5.1 Bank Account-Base Product (A Sample ESG)cccovveiieiiiiciieceee. 50
Figure 5.2 Generated Output Files of Sample Bank Account-Base Product.................. 50
Figure 5.3 SEAL Performance Effects of Parameter Changes On Each Iteration 56
Figure 5.4 DeepLinker Performance Effects of Parameter Changes On Each Iteration 58
Figure 5.5 SEAL — Dataset size Performance Effect..........cccccoceviiiiniiniinininineenne. 59
Figure 5.6 Original Specials ESG.......cccooiiiiiiiiiiiiiiiicieccecccce e 59
Figure 5.7 Specials ESG “edit Special” Node Qualitative Link Predictions.................. 59
Figure 5.8 Specials ESG “delete Special” Node Qualitative Link Predictions. 59
Figure A.1 SEAL - ISELTA Dataset — Training — Iteration.1............cccccoceevinicnenncnnne. 69
Figure A.2 SEAL - ISELTA Dataset — Validation — Iteration.l.........c..ccoceeveriencenenne. 69
Figure A.3 SEAL - ISELTA Dataset — Test — Iteration.1........ccccccooeiiiiiiiiniiininncnnen. 70
Figure A.4 SEAL — Bank Account Dataset — Training — Iteration.2.........cc.ccccceevnenen. 71
Figure A.5 SEAL — Bank Account Dataset — Validation — Iteration.2..........c...cccceeeeee. 72
Figure A.6 SEAL — Bank Account Dataset — Test — Iteration.2.........cc.ccoceevvervencennennne. 72
Figure A.7 SEAL — Email Dataset — Training — [teration.2cccccoocverieinienicnnncnnen. 74
Figure A.8 SEAL — Email Dataset — Validation — [teration.2cc.cccoceenienicenncnnen. 74
Figure A.9 SEAL — Email Dataset — Test — [teration.2cccceceveeveeienienenieneeneenne. 74
Figure A.10 SEAL — Student Attendance Dataset — Training — Iteration.2 76
Figure A.11 SEAL — Student Attendance Dataset — Validation — Iteration.2 76
Figure A.12 SEAL — Student Attendance Dataset — Test — Iteration.2ccceeueees 76
Figure B.1 DeepLinker - ISELTA Dataset — Training — Iteration.8.............cccccceveennns 78
Figure B.2 DeepLinker - ISELTA Dataset — Validation — Iteration.8...........cccccoceeneeee. 78
Figure B.3 DeepLinker - ISELTA Dataset — Test — [teration.8..........ccccceceeverieneennenne. 79
Figure B.4 DeepLinker — Bank Account Dataset — Training — Iteration.§..................... 80
Figure B.5 DeepLinker — Bank Account Dataset — Validation — Iteration.S§.................. 80
Figure B.6 DeepLinker — Bank Account Dataset — Test — Iteration.§..........cccccoeenenee. 81
Figure B.7 DeepLinker — Student Attendance Dataset — Training — Iteration.§ 82
Figure B.8 DeepLinker — Student Attendance Dataset — Validation — Iteration.§ 82

Figure Page

Figure B.9 DeepLinker — Student Attendance Dataset — Test — Iteration.§ 83
Figure B.10 DeepLinker - Email Dataset — Training — Iteration.8ccccceeerveeennenn. 84
Figure B.11 DeepLinker - Email Dataset — Validation — Iteration.8............cccccccvveennnee. 84
Figure B.12 DeepLinker - Email Dataset — Test — [teration.§............cccevveveriiencenenne. 85

X

LIST OF TABLES

Table Page
Table 2.1. A Sample Confusion MatTiXcceeerieeeiiieeiiieeieeeeieeeieeeereeeereeesveeesree e 7
Table 2.2. GIaph TYPES...c.uveieiiieeiie et eetee ettt rte e e e et e e e tae e ssbaeesaseeeeaseeenseens 11
Table 4.1. Arguments of the SEAL-ESG Frameworkc.ccceeviiiiieniiienienieeiieeins 40
Table 4.2. Parameters of DEEPLINKETccccevuiiiiieiiiiiieiieeieeieecie et 44
Table 5.1. Computer Hardware Specificationscccueevueeriieiieniieniieniceieeeee e 45
Table 5.2. Required InStallationscccveeiiiieiiieeciie e e 45
Table 5.3. Required Python Libraries..........ccocveevieiieiiieriieeieeieeeieeieeeee e 46
Table 5.4. Required Git RePOSIIOTICS.ecvvieiiieiieeiieiieeieeeieeiee et eieeeveereesereeseeseneens 46
Table 5.5. NOAE FEAtUIESooiuiiiiiiiieiieeie ettt ettt 47
Table 5.6. Node Name to Node Feature Mappingsccceeeueeiueenieiniieniieenienieeieeneens 47
Table 5.7. Node Feature Distribution of Datasetccoeceeverienienieiienienieniesceennen 48
Table 5.8. Arguments Of MXE PAISET......cccuveeriieeriieeiieeeiieeeiteeeitreeeieeesseeesreeesseeennseens 48
Table 5.9. Graph Data Details of Dataset Modelsccooerviriininiiniiniiiiicneceee, 49
Table 5.10. Parameters used on EXperimentsccoceevieeiienienieiiiiesieeicesee e 51

Table 5.11. SEAL Parameters on Each Iteration (* batch-size 40 is for email dataset). 52

Table 5.12. DeepLinker Parameters on Each Iteration............ccccceveviiencieeniieeniieee. 53
Table 5.13. SEAL Best Performed Iteration Resultscccooceeriiiiiiniiieniiniiciees 54
Table 5:14. DeepLinker Best Performed Iteration Results..........c.ccccceeiiniiiiniinenennne. 54
Table 5.15. Link Predictions Made by the Trained Model............ccccoveviieniieeniieennnn. 62
Table A.1. SEAL-ESG ISELTA Dataset Iteration Best Resultscccccceoeeniiniinnicns 68
Table A.2. SEAL-ESG Bank Account Dataset Iteration Best Resultsc.ccccceeneee. 70
Table A.3. SEAL-ESG Email Dataset Iteration Best Results.........ccccocevieviniinienenne. 73
Table A.4. SEAL-ESG Student Attendance Dataset Iteration Best Results................... 75
Table B.1. DeepLinker-ESG ISELTA Dataset Iteration Best Resultscc.cccccceeneies 77
Table B.2. DeepLinker-ESG Bank Account Dataset Iteration Best Results 79
Table B.3. DeepLinker-ESG Student Attendance Dataset Iteration Best Results.......... 81
Table B.4. DeepLinker-ESG Email Dataset Iteration Best Results........c..cccccveveveenennne. 83

CHAPTER 1
INTRODUCTION

Software applications are generally sophisticated. Those systems may require
many sub-systems and components in it. In order to design a software system, details of
the system are required to be understood at varying levels. Typical software modeling
approaches may not be able to reduce this complexity for engineers. Predicting and giving
recommendations on the connections between software components such as classes,
events, Ul elements, user interactions etc. has great importance in modelling. From the
software engineering perspective, deciding and connecting components with each other
require significant effort. It is also error prone. Instead of putting all the workload on the
software engineer, providing some recommendation can help engineers with modeling
the composition and interaction of components in a software system. There are many
different models and tools used in software modeling. Most of these models are graph-
based models and there is a well-established theory of graph transformations [1], which
has a number of system modelling and software engineering applications. The graph-
based modeling technique taken under consideration in this thesis is Event Sequence
Graphs (ESGs) [2].

GUIs can be modeled as sequences of events of the objects defined in GUI. The
operations on components of the GUI, such as buttons, lists, and checkboxes, are
controlled and/or observed by input/output devices. Thus, an event can be a user input or
a system response; both of them are elements of event set V and lead to a sequence of
user inputs and expected desirable system outputs. An ESG is a tuple (V, E, E, I'), where
V # @ is a finite set of nodes (vertices or events) and E €V XV is a finite set of arcs
(edges), and =, I € V finite sets of distinguished vertices with £ € &, y € T', called entry
nodes (start events) and exit nodes (finish events), respectively [2]. The semantics of an
ESG is as follows. Any v € V represents an event. For two events vi, v € V, the event v
must be enabled after the execution of v if and only if (vi, v2) € E [3]. ESG is chosen in
this thesis as modeling technique because of its simple semantics.

There are many applications of graph-structured data, such as finding friends on
social network [4], [5], molecule interactions in medicine [6], highlighting the product
which a customer is interested in e-commerce [7], relation learning for knowledge graphs

[8], extrapolating paths [9], metabolic network reconstructions [10]. Graph-structured

data are different from linear-structured data. Graph-structured data cannot be given to
neural networks by traditional methods as in linear-structured data. The applications of
neural networks on graph-structured data, is getting attraction in recent years. In 2009,
Scarselli et al. proposed a method [11], which makes it possible to work neural networks
on graphs. After this proposal, the studies published in this field has come infrequent until
2016, and then the studies started to gain momentum again. With many researches, graph
classification, node classification, edge classification studies have been carried out using
different types of neural network architectures [12][13][14][15]. Some of the
architectures are as follows, recurrent neural network (RNN), convolutional neural
network (CNN), autoencoders (AE), attention mechanism.

Another important application of graph neural network is link prediction. Zhang
and Chen proposed a next generation approach for link prediction called Weisfeiler-
Lehman Neural Machine [16], which learns the patterns on graphs to predict links. That
was a game changing approach. They used fully connected neural network for learning
the link existence patterns on graphs. After that Zhang and Chen improved their method
and proposed deep graph convolutional neural network (DGCNN) for link prediction
[17]. They extracted local enclosing subgraphs for each vertex and applied DGCNN to
predict edges. Another approach is based on the representation of connections between
nodes is due to the relationship between the features of the nodes, these relationships can
be learned through graph neural networks (GNN). Gu et al. proposed a method [18] based
on that idea an used graph attention network [15] (GAT) as GNN variation.

One of the methods used for link prediction is heuristic methods. This method,
which is based on assumptions such as having common neighbors, can be used to suggest
friends in social networks, but does not show any success in predicting molecule
connections[6] or extrapolating paths [9]. ESGs are considered analogous to molecules,
where events are like atoms and their different combination means a new model.

In this thesis, an application of graph neural network (GNN), which predicts
missing or unnecessary links between events defined in an ESG, is introduced. For an
ESG, a link means a transition between two events. Experiments were performed on four
different datasets with two different GNN variations to predict links that have not been
seen before. The following steps were followed in the experiments: data collection, data
transformation, model training, validation of the trained model, and measurement of the

performance.

The motivation in this thesis is to help software engineers during system
modeling. With the developed approach, errors that may arise from models will be
prevented or reduced and quality will be increased. Since these models are used for
coding, testing and design in the software development processes later, and any
deficiencies and errors may occur in this process can cause very high costs. Modeling
quality directly affects the quality of the system.

The outline of the thesis is as follows. Chapter 2 provides fundamental
information about terms and terminologies used in this thesis. Chapter 3 gives an
overview of preliminary research on link prediction using GNN. Chapter 4 introduces
steps of the developed approach with, Chapter 5 presenting the evaluations over different
datasets and different GNN models using proposed approach. The last Chapter provides

conclusions and possible future works.

CHAPTER 2
FUNDAMENTALS

2.1. Neural Networks

Machine learning is used to find patterns in data represented by numbers. Neural
networks are models that learn the nonlinear relationship between input and output. The
basic methods used to train neural networks can be listed as follows.

Supervised learning: It is a learning method in which the expected output based
on the given input is predefined and these definitions are used to train the model. In other
words, this method is used to generate a function that produces desired outputs with
respect to the given inputs.

Unsupervised learning: This learning method tries to learn groups according to
the characteristics of the given data. There is no labeling process for data, only data. They
are used to solve problems such as clustering, dimensionality reduction.

Semi-Supervised learning: This learning method is used in cases where only a
certain amount of data is labeled in the existing data set. Labeled data used through the
supervised learning, while the un-labeled data used through the unsupervised learning.
The purpose here is to guess the labels of un-labeled data.

Reinforcement learning: The main purpose in this learning method is to win the
game. A method called policy is used, in which the agent reacts according to the
environment and receives feedback from the environment. The agent tries different
actions each time and must learn to make the best choice according to the reward-penalty
system.

Problem domains handled by neural networks can be listed as follows.

Classification: The classification problem occurs when one or more labels
needed to be generated as output. Neural network model makes predictions based on
previous observations. The purpose of a neural network model specialized for
classification is to approximate the function that describes the discrete outputs based on
the given input values. Predicting the plant species can be given as an example of such
problems.

Regression: The regression problem occurs when continuous value needed to be

generated as output. Neural network model makes predictions based on previous

4

observations. The purpose of a neural network model specialized for regression is to
approximate the function that describes the continues numeric outputs based on the given
input values. Calculating the risk ratio for insurance can be given as an example for such
problems.

Clustering: It is the grouping of data with similar characteristics in a data set.
There are many similarities among clusters created by unsupervised learning, but less

similarities between different clusters.

2.2. Neural Network Models

Feed Forward Neural Networks (FFNN) and Multilayer Perceptron [19]
[20]: This kind of neural network models consist of layers and these layers are named as
input, hidden and output. Models consist of 1 input, 1 output layer and 0 or more hidden
layers. Generally, each layer fully connected to the next. They feed information from
input to output. The simplest model is logic gate and it has two input cells and one output
cell.

Convolutional Neural Networks (CNN) [21]: They are different from other
artificial neural networks. Although they are generally used for image classification
purposes, there are many different usage areas. CNN processes a given input by passing
it through the following steps; there are convolution layer, non-linear function and
pooling layer those are arranged one after the other. After passing through those layers,
data pass through the final fully connected layer and generates numbers on output layer
that explain the possibility of being a certain class. The Convolution layer is the basic
building component of CNNs where the most calculations are made. In the conversion of
the convolution layer, each learnable filter with size n x n x k£ (where n is height-width
and k is depth) is slide (with a given factor) on the input data. The filter and the input data
segment at the current position and size of the filter are subjected to matrix operation and
an activation map is created as output. The point is that learnable filters are activated
when they see certain patterns. ReLU is widely used as a non-linear function. In the
pooling layer, the method of max-pooling is also widely used.

Recurrent Neural Networks (RNN) [22] [23]: They are neural network models
that uses outputs of the previous layers as the input of the next layers, recurrently.
Although RNN models are generally used in natural language processing, there are many

other application areas. RNNs have different types according to the number of inputs and

5

outputs. For example, one-to-many (one input-multiple output) source code generation,
many-to-one (multiple input-one output) sentiment classification, many-to-many
(multiple input-multiple output) language translation. RNNs are difficult to train due to
vanishing and exploding gradient problems. The difficulties arising from these problems
have been reduced with the Long Short Term Memory (LSTM) [24].

Autoencoders (AE) [25]: Autoencoders represents compressed knowledge of the
original input data and used for representation learning tasks. They learn the hidden
representation of the input data in an unsupervised manner. The architecture of
autoencoders consists of hidden layers that are symmetrically structured between input
and output layers.

Generative Adversarial Networks (GAN) [26]: These are models in which two
different networks, one generative and the other discriminative, work together. The
generative network in the model generates data, the discriminative network consumes this
generated data. Training process of this models as follows, while the purpose of the
generative network is to fool the discriminative network, the purpose of the discriminative
network is to ensure if the given input real or fake. The problem encountered in this model
is that the tuning process for both networks is handled separately. Because of that the
performance of one of the two models is lower than the other, affects the overall
performance of the system.

Graph Neural Networks (GNN) [11]: Graph structured data are different from
data in matrix or vector structures. When each data kept in matrix or vector structure
considered as a cell, changing the order of these cells breaks the integrity of the data. In
contrast, graph structured data is isomorphic. The nodes defined on the graph and the
links between these nodes contain very valuable data. GNNs are neural networks

specialized for learning over graph structed data.

2.3. Neural Network Hyper Parameters

Epoch: Giving the entire training set to the neural network model once is called
one epoch. The number of epochs expresses how many times the training set will pass
through to the neural network model.

Batch Size: It represents the amount of data that will be used in each iteration in

neural network trainings. If batch size is equal to all dataset, it is called batch-mode, if it

is greater than one and less than the whole dataset, it is called mini-batch, and if it is one,
it is called stochastic-mode.

Dropout: It is the random removal of the connections of neurons in MLP layers
at a given rate. The main purpose of the parameter is to prevent the overfitting (model
learns the training data but cannot makes predictions on unseen data).

Number of Hidden Units: It expresses, how many neurons will be defined in a
hidden layer.

Learning Rate: On neural networks, parameter values are updated via
backpropagation process. Parameter value modification of a perceptron is performed by
finding the difference by taking derivatives and multiplying the difference with the given

learning rate. This parameter is a tuning parameter of optimization algorithms.

2.4. Metrics to Evaluate Neural Networks

One of the most crucial part working with neural network is evaluation of the
model performance. Most of the time accuracy metric is used to measure the performance
of the model, but it is not enough just using one metric. Some of the metrics used to
evaluate neural network models can be listed as follows.

Confusion Matrix: It is a table that shows the total number of inputs, actual
outputs and predicted inputs to visualize complete performance. An example is given in
Table 2.1. True positive (45), true negative (45), false positive (55) and false negative
(55) values can be seen in the given table below. this metric visualizes prediction and

expected value made by model.

Table 2.1. A Sample Confusion Matrix

Input: 100 Predicted # Class A Predicted # Class B
Actual # Class A 30 45
Actual # Class B 10 15

Classification Accuracy: It is the ratio of the number of inputs given for
estimation to the neural network and the number of outputs correctly predicted by the

model. In order to provide reliable results, an equal or close to the number of inputs for

each class should be given. In this way, how accurately the trained model can predict is
measured. Since GNNs have not been used to predict a software model before, random

baseline is used for comparison.

Number Of Correct Predictions
Total Number Of Input

Accuracy =

F1 Score: When the distribution of classes in dataset is not balanced,
classification accuracy is not a good performance measurement choice. To overcome this
issue there are two sub metrics used in F1 score, one is recall which is the ratio of the sum
of true positive and false negative to true positive, and the other one is precision which is
the ratio of the sum of true positive and false positive to true positive. F1 Score tries to

find a balance between precision and recall and combines them into a single metric.

True Possitive

Recall =
eca True Possitive + False Negative

True Possitive

Precision = — —
True Possitive + False Possitive

Pression x Recall
F1 Score =2x

Pression + Recall

Area Under Curve (AUC): To understand AUC, it is necessary to explain the
ROC Curve first. Neural networks assign a certain probability to each class in their
outputs, while making class selections, either the class with the highest probability is
selected or the classes above a predetermined threshold value are specified as output. As
the threshold value changes (increases or decreases) the outputs of the model to be used

as predicted classes will naturally change. ROC shows the ratio between true positive rate

8

and false positive rate for different threshold values as shown in Figure 2.1. Since GNNs
have not been used to predict a software model before, random baseline is used for

comparison.

True Positive

True Positive Rate =
True Positive + False Negative

False Positive

False Positive Rate =
False Positive + True Negative

Perfect Classifier

Sensitivity

Har;dnm Classifier

True Positive Rate

False Positive Rate
Specifity

Figure 2.1. ROC Curve

AUC is a metric of performance of a binary classifier on any threshold values, so
the metric does not change by threshold. AUC specifies the area under ROC Curve shown
in Figure 2.2. The value of AUC is between 0 and 1, and higher values are better.

True . A 3 True . A of
Positive - Positive il
Rate o Rate o
ol JJ'
AUC=0.4 AUC=0.5
: - >
False, False,
Positive Positive
Rate Rate
True True A &
Positive Positive e
Rate Rate b
f“*(
J“
'.’ AUC=D.7 *,‘* AUC=0.9
- h & }
False False
Positive Positive
Rate Rate

Figure 2.2. Area Under Curve (AUC)

Cross Entropy Loss (Log Loss): It is the measurement of the distance between
the values (which are between 0 and 1) produced by the output layer of a neural network,
from the expected values. For example, suppose that a neural network model has two
units in the output layer, the expected output for this network is 1 for the first unit and 0
for the second unit. If the predicted output is 0.01 for the first unit, which is said to be a
high loss value. For the best results, the loss should converge to zero.

Mean Absolute and Squared Error: It is the average distance between
predictions and actual outputs only difference between absolute and squared one is, mean
squared error takes the square of the distance. This metrics are used to measure accuracy
for continuous variables. However, it does not talk about whether the predictions are

overestimating or underestimating.

10

N
1
Mean Absolute Error = NZ |vji =] |
=

N
1
Mean Squared Error = NE(yj —y'j)?

j=1

2.5. Graph Types

A graph (G) is a pair of sets of vertices (V) and set of edges (E). A vector n(v)
represents neighbors of vertex v. In addition, vertices and edges may have features and/or
labels stored in a feature vector. Graphs can be divided into two groups, namely
homogeneous and heterogeneous. Moreover, graphs can also be separated as dynamic,
static, directed, undirected, weighted, vertex labeled, and edge labeled graphs, given in

Table 2.2.

Table 2.2. Graph Types

Homogeneous Heterogenous

Dynamic Graph

Static Graph

Directed

Undirected
Weighted
Vertex Labeled
Edge Labeled

In the following, all the items given in Table 2.2. are explained.

11

Homogeneous Graphs: All the vertices and all the edges of a homogeneous
graph have the same types. Vertices share the same identity space and feature vector as

seen in Figure 2.3.

id Evenilype Duration
1 Save 3
2 Cancel 1
3 Delete 2
4 Read 4
5 Cptions 1

Figure 2.3. The structure of homogeneous graphs

Heterogeneous Graphs: A heterogeneous graph can have vertices and edges of
different types. Vertices/Edges of different types have independent identity space and
feature vectors. For example, as illustrated in the Figure 2.4., the user and tweet vertices

have different identifiers, and both have different features.

User A
id Gender Age
U1 Female 30
uz2 Female 23

Follows Liked Post

U3 Male 27
User B ¢ Tweet 1 Tweet 2

Follows Post Liked id Length Category Hits

T1 | 100 Movies 7

T2 (150 Education 10

User C

Figure 2.4. The structure of heterogeneous graphs

Static Graphs: They are the graphs that do not change over time. In the literature,
most of the studies on graph theory is based on static graph structure. A wealth of such
literature has been developed for static graph theory [27].

Dynamic Graphs: The authors [27] proposed dynamic graphs, which changes
over time. In many science disciplines, dynamic graphs are considered. This is especially
true for computer science, where almost always the data structures (modeled as graphs)

change as the program runs as shown in Figure 2.5.

o o
eoe
(O—0) &)

Figure 2.5. The structure of dynamic graph

Edge/Vertex Labeled Graph: Graphs those edges and/or vertices have labels

shown in Figure 2.6.

refurns Blue
Red
_,/.. '-\. .. - ..
| 4 }——connected—»{ 2 4—‘
‘\.____/ b - A
related

links cancels ‘

moved——» § ——parent— 3

Yellow Crange Green

Figure 2.6. The structure of edge/vertex labeled graph

13

Multigraph: As shown in Figure 2.7, in case that there is more than one type of
edge defined between two vertices those kinds of graphs are called multigraph. Each color

on edges represents a different type of edge.

Figure 2.7. The structure of multigraph

Directed Graph: The arrangement of the node pairs is significant in a directed
graph. Therefore, u is adjacent to v only if the pair <u, v> is in the edge set. The vertices
are usually linked with each other by arrows. An arrow from u to v is drawn only if <u,

v> is in the edge set. An example directed graph is shown in Figure 2.8.

o 4
]
!

1 >

Figure 2.8. The structure of directed graph

14

Undirected Graph: In undirected graph structure, the arrangement of the vertex
pairs in the edge set does not cause any problem. Given graph in Figure 2.9. can be
written [{4, 6}, {4, 5}, {3, 4}, {3, 2}, {2,5}, {1,2}, {1, 5}] or [{6, 4}, {5, 4}, {4, 3},
{2,3}, {5,2}, {2,1}, {5, 1}]. The vertices are usually linked with each other by straight
lines. The adjacency matrix is symmetric, so if u ~ v then it is also the case that v ~u

where ~ represents being connected.

1 4]

N

Figure 2.9. The structure of undirected graph

6 3

Graphs are matched in many real-life problems. For example, if we consider the
objects we want to model as vertex and the relationship between those objects as edges,
graphs are very suitable data structures used to meet such needs. The questions within
this scope can be grouped under 2 items, (i) "How similar are the graphs given to each
other?" and (i1) "How similar are the vertices in a given graph?".

The needs such as finding similarity between graphs, classifying vertices,
suggesting new connections have influenced the studies in this field. These studies

historically started with graph kernels and evolved towards graph neural networks.

2.6. Graph Kernels

Many different approaches are proposed to find the similarity of the given graphs.

Most valid method is to check if the topologies are identical or not, in other words they

15

are isomorphic. Graph isomorphism problem is in NP, but there is no efficient algorithm
for it except heuristic ones. Graph kernels bridge the gap between graph-structured data
and a large spectrum of machine learning algorithms called kernel methods. Informally,
a kernel is a function of two objects that quantifies their similarity.

Random walk [28] and Weisfeiler-Leman graph kernel [29] can be given as
examples of a kernel between graphs.

All the graph kernels suffer computational complexity and cost inefficiency.
Another drawback of these approaches is that they cannot generate repetitively usable
models and all the computations must be repeated for each graph. To overcome these

issues researches working on this topic have begun to evolve into neural networks.

16

CHAPTER 3
RELATED WORKS

3.1. Graph Neural Networks

Graphs are isomorphic data structures and there is no fixed ordering in them. For
example, when the pixel information of a picture is mixed, that picture does not give the
same information as before, but graphs contain the same information in every way due to
their isomorphic structure. Due to the isomorphic structures of graphs, it is very unlikely
that they will be fed directly to neural networks.

The general purpose of graph neural networks is to solve classification and
regression problems of a graph that has not been encountered before with a pre-trained
model. Previous studies attempt to add learning capability over statistical methods, which
assume that the dataset contains patterns and relationships between those patterns.

Some of the significant research studies and variations of GNNs are given in

Figure 3.1.

17

G6L07- Bl8 NN
Uiedsisg)

810 - 'e1a Dueyz
NYeD)

802
- e 12 JMORIRA

¥

910z - e 18 buer
W1STYdes) 1v9

6L0T- 18 12 noyZ

NN9D

L0z LhZ LT
) 810z 18 10 Bueyz . _
-|B 18 puolwey NND9Q [B 18 [INDAYHILS [1 LOJILEH
18NGBYD NJ9-H 35ysudeln
[[}
A
[enaadg |Bneds

L107 Bullaph pue Jdiy
9107 - B 18 YadaIN

NOD

600Z - e la li2sleas

NND)

ts Of Graph Neural Networks

1an

Var

Figure 3.1

18

Scarselli et al., 2009 introduced Graph Neural Network (GNN) in [11], which
applies neural networks to graphs, non-Euclidean data. They extended and applied RNN
so it could be applicable to variants of graphs, directed or undirected, cyclic or acyclic.
However, the proposed method only works for static graphs and cannot be used for
dynamic ones. The proposed method needs to be run separately for all vertices, feeding
the information of neighboring vertices to the recurrent neural network consecutively,
and to continue this process until the model is stable. The localized functions for GNNs

are described in the equation given in Figure 3.2.

x - Set of node states (the state of an arbitrary node, n, is defined as x)
1 - Set of node features (the features of an arbitrary node, n, is defined as /)
- Set of node features for the neighbors of an arbitrary node n
1, .o - Set of edge features between two arbitrary nodes n, and n,
f- The local transition function to determine a node’s state
where fiy = Z h\\'(ln-l(ﬂ-lr) X 1) g - The local output function to determine a node’s output
uene(n] o, - The output of an arbitrary node n

Xp = fw (]n-]co[n] +Xne[n] s]ne[n])

lllne![n]

Oy = Zw (Xn . ln)

Figure 3.2. GNN Localized Functions ///]

Another important concept in graph neural networks is message passing. As
shown in Figure 3.3., each vertex transmits its own state information to its neighbor
vertices. In each iteration, state information from neighbors is given to a function and the
hidden state information of the vertex is updated. This function can be a sum, mean etc.
The number of steps a vertex collects information from its neighbors is defined as a

parameter. This parameter is called a hop.

19

Figure 3.3. Message Passing

The first studies were based on working with a method in which all vertices
iteratively publish the information of all their neighbors and this process is repeated until
the highest possible stability is reached. However, this process causes very high
calculation costs, especially in large graphs. At the same time, it couldn’t reach expected
accuracy. Although recent studies manage to overcome some of the issues, it is still an

open research area.

3.2. Graph Convolutional Networks

Since convolutional neural networks [21] are more effective and highly successful
methods compared to other neural network methods, their popularity has increased
exponentially in recent years. Convolutional neural networks apply filters to given input
data and subsamples them as shown in Figure 3.4. These sampling can be done over a

function like average, min, max etc.

20

INPUT feature maps feature maps feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

b%t.
Iy

Figure 3.4. Convolutional Neural Network /27]

The usage of convolutions on graphs can be compared to the usage on image data.
If pixels on the image are considered as vertices, all the vertices are fully connected with

the vertices around them. The application of how to apply a filter to such data can be seen

in Figure 3.5.
1.2,35,6,7,9,10,11 2,3,4,6,7,8,10,11,12
bjl
r’/_ i - ﬁ\‘-
[¢ — d
_/ sy
56.7.9,10,11.13,14,15 6,7,8,10,11,12,14,15,16

NN,

X

Figure 3.5. 2D-Convolution. Subsampling over 3x3 filter on 4x4 data

21

Due to its isomorphic structure, the same method cannot be applied on graphs in
the same way as it is applied in other data types. However, if the filter to be applied is
defined as a hop instead of defining it in (a x a) size and if the neighbor vertices for each
vertex are included into a given filter of a hop, then this convolution method is applied to
graphs. As shown in Figure 3.6., 1 hop filter applied to vertex no 1, 1 hop neighbors 3, 4,
6, 7 will be included. If a 2-hop filter to vertex no 1 was applied, then 3, 4, 6, 7 vertices
from the first-degree neighbor, 2, 8, 12 vertices from the second degree neighbor will be
included into the filter. Applying these filters to vertices generates sub-graphs for each

vertex.

Figure 3.6. Graph Convolution. 1 hop filter applied on vertex 1 and 8.

Convolutional Graph Neural Networks can be divided into two main categories,

spectral methods and spatial methods. Spectral models have a theoretical foundation in

22

graph signal processing and rely on graph Fourier base generalization. Hammond et al.
proposed a spectral model called ChebNet [30], they defined a wavelet transform on
feature vectors of vertices of a weighted graph. Spatial-based models combine the
messaging passing method used by RecGNN [11] with convolution. These models, on
the other hand, perform graph convolutions locally on each vertex, where weights can be
easily shared across different locations and structures. Spectral models show very low
performance on new graphs, which is completely contrary to the philosophy of neural
networks. Unlike spectral methods, spatial methods are generalizable, efficient and
flexible models.

Zhang et al. proposed Deep Graph Convolutional Neural Network DGCNN [31].
They innovated the Sort Pooling mechanism which makes it possible to use classical
CNN on graph structured data. Defferrard et al. combined spectral method with CNN
[13]. They used Graph Fourier Transform to find localized convolution filters and cluster
similar vertices.

GraphSAGE [32] has made very serious improvements over the original GCN.
With these improvements, it has provided solutions to problems such as the high
computation cost of applying GCN to large graphs due to its structure, and the necessity
of applying it to static graphs. While the original GCN uses the features of all neighbors
belonging to a vertex, GraphSAGE has passed the features of the predefined number of
neighbors into the aggregator function to identify general representation of a vertex.
GraphSAGE has suggested 3 different aggregate functions such as, mean, LSTM and
pooling.

FastGCN [33] made improvements on the sampling algorithm. Instead of
randomly choosing a fixed number of vertices, it includes the important vertices into the
sample set. To do this, instead of sampling directly on the neighbors of the vertex, an

importance function for the receptive field in each layer is used.

3.3. Graph Attention Networks

Attention mechanisms are a de facto when we need to deal with sequential data.
One of the most important features of the attention mechanism is that it can process

variable-size inputs and make decisions using the most relevant pieces of the input. When

23

attention mechanism is used in conjunction with RNN or CNN, great success has been

achieved in learning sentence structures [34] and language translation [35] .

Inspired by the success of the attention mechanism on sequential data Velickovi¢
et al. proposed an graph attention network (GAT) [15] for vertex classification tasks. The
main idea in their proposed work is that they calculate the information of each vertex

using their neighbors and use the principles of self-attention strategy while doing this.

softmax ¢

concat/avg /7
> h."l

Figure 3.7. Single Attention Layer //5/

Left part of Figure 3.7. describes the single-attention layer, used in GAT
architecture. Right part of Figure 3.7. shows the multi (3) head attention which increases
the expressive capability of the model. Each color represents independent attention.
Calculated values from each attention are averaged or concatenated to compute the result.
GAT considers that each attention head is of equal weighted. Zhang et al. proposed The
Gated Attention Networks (GaAN) [14] model and took this one step further by giving a

score to each attention head to improving performance.

24

=] el
[el
(3 =]
@ features @ features
: Wig @ @ ® : ': Wig @ @ ® i :
Wiz : Wiz
=5 - sk -
() J
rE] =]
fealures features
features features
F"‘S 'l_"|1‘_J
=l =l
el el
=] =]
features features
GCN GAT
o=
=]
d |
) n1 - features
Wig
=
=]
NN —

nd - features

Figure 3.8. Difference of GCN and GAT

Main difference between graph convolutional network and graph attention
network is that GCN assigns explicit nonparametric weight to the nearby vertices during
the aggregation process, whereas GAT implicitly learns the weights via neural network,

in that way more imported vertices have more effects on the learning process.

3.4. Edge and Node Classification on Graphs

Node and Edge classification is a task where the model evaluates the class by the
features of the neighbor nodes and/or edges.

The DeepWalk [36] method proposed in 2014 was the first significant deep
learning method proposed for node classification. DeepWalk takes samples using random
walks (lengths are given as parameters) for each node, to generate embeddings to learn

nodes hidden features which represent it. LINE [37] proposed by Tang et al. and node2vec

25

[38] proposed by Grover and Leskovec extended DeepWalk by changing the embedding
generation strategy. DeepWalk [36], GCN [39] , GAT [15] achieved success rates of
67.2%, 81.5%, and 83.1%, respectively, on the CoRA dataset.

In 2017 Muhan Zhang and Yixin Chen proposed Weisfeiler-Lehman Neural
Machine (WLNM) [11] for link prediction. WLNM extracts subgraphs from edges’
neighbors to train neural networks and uses this model for link prediction.

Kim et al. - 2019 [40] and Gong and Cheng - 2019 [41] proposed multi-
dimensional edge feature prediction models. Both proposed works consolidate graph
convolutional network and graph attention network models to prediction edge labels

and/or features.

3.5. Link Prediction

Link prediction is the prediction of whether there is a link between the nodes
defined on the graph [4]. One of the existing approaches for link prediction is heuristic
methods. Although this method works for some specific scenarios, it generally performs
poorly. For example, whether there is a possible link between two nodes is estimated by
looking at the number of shared neighbors. Although this method is successful in social
networks, it does not show any success in methods such as predicting intramolecular
bonds. [42].

Zhang and Chen proposed SEAL framework [17] for link prediction task which
uses sub-graphs, attributes and embedding (uses node2vec for this purpose) features of
the graph. SEAL Framework extracts sub-graphs of related nodes and learns the features
of these sub-graphs via DGCNN and uses the learned model for link prediction. As seen

in figure — 16, this process is achieved in 3 steps.
1. Sub-graph extraction, positive and negative link sampling for training data.

2. Nodes feature vector construction for each sub-graph.

3. DGCNN learning.

26

Graph neural network

common neighbors =3 o
Taccard = 0.6 = 1 (link)
preferential attachment = 16
Katz =~ 0.03

Extract e,mlogng Learn graph structure features Predict links
subgraphs

common neighbors =0
Jaccard =0

preferential attachment = 8
—_— Katz = 0.001 == 0 (non-link)

Figure 3.9. Architecture of SEAL Framework //7]

Velickovi¢ et al. proposed GAT model for graphs and in 2019 Gu et al. specialized
this model for link prediction tasks. When the total number of nodes in a graph is defined
as N, then node classification has an O(N) complexity, while link prediction has O(N?)
[18]. Original GAT model needs entire graph data at once on node classification task.
Those limitations cause memory bottlenecks. It can be thought that this problem can be
overcome by using small mini batches, but this strategy reduces link prediction accuracy
very much [18]. Gu et al. proposed DeepLinker [18] which uses fixed neighborhoods on
mini batch sampling strategy. DeepLinker shares similar architecture with GraphSAGE.
Differences between them are in sampling strategy and using GAT instead of GCN. The
proposed DeepLinker model is used to create a hidden representation of each node, using
the attention mechanism that is shared by the node's neighbors.

Zhan and Chen proposed Weisfeiler-Lehman Neural Machine [16] which
combines neural networks with Palette WL which is a variation of Weisfeiler-Lehman
algorithm to extract encoded sub-graph patterns. As seen in Figure 3.10., this process is

achieved in 3 steps:
1. K-hope neighboring sub-graph extraction.

2. Sub-graph pattern encoding via Palette-WL.

3. Neural network training for classification.

27

EL e [[o]e
e
InnAnnon
annonn
efafe]v
nne
N
Ll
v
. Assign initial colors to vertices Refine the colors to impose a vertex Construct adjacency matrix representation
Extract enclosing subgraph : .
R according to their geometric ordering which preserves the using the caleulated vertex ordering,
for a target link h . o s
mean distance to the link initial color order which is input to a neural network

Figure 3.10. Schema showing how the steps of WLNM work //6/

28

CHAPTER 4
PROPOSED METHOD

In software development, the analysis and design phase are very important, since
mistakes made in this phase are very costly. One of the most important factors in the
analysis and design phase is to understand user needs very well. In this context, the
software development team, which may be composed of requirements, software, and
quality engineers, defines the usage characteristics and scenarios with different user
profile types that will use the software system. Depending on the project size, there may
be more than one software development team. This kind of variety should be managed to
create complete and consistent specifications. Deficiencies and inconsistencies that may
occur in the modeling step can cause serious errors in the entire software system. Many
sub-software development processes, from software developments to graphical interface
designs, workflows, security scenarios, software testing processes, are affected through
the models created at the analysis and design phase.

When developing a software system, the process usually starts with the creation
of the model of the system to be developed [43]. In this way, it makes that possible to
look at the general view of the designed system and it becomes clear whether the user
requirements are met as expected. System modeling requires the ability to distinguish
between important and necessary information from others.

There are many different models and tools used in software modeling. Some of
these models can be listed as follows: Business Process Modeling and Notation, UML
Diagrams, Flowcharts, Event Sequence Graphs. All of these models are graph-based
models and there is a well-established theory of graph transformations [1] which has a
number of applications to system modelling and software engineering based on concrete
specification languages and supporting tools. It is possible to transform software models
to their graph representations.

One of the modelling methods used for analysis of graphical user interfaces is
Event Sequence Graphs (ESG) proposed by Belli in 2001 [2], which is also used in this
thesis. GUIs can be modeled as sequences of events of the objects defined in GUI as given

in Figure 4.1. and Figure 4.2.

29

E: Select

Main Frame

X: Move cursor
Y: Highlight text

Figure 4.1. A GUI Example [2]

A :File G : Save

B :Open I :Edit

D :Name K :Cut

E :Select L :Copy

F :Cancel M : Paste

H :Open X :Move cursor
C :Saveas Y

: Highlight text

Figure 4.2. ESG model of the GUI [2]

30

In this thesis, models are considered as the designs of software systems and
systems are developed based on these designs. Creating better models will help the
software engineers to build better software systems that meet user expectations. The goal
of this thesis is to propose a method that finds missing connections between nodes defined
in ESG. As in other modeling methods, also in ESG, the missing or forgotten relationships
between the components on the model naturally affect all processes to be made through

this model.

Need to Change Transformation:

More Data Needed ‘

Y

-]

f

Dt Evaluation
s Traiming Medel /——» of the Model
Transformation = Ay
Accuracy
A

Need to Change Transformation:

Validate Model
On Unseen Data

More Data Needed

Figure 4.3. Process Used in this Thesis

The process used in this thesis is described in Figure 4.3. On the data collection
stage, a bank account [44] (Oztiirk - 2020), email [44] (Oztiirk - 2020), student attendance
[44] (Oztiirk - 2020) and reservation system models [45] (Tuglular et al. - 2016) are used.
These models are drawn by “Test Suite Designer” (TSD) [45] tool. This tool generates a
xml file with mxe extension. The proposed data transformation method reads a mxe file
and transforms it to desired graph data that graph neural network models need. At the
training stage, GAT and GCN neural network models are used. Three performance
metrics, cross entropy loss, area under curve and accuracy are used to measure the
performance of trained models.

In the following sections, details of the collected data, how they transformed into

required data format and GNN variations and the parameters used are mentioned.

31

4.1 Data Collection

One of the most challenging processes when working on neural networks is to
find or create the data sets. For this purpose, previously prepared data sets using the ESG
method were used. The data sets used in thesis are listed as follows.

Bank Account: Transactions such as withdrawal, viewing balance, depositing
money, withdrawing money and requesting interest rates are modeled.

Email: Commands such as preparing new messages, viewing the mailbox,
answering and forwarding messages, creating an address book, and creating an auto
response messages are modeled.

Student Attendance: An attendance/nonattendance tracking application is
modeled. In this model, there are two different roles as student and teacher. Students can
enter and follow attendance information, and teachers can organize and monitor classes
and calendar.

Iselta: It is a model of an application that you can edit and view your profile, list

hotels and make reservations.

4.2 Data Transformation

Important part of the data transformation is embeddings [46]. Neural network
embeddings are useful because they can reduce the dimensionality of categorical
variables and meaningfully represent categories in the transformed space. Embeddings
have 3 main purposes; (i) making a recommendation based on categories, finding closest
neighbors in embedding vector, (ii) for supervised learning task, converting data to feed
to a neural network model, (ii1) for the visualization of relations between categories. In
this thesis embeddings are used for neural network inputs. As shown in Figure 4.4., each

node transformed into its low-dimensional representations.

32

Embedding Vector

Node 1 R N P— | JCategorized Node 1
()) C 90) —

Node 2 R = - — [JCategorized Node 2
I/_'\I I.- - -.I I'z = \'I Iz - -\I —

Node 3 — L LU W | JCategorized Node 3
Node 4 R Yy Y O Categorized Node 4
LN LR N
Node 5 —— N P — | JCategorized Node 5

(30 10 3 -
R . LS W,
: — — :
| ||] I] |]
: L AR :
: — — :
| ||] I] |]
. L AR .
Node N2 —————> Y O o R [|Categorized Node N-2
NP LR —
Node N1 ———7i——» N P — Categorized Node N-1
I\ /I l: :l [| -
Node N R o = - — [Categorized Node N

Figure 4.4. Node Embedding

Many software systems that we encounter in real life are complex structures with
many details. Regardless of their level of experience, people have an upper limit on their
ability to analyze. Since the complexity of software systems makes it impossible to handle
all aspects of the system by one person at once, such systems must be designed in parts.
Each sub-part to be designed is handled and prepared separately by domain experts and
software engineers. The models created as a result of these designs are relatively small.
The graphs transformed from these models are naturally small. As the number of
embedding vectors and the number of elements within the embedding vectors are
increased, it naturally grows the representation space of a node. Therefore, the number of
embedding vectors should be selected carefully for the proper representation of small
graphs.

According to the number of embedding vectors used and the number of elements
defined in each embedding vector, the number of elements in the representation space

that will be represent a node can be calculated with the following formula.

33

n k
e[y
v=1 i=0

Equation 4.1.

Where k is the number of elements in embedding vector v, n is the number of
embedding vectors defined.

As the number of nodes in graphs decreases, it is necessary to keep the
representation space smaller in order to infer the patterns of connections between nodes.
In this context, embedding vectors and their number of elements should be selected
carefully. If the representation space to represent nodes on small graphs becomes larger,
the representation will not be able to switch from high dimensionality to low
dimensionality, although embedding is applied. One of the main purposes of the
embeddings is the transition from high dimensionality representation to low
dimensionality one. The size of this representation space (E) must be much less than the

number of nodes (G (n)) in the graph.
E << G(n)

As the number of nodes in graphs decreases, it is necessary to keep the
representation space smaller in order to infer the patterns of connections between nodes.
In this context, embedding vectors and their number of elements should be selected
carefully. If the representation space to represent nodes on small graphs becomes larger,
the representation will not be able to switch from high dimensionality to low
dimensionality, although embedding is applied. One of the main purposes of the
embeddings is the transition from high dimensionality representation to low
dimensionality one. The size of this representation space (E) must be much less than the

number of nodes (G (n)) in the graph.

34

Node Type Entry-Exit Value Type
1|Error 1|None 1|None
2|Info 2|Entry 2|Numeric
3|Action 3|Exit 3|Bool
4{Input 4|Text
5|Success 5|Date/Time

6(Enum
7|File

Event Type Is A Form Element Annotation
1|Data Input 1|Yes 1/{}
2|Help/Info/Message 2|No 2|a
3|Save 3|b
4|Cancel 4la,b
5[Process 5|c
6[Calculate 6la,c
7|Validate 7|b,c
8|Navigate 8|a,b,c
9(Delete 9(d

10(Get 10|a,d

11|Load 11]b,d

12(Select 12|a,b,d
13|c,d
14|a,c,d
15|b,c,d
16|a,b,c,d

Figure 4.5. Sample Node Embedding Vectors.

Annotations a: Is Required, b: Has Min-Max Value c: Has Min-Max Length

d: Has Condition or Regex

Node Type

Entry-Exit

Value Type

Event Type

Is A Form Elem.

Annotation

Save Data

3

1

1

3

1

1

Name Input

4

1

4

1

1

6

Age Input

4

1

2

1

1

3

Figure 4:6. Sample Application of Node Embedding Vectors for nodes of an ESG

35

Embedding vectors that can be used in an ESG model are defined in Figure 4.5.
In Figure 4.6, these embedding vectors are applied on sample nodes. When all the
embedding vectors defined in the Figure 4.5. are used for an ESG model, the size of the
representation space can be calculated with Equation 4.1. The number of embedding
vectors and the number of elements in each embedding vector is given in the Figure 4.5.
are as follows: Node Type: 5, Entry-Exit: 2, Value Type: 7, Action Type: 12, Is A Form
Element: 2, Annotation: 16. In this case, the representation space size is
5x2x7x12x2x16=26.880. There will be a relatively large graph needed to learn the edge
patterns of graph nodes represented by elements in a representation space of this size.
However, as mentioned earlier, models in a software system are designed smaller in
nature. To prevent this undesirable situation, it would be more appropriate to represent
the nodes belonging to Event Sequence Graphs with a single embedding vector. In this
context, the "Event Type" embedding vector is chosen as the most suitable embedding
vector for learning since it expresses the patterns between nodes best by the neural
network. Moreover, transformation from node names defined in an ESG to "Event Types"
embedding elements can be performed with a simple mapping operation. For these
reasons "Event Type" embedding is used in this thesis. Of course, embeddings can be
learned and reused in different models. But in this thesis, embedding vectors generated
manually.

Files generated by TSD have mxe extension and they are formed in xml notation.
Key elements used in this xml are <mxGraphModel> which represents a graph, and
<mxCell>, which represents a vertex if <vertex=1> attribute is defined or an edge if
<edge=1> attribute is defined. TSD allows to define sub-graph via <mxCell> elements,
which contains child <mxGraphModel>. <mxCell> elements have an <id> attribute,
which is unique in container <mxGraphModel>, but it is not globally unique. When a
child graph is defined in a graph, <mxCell> defined in that graph have their own id

sequences. Sample snapshot of a mxe file shown in Figure 4.7.

36

] <mxGraphModels
<FOOT>
<mxCell id="0"/>

<mxCell id="16"

<mxCell id="1" parent="0"/>

</mxGraphModel:

</de.upb.adt.tsd.EventNode>
<mxGecmetry as="geometry" height="50.0" widch="160.0" x="200.0" y

O

<mxCell 1 7" "l
<mxCell id="18" parent="1"
<de.upb.adt.tsd.Eventllode as="value" codse="" description="" nams="Login as Provider - normal":>
<mxGraphModel as="graph">
<Foot>
<mxCell id="0"/=>
<mxCell id="1" parent="0"/>
<pxCell id="2" parent vercex="1">»
<pxCell id="3" parent ¥="1">
<pxCell id="5" parent ¥="1">
<pxCell id="8" parsnt="1" wvertsx="1">
<mxCell =="1" id="11" parsnt="1" Vi
<mxCell 1" id="22" parsnt="1" Vi
<mxCell ="1" id="24" parsnt="1" Vi
<mxCell "1" id="29" parsnt="1" Vi
</root>

</mxCell>

<mxCell i £

<mxCell ="1" source="16"
<mxCell ="1" source="16"
<mxCell id= gx="1">

<mxCell ="1" source="18"

<muCell sdge="1" i

parent="1" source="20"

<mxCell id="27"

arent="1" wverte

105

<fmerathcdelﬁ

<mxCell i 28" source="23"

<mxCell id="29"

<mxCell id="30"

<mxCell id="31"

<mxCell i

<mxCell parent="1" source="27"
</root>

Figure 4.7. Content of a mxe file

Child graphs in a mxe file represented as grouping vertices in their parents. ESGs

should be flattened to be analyzed properly. To accomplish this task, a mxe model parser

tool is implemented. This tool has two main part; one parses mxe and extracts graphs’

edges and vertices and second one flattens the cascade graphs. The algorithm for the tool

is shown in Figure 4.8. and Figure 4.9.

37

def parse(xmlroot,parentMxCellld):

nodes = []
edges = []
#node identifiers of the sub graph grouping nodes
subGraphGroupinglodes = []
entryMxCell = null
exitMxCell = null
#extract and parse nodes only to find all nodes and generate node identifiers
#sometimes edge elements defined before the node definition
for mxCell in xmlroot:
if mxCell is vertex:
nodes.append(mxCell)
if mxCell is entryCell:
entryMxCell = mxCell
elseif mxCell is exitCell:
exithxCell = mxCell
elseif mxCell has subGraph:

sublodes, subEdges, childSubGraphGroupingNodes,childEntryMxCell,childExitMxCell = parse(mxCell.subGraph,mxCell.Id)

nodes += sublodes
edges += subEdges
subGraphGroupinghodes += childSubGraphGroupingNodes
subGraphGroupinghodes .append([mxCell,entryMxCell, exithxCell])
for mxCell in xmlroot:
if mxCell is edge:
sourcelode = findNode(nodes, mxCell.source)
targetlode = findlode(nodes, mxCell.target)
edges.append([sourceNode, targetNode])
return nodes,edges,subGraphGroupingNodes,entryMxCell ,exitMxCell

Figure 4.8. Mxe Parser

def parseAndFlattenGraph(xmlroot):

nodes = []

edges = []

nodes, edges,subGraphGroupinglodes = parse(mxroot,”")

#remove links to sub-graph grouping nodes

flattenEdges = removeGroupingNodeEdges (edges, subGraphGroupingNodes)

#add links from parent graph to sub-graph

for groupingNode in subGraphGroupinghodes:
#find the edges which target is given grouping node,
edgesByTargetCell = findEdgesByTargetCell(edges,groupingiode.MxCell)
#find the edges which source is given entry node
edgesBySourceCell = findEdgesBySourceCell(edges,groupingNode.EntryCell)
for edgeByTarget(ell in edgesByTargetCell:

for edgeBySourceCell in edgesBySourceCell:

flattenEdges.append([edgeByTargetCell.source,edgeBySourcelell. target])

#find the edges which target is given exit node,
edgesByTargetlell = findEdgesByTargetCell(edges,groupingiode.ExitMxCell)
#find the edges which source is given grouping node
edgesBySourceCell = findEdgesBySourceCell(edges,groupinghiode . MxCell)
for edgeByTargetCell in edgesByTargetCell:
for edgeBySourceCell in edgesBySourceCell:

flattenEdges.append([edgeByTargetCell.source,edgeBySourceCell. target])

if groupinghlode has selflLoopEdge:
#find the edges which target is given exit node,

edgesByTargetCell = findEdgesByTargetCell(edges,groupingNode.ExitMxCell)

#find the edges which source is given grouping node

edgesBySourceCell = findEdgesBySourceCell(edges,groupingNode.EntryCell)

for edgeByTargetCell in edgesByTargetCell:
for edgeBySourceCell in edgesBySourceCell:

flattenEdges.append([edgeByTargetCell.source,edgeBySourceCell.target])

#remove links to sub-graph grouping nodes
flattenNodes = removeGroupinghodes(nodes,subGraphGroupinghodes)
return flattenNodes, flattenEdges

Figure 4.9. Flatten Graph Generator

38

4.3 Training Model

4.3.1 SEAL Framework

SEAL [17] is a specialized framework for link prediction. With an innovative
approach, the authors transform the link prediction problem into a sub-graph
classification problem. For each edge, a surrounding sub-graph extracted at n-hop
distance. In addition, negative samples containing wrong connections were created. These
generated sub-graphs and node feature matrix (which contains k features for each node)
feed to a GNN for classification. In this way, both node features and graph structure were
used during the learning process.

SEAL implemented by Zhang [47]. This implementation consists of the following
steps; read graph data and node attributes (if use attribute argument has been given) from
file, load them into compressed sparse column matrix, sampling both positive and
negative train/test links from loaded matrix, if embedding learning enabled, node2vec
[38] is used to create node information. If the library runs on training mode (is default
behavior) then for each target link, SEAL extracts its n-hop (via hop argument) enclosing
subgraph and creates its node information matrix. SEAL uses deep graph convolutional
neural network (DGCNN) [31] model for classification. SEAL transforms the link
prediction problem into graph a classification problem and each subgraph (positive and
negative samples) generated by SEAL passes through DGCNN for classification task.
The architecture of DGCNN is given in Figure 4.10.

Input graph Graph Cl]]'l\’[llllﬁl]]‘l layers SurtPEuling 1-D cun:ulntiun l)ensel!ayers
! \ r Al
— —
~ //
.
Substructure feature extraction in terms of Concatenate WL colors Sort vertices using the last Rb > Train CNNs on sorted
continuous WL colors using graph convolution from all iterations layer’s colors and pool (&) O representations and predict

Figure 4.10. Architecture of DGCNN /31//

~

Pooling N

- © O}

ol

In DGCNN [31] architecture, Sort Pooling layer is the key innovation, which
differentiates it from other GCNs. On traditional GCN, feature values of neighboring

39

nodes are summed up before passing them to CNN, but in DGCNN, Sort Pooling layer
organizes node features in a solid order. In this way, it makes it possible to keep more
information about different node features. Input of this layer is node features and feature
channels and the output are sorted node features and output channels of each feature.

Details of the CNN used in DGCNN is shown in Figure 4.11.

-

=

]

g
] © =
= = = = P = 5
= 2 I;‘\,‘_\I:E = 2 g .= Wy =
g = =< 2 = o= o= —
5 E = g 5 E = & 25 =

—— - — =] =
~ o iz ~ o s @~ s B
£ = = 0 >z = > = ‘;:; » =
== g‘_z == gu z = b
o B £ 5 o & = .= g.5 =
o - o a
=2 & < a2 =~ 2= 2
T - - T et = = =
— o E“.ﬁ — ra = 2 = =
—_ = e =] = 3

=

&

Lol

Tanh nen linear function is used for convelution layers, ReLU for other layers
ADAM Optimizer

Figure 4.11. Details of the CNN configuration used in DGCNN

Original SEAL implementation is extended in some aspects as follows.
Parameters of DGCNN model are hidden and couldn’t be tuned externally. The ability to
tune hyperparameters of neural network is crucial. Some minor bugs are fixed which
prevents the application to run on training data format except mat file format. Training,
validation and test results were printed on the screen by the application. Working in this
way was challenging to evaluate results between iterations. For this reason, all the results
are written in a csv formatted file at the end of the each iteration. Extended version of the
SEAL is published to github as SEAL-ESG and can be accessible publicly from
https://github.com/onurleblebici/SEAL-ESG. Available parameters of the SEAL-ESG

implementation and their explanations are given in Table 4.1. If embeddings are enabled,
then node2vec software is needed to run the application.

Table 4.1. Arguments of the SEAL-ESG Framework

40

https://github.com/onurleblebici/SEAL-ESG

Argument Name Explanation Default
Value
data-name Data filename which has mat extension
train-name Training data file name which is formatted as plain text
test-name Test data file name which is formatted as plain text. This
is an optional parameter, it is also possible to use some
part of training data as test data.
only-predict If True, will load the saved model and output predictions
for links in test-name; you still need to specify train-name
in order to build the observed network and extract
subgraphs
batch-size Number of data feed to model on each iteration 50
max-train-num Set maximum number of train links (to fit into memory) 100000
no-cuda Disables CUDA training False
seed Random seed to initialize the pseudo-random number 1
generator.
test-ratio Ratio of test data to be used in training data 0.2
no-parallel If True, use single thread for subgraph extraction, by False
default use all CPU cores to extract subgraphs in parallel
all-unknown-as-negative If True, regard all unknown links as negative test data; False
sample a portion from them as negative training data.
Otherwise train negative and test negative data are both
sampled from unknown links without overlap
hop Enclosing subgraph hop number 1
max-nodes-per-hop If > 0, upper bound the number of nodes per hop by None
subsampling
use-embedding Whether to use node2vec node embeddings False
use-attribute Whether to use node attributes False
save-model Save the final model
sortpooling_k Specifies how many percent of the output of sort pooling | 0.6
layer will be fed to CNN, number of nodes kept after
SortPooling
latent dim Dimensions of latent layer. Linear transformation for [32, 32,
SortPooling layer output 32, 1]
hidden Number of hidden units in dense layer 128
out_dim Auto calculate input size for dense layer, graph 0

embedding output size

(cont. on next page)

41

Table 4.1. (cont.)

dropout Dropout enabled for dense layer True
num_class Binary classification- link exists or not 2
num_epochs Number of times training data will feed to model 50
learning_rate Update weight coefficient le-4
validation-size Validation dataset size (percentage of training dataset) 0.1

4.3.2. DeepLinker

DeepLinker [18] is an extension of GAT [15], which is specialized for link

prediction. The input of a GAT is features of each node and the output is learned features

of each node produced by GAT. A shared linear transformation with a weight matrix

which is applied to each node is required to transform the input node features into a

learned output feature. A single layer feed forward neural network (FFNN) with weight

vector called attention mechanism is used to find out which neighbors of a node are more

important (softmax function is used for ranking). Importance factor calculation between

node i and node j is shown in Equation 4.2. where W is weight matrix, 4 is set of node

features, 7' is transposition and || is the concatenation operation. Schema of the attention

mechanism, which is formulated in Equation 4.2. is shown in Figure 4.12.

e;; = a(Wh;, Wh;)

'D'i_ji

iy =

exp(e;;)
softmax;;(e;;) = 2 keN, EK;{E'H.
N t

exp (LeakyReLU (a7 [WHi| W]))

> ken, €XP (Leal{yReLU (E’T [HJH;;"‘NE;;]))

Equation 4.2. Attention mechanism //5/

42

softmax .

concat/avg
> h.’l

Figure 4.12. Single Attention Mechanism between two nodes is shown in left, and the

Multiple Head Attention Mechanism between a node an its neighbors is shown in right.

[15]

shuffling data

M disinked pairs

i =

. i r—

. ; c ==

: S I

‘:? @ @ 3

wn o

(@] © | 2 X

2 sample N linked pairs = o
— —_— E— 8“ —_— ©
pairs .. '.“ o §
SdL L E = g

o0 O . 2 i

=4 x

4 =

—

Figure 4.13. Architecture of DeepLinker /78]

The architecture of DeepLinker is shown in Figure 4.13. DeepLinker creates a
data set for a given graph by creating positive (nodes those have connections) and

negative (nodes those have no connection) edge samples. The following operations are

43

performed for each of the node pairs in the data set; for current node pair (for example 1
and 2) find the first (3, 4) and second level (1, 2, 5) neighbors of each node. DeepLinker
uses fixed sized neighborhood sampling for optimum memory usage, and then calculates
the edge vector representation of the node pair over their and their neighbor’s initial
features using GAT. Following that, DeepLinker calculates the Hadamard distance of the
output of the GAT, which is an edge vector representation of the node pair and makes
link predictions via training a logistic regression function.

Original DeepLinker implementation is extended in some aspects as follows.
There was and no parametric data input support to work with other training data. Along
with this, a feature that can load the outputs of the mxe parser application has been added.
Only gpu support was available, cpu support is added. Test evaluation metrics are
calculated at the end of the each epoch. Training, validation and test results were printed
on the screen by the application, all the results are written in a csv formatted file at the
end of each iteration. Extended version of the DeepLinker is published to github as
DeepLinker-ESG and can be accessible publicly from
https://github.com/onurleblebici/DeepLinker-ESG. Available parameters of the

DeepLinker-ESG (also used for GAT) implementation are given in Table 4.3.

Table 4.2. Parameters of DeepLinker

Parameter Explanation Value
epochs Number of epochs to train. 100
Ir Initial learning rate-Adam Optimizer Se-4
weight decay Weight decay, L2 loss on parameters-Adam Optimizer Se-4
hidden Number of hidden units 32
K Number of attention-Multiheaded Attention 8
dropout Dropout rate 0.5
batchSize 32

trainAttention Train attention weight or not True
dataset-name Name of the dataset

validation-size Validation dataset size (percentage of training dataset) 0.1

44

https://github.com/onurleblebici/DeepLinker-ESG

CHAPTER 5

Evaluation

SEAL-ESG and DeepLinker-ESG link prediction approaches are performed on
Software models, Bank Account, Student Attendance, Email and ISELTA drawn by ESG
Tool. The studies performed to predict possible missing links on a given ESG. In addition,

results and discussion, threats to validity is explained in this section.

5.1. Experiments

The experiment steps can be listed as follows: preparing the environment,
determining node features and creating an embedding file to find node feature, parsing
the files with mxe extension, transforming them into files containing the edge and node
information of the graph, and training the model using these output files.

First step is to prepare the environment. The hardware configuration of the
computer used in experiments is presented in Table 5.1. Required installations is listed in
Table 5.2. Installed Python libraries are given in Table 5.3. Git repositories to be cloned
are listed in Table 5.4.

Table 5.1. Computer Hardware Specifications

CPU Intel(R) Core (TM) i7-9750H CPU @ 2.60GHz

RAM 16 GB, 2667 Mhz

Disk PM981 NVMe Samsung 512 GB

GPU NVIDIA GeForce GTX 1650, Dedicated GPU memory 4.0 GB

Table 5.2. Required Installations

Ubuntu 20 Operating System

Python 3.8/2.7 Python is an interpreted, high level and general purpose programming
language.

CUDA Toolkit 11 CUDA is a parallel computing platform and programming model that makes

using a GPU for general purpose computing

Conda 4.8.4 Package management and environment management system

45

Library Name
python
pytorch

torch

numpy

scipy
networkx
tqdm

sklearn
gensim
tensorboardX

future

Repository Name
SEAL-ESG
DeepLinker-ESG

mxeParser-ESG

Table 5.3. Required Python Libraries

SEAL-ESG Version
3.8x

1.6

1.18.1

1.4.1

24

4.42.1

0.0

3.83

2.1

DeepLinker-ESG Version
2.7.x

1.4

1.16.6

1.2.3

2.2

0.0

2.1
0.18.2

Table 5.4. Required Git Repositories

Repository URL

https://github.com/onurleblebici/SEAL-ESG

https://github.com/onurleblebici/DeepLinker-ESG

https://github.com/onurleblebici/mxeParser-ESG

Second step is determining the node features, which defines the node best. This is

a manual process depending on ESGs under consideration because different domain may

require different kinds of node features. The chosen features for the evaluation are listed

in Table 5.5. and they are determined as generic as possible for a regular application.

Mapping table used for the conversion of node names to node features is listed in Table

5.6. This is a manual process. Table 5.6 should be stored row by row in a file with txt

extension, separated by commas. The first column specifies the numeric identifier of the

feature, the second column contains the friendly name of the feature, and the other

columns hold regular expressions to be used for node name matching. A sample line

belonging to an embeddings.txt file is defined as: "2, Info, confirm*, prompt*, receive *".

Node feature distribution of all dataset is given in Table 5.7.

46

https://github.com/onurleblebici/SEAL-ESG
https://github.com/onurleblebici/DeepLinker-ESG
https://github.com/onurleblebici/mxeParser-ESG

Numeric Identifier of The Node Feature

O 0 9 N n Bk~ W

10
11
12
13
14
15
16
17
18
19
20

WN = O

N S e A

Name
[,]
Error
Info
Input

Help
Save
Edit
Add

Table 5.5. Node Features

[.]

Error
Info
Input
Help
Save
Edit
Add

Ok
Cancel
Process
Calculate
Validate
Navigate
Delete
Get
Load
Select
Print
Access

View

Table 5.6. Node Name to Node Feature Mappings

Regular Expressions (Matching Node Names)
[]

€rror

info, confirm, prompt, receive

Friendly Name of the Node Feature

input, data, characteristics, contingents, prices, special, change, enter, pay*,

~free, read

help

save, send, put, take, submit
edit, update

add, new, compose, create

(cont. on next page)

47

Table 5.6. (cont.)

8 Ok ok

9 Cancel cancel

10 Process process, encrypt, sign, server*, returnMoney
11 Calculate calculate

12 Validate validation, verify

13 Navigate navigate, link, overview, continue, pause, finish, release
14 Delete delete

15 Get get, open, request

16 Load load

17 Select select

18 Print print

19 Access log*in, log, sing*in, access

20 View view, trace, monitor

Table 5.7. Node Feature Distribution of Dataset

0|12 |3|4]|5]|6]7|8]|9]|10|11|12|13(14(15(16(17|18[19]|20
SlalE| 2§

—| . - 38|38 | =8 Blels

JHHEEHEERHHHEEHEHEREEHE
ISELTA 2 5 0] 19| O] 5| 2| 1| 3| 6/ Of Of 3[20] 0] O] O] O] O] 2| O
Student Attendance System| 26| 0| 47| 48| 0| 43]|81|17| 0| 0| 5| 0| 0| 0| 8|43 0f[51| 0] 30|48
Bank Account 16(8| 18| 28| 0| 16| 0| 0| Of10(Oof of of O] O|16] O|16] O] O] O
Email 26| 0| 54| 40 of 13 o[13| o] 0] 2| O] O] O] 0|13] 0|13 Of Of O

Third step is generation of dataset. mxe parser application and mxe files can be
found in mxeParser-ESG git repository, given in Table 5.4. Available arguments of the
mxe_parser application is listed in Table 5.8. Details of graphical models used in this

thesis are given in Table 5.9.

Table 5.8. Arguments of mxe parser

Argument Explanation
--input Path of the mxe file
--output Prefix name of the output files.

(cont. on next page)

48

Table 5.8. (cont.)

--number-of-node-features Number of node feature will be added to output
--number-of-edge-features Number of edge feature will be added to output

--as-undirected Converts directed graph to undirected graph
--generate-edge-symmetry Generates edge symmetry on adjacency matrix

--embeddings Path of the embeddings file

--tab-to-eol Adds extra tab to end of each line

--add-info-firstline Adds number of edges, nodes and features of them as first line into

relevant output files.

--add-node-labels Adds the node labels to the last column of the nodes output file.
(This is required for DeepLinker-ESG)

--duplicate-node-features If arg > 1 then clones same feature given n times. (This is required

for DeepLinker-ESG to use in attentions)

Table 5.9. Graph Data Details of Dataset Models

Dataset Number of Nodes Number of Edges
ISELTA 68 249
Student Attendance System 50 95
Bank Account 21 38
Email 19 35

Output graphs generated by mxe parser is created as directed (via --as-undirected
False argument). For each mxe input file, application generates three output files, which
are nodes, edges and mappings. Node output file is a tab separated file and each line
represents a node and features of the node except the first line, first line represents the
number of nodes and number of node features that this graph contains. Edge output file
is also a tab separated file, first line represents the number of edges and number of edge
features defined for this graph. Other lines are structured like, first column is the source
node identifier and the second column are the target node identifier for the edge, other
columns represent the features of the edge if exists. Node mapping output file shows the
mappings of nodes defined in ESG and node identifier generated by mxe parser
application. An example input is given in Figure 5.1 and the output files of this input are

given in Figure 5.2.

49

AT T et AT

i Y i . N i Lt Y

| select deposit |——»| deposit —]

pe———— e o J ‘. amourt / \,omee L e
a ., e N ~ ~ ~ v .,
{ [}____qi get balance) [] |
S .Jx/l S - “H"“,J/H - --Hx\ /’Hﬂémefﬂhx\ e - "‘\,ua"“ﬂﬂv\\h_ -
T e f P i L N f take X B

| select withdraw |— [withdraw —

\ \ . money

‘\\ 4/ ‘_ an]oum .r/ ‘\\. .t/

Figure 5.1. Bank Account-Base Product (A Sample ESG)
ankAccountProduct-baseProduct_edges.txt - bankAccountProduct-baseProduct_nodes.txt . bankAccountProduct-baseProduct_node_mappings.txt « 9 [I

utput ankAccountProduct-baseProduct_node_mapr
1 Nodeld MxeCellld MxeCellName

=

3 [] aw [
66 1
92 get balance

(i)

1
2

3 167 select deposit
4 168 put money
5

6

7

8

=}

178 enter deposit amount
185 select withdraw

186 take money

187 enter withdraw amount

PNOM AW NSO
e P .

NENNBONBOSN LW S
ERNNES D B WW AN NS o

Figure 5.2. Generated Output Files of Sample Bank Account-Base Product

Fourth step is to train models. Two different model used in this step; one is SEAL
Framework that uses GCN as neural network model and the other is DeepLinker that uses
GAT as neural network model. To run on isolated environments, conda virtual
environment (detailed information can be reached from

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html)

for each workspace should be created. Before start using the virtual environments for
SEAL-ESG python version should be set to 3.8 and 2.7 for the DeepLinker.

In the original SEAL and DeepLinker projects, extra tuning arguments were
added, add-ons were made to use mxe parser outputs, performance metrics were saved
in csv files and some bug fixes were made. As such, they were published on github as
SEAL-ESG and DeepLinker-ESG. Tuned parameters of SEAL and DeepLinker in

experiments is given in Table 5.10.

50

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

Table 5.10. Parameters used on Experiments

SEAL-ESG DeepLinker-ESG

Batch size X X
Dropout Ratio X X
Number of Hidden Units X X
Learning Rate X X
Number of Epochs X X
Test Ratio X X
Hop X

SortPooling K X

Number of Attention X
Weight Decay X

5.2. Results

Parameter value table for SEAL and DeepLinker is listed in Table 5.11 and Table
5.12, respectively. In case of using combinations of all values entered in the parameter
value table, it is necessary to run too many iterations. These combinations result in 576
iteration for SEAL and 648 iteration for DeepLinker. First five parameters (batch size,
dropout, hidden units, learning rate, number of epochs) of each model are same, and those
parameters are common for many neural networks.

Therefore, default values defined by the authors (SEAL by Zuhan, DeepLinker
by Villafly) are used to decrease to total number of iterations to be run. For the remaining
parameters (hop, max nodes per hop, sortpooling K parameters for SEAL and number of
attentions and weight decay for DeepLinker), combinations of given values are
considered. The values of parameters used in each iteration for the training of SEAL and

DeepLinker models are listed in the Table 5.11. and Table 5.12. respectively.

51

Table 5.11. SEAL Parameters on Each Iteration (*batch-size 40 is for email dataset)

Iteration

o S NN SN YU AN W N~

W W W NN NN N NN NN NN N NN NN NN NN
N N @S 0 0 N & U AW N NS YD N SN RN WD N

Batch Size

*

(o
S

25
10

50%*
25
10

50%*
25
10

50*
25
10

50%*
25
10

50%*
25
10

50*
25
10

50*
25
10

Dropout

0.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

Hidden

Units

128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

SEAL-ESG

Learning
Rate

0.001
0.001
0.001
0.001
0.0005
0.0005
0.0005
0.0005
0.0001
0.0001
0.0001
0.0001
0.001
0.001
0.001
0.001
0.0005
0.0005
0.0005
0.0005
0.0001
0.0001
0.0001
0.0001
0.0005
0.0005
0.0005
0.0005
0.0001
0.0001
0.0001
0.0001

Hops

N N RN N N N N N N N N N N N NN N N N N N N N N N N N N N N N~

Sortpooling

k

0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

Test Ratio

ARSI R S A I e S i e R I A R S A S S A R S S R RS S SR RS R RIS N RS RS
[CRINN \CRENN SRR O \CREN CHI CRI R SRR R U SRR S U SRR SRR SRR SRR SR SR R RN U SR SR \CRR SR SR U SRR SR R Y

52

Table 5.12. DeepLinker Parameters on Each Iteration

DeepLinker-ESG

=
8
2 2 g 2
= g - E S " 2 S 3]
g & 2 =) £ < - 5 a
= = £ g = S 5 M R =
= 3} o Q oY) o R <=
2 = a e = m 5 8 2D
b~ m o & 3 —~ o
s - g =
=
Z
1 16 0.5 32 0.001 50 2 0.2 0.001
2 16 0.5 32 0.001 50 2 0.2 0.0001
3 16 0.5 32 0.001 50) 0.2 0.001
4 16 0.5 32 0.001 50) 0.2 0.0001
5 16 0.5 32 0.0001 50 2 0.2 0.001
6 16 0.5 32 0.0001 50 2 0.2 0.0001
7 16 0.5 32 0.0001 50 8 0.2 0.001
8 16 0.5 32 0.0001 50 8 0.2 0.0001
9 16 0.5 32 0.0005 50 2 0.2 0.001
10 16 0.5 32 0.0005 50 2 0.2 0.0001
11 16 0.5 32 0.0005 50 8 0.2 0.001
12 16 0.5 32 0.0005 50 8 0.2 0.0001
13 32 0.5 32 0.001 50 2 0.2 0.001
14 32 0.5 32 0.001 50 2 0.2 0.0001
15 32 0.5 32 0.001 50) 0.2 0.001
16 32 0.5 32 0.001 50) 0.2 0.0001
17 32 0.5 32 0.0001 50 2 0.2 0.001
18 32 0.5 32 0.0001 50 2 0.2 0.0001
19 32 0.5 32 0.0001 50) 0.2 0.001
20 32 0.5 32 0.0001 50) 0.2 0.0001
21 32 0.5 32 0.0005 50 2 0.2 0.001
22 32 0.5 32 0.0005 50 2 0.2 0.0001
23 32 0.5 32 0.0005 50) 0.2 0.001
24 32 0.5 32 0.0005 50) 0.2 0.0001

Best performed results of SEAL-ESG iterations of the all datasets are listed in
Table 5.13. Performance of the SEAL-ESG trainings for each iteration measured by loss,
accuracy and auc. Graphical representation of best performed iteration metrics are also

listed in Table 5.13. The rest of the iteration results are given in APPENDIX A.

53

Table 5.13. SEAL Best Performed Iteration Results

SEAL-ESG —Best Iteration Results on Datasets

- =
§ "g Training Validation Test
S é loss acc auc loss ace auc loss ace auc
Iselta 5 0.360 0.856 0.921 0306 0.875 0.957 0.462 0.800 0.884
Student 2 0.467 0.840 0.862 0.721 0.667 @ 0.500 @ 0.613 0.719 0.740
Bank 4 0.331 0.868 0932 0451 0800 NaN 0.617 0.786 0.755
Email 4 0.085 0977 NaN 0.085 NaN = NaN | 0.378 0900 0.920

Results of DeepLinker -ESG iterations of the all datasets are listed in below tables.
Performance of the DeepLinker-ESG trainings for each iteration measured by loss,
accuracy and auc (only available for test). Graphical representation of best performed
iteration metrics are also listed in Table 5.14. The rest of the iteration results are given in

APPENDIX B.

Table 5.14. DeepLinker Best Performed Iteration Results

DeepLinker-ESG —Best Iteration Results on Datasets

- =
% '*; Training Validation Test
S = loss acc auc loss acc auc loss acc auc
Iselta 8 0.693 0.552 NaN 0.652 0.875 NaN 0.688 0.594 0.587
Student 8 0.684 0.574 0.000 0.646 = 0.571 0.000 0.683 0.625 0.625
Bank 8 0.675 0.643 NaN 0.671 0.667 NaN 0.681 0.781 0.703
Email 8 0.676 = 0.594 0.000 0.668 @ 1.000 0.000 0.687 0.607 0.577

5.3. Discussion

In this thesis, the experiments are performed on the datasets explained above.
Each of these software models have their own specific domain and the components of

these software models are observed to contain certain patterns. It is considered that these

54

patterns can be revealed through graph neural networks, which are specialized for the
graph structured data. The experiments are performed under these considerations.

First impressions of the experimental results are as follows: when examining the
results of the experiments performed on different datasets using SEAL and DeepLinker
applications which are using two different variations of GNN and they use completely
different architectural designs. SEAL uses DGCNN as a GNN model under the hood. It
converts the link existence problem into a sub-graph classification problem by dividing a
given graph into its sub-graphs (with samples created with negative and positive
neighbors for each node). It performed much better than DeepLinker (uses GAT as a
GNN model), which tries to solve the link existence problem by learning the hidden
representations of nodes' relations with their neighbors.

Before evaluating the experimental results, it is necessary to briefly mention how
the metrics are used in evaluating the results. Auc (area under curve) can be considered
as summary of the model performance and gives the distribution of classes within the
dataset for all classification thresholds. The wider the area under the roc (receiver
operating characteristic) curve, the higher the model's ability to distinguish classes. Auc
value of 0.5 means random estimation, the closer this value is to 1, the higher the model's
ability to distinguish between classes. Acc (accuracy) is the basic performance metric that
expresses how many of the observations made as a result of the model are correct, but
most of the cases it is not sufficient to measure the performance of the model alone (for
example, where the distribution of the dataset between classes is not balanced). Loss
(cross entropy) gives the difference between the estimation made by the model and the
actual value. Classification results generated by a neural network falls into [0,1] interval
for each class. Based on the given input values to the neural network model, it assigns a
value between [0,1] for each class. Among these assigned values, the class with the
highest value or above the specified threshold is taken as the result. While the accuracy
metric evaluates the results as true or false, the loss metric measures how far the value

assigned by the model for the correct class is from 1.

55

SEAL-ISELTA-Parameter-Training Performance Effect

SEAL-ISELTA-Parameter-Test Performance Effect

== training_loss == training_acc training_auc = test loss == test acc test_auc
100 100
075 W 075
Y ”><
- ‘//_J\\/\J\/\J\ -
025 025
0.00 0.00

iteration

SEAL-StudentAttendance-Parameter-Train Performance Effect

5 10 15 20 25 30

iteration

SEAL-StudentAttendance-Parameter- Test Performance Effect

== fraining_loss == training_acc training_auc == tes{_loss == test_acc test_auc
100 100
ors ors A,
050 050
025 025
ooo ooo
5 10 15 20 25 30 5 10 15 20 25 30

iteration

SEAL-BankAccount-Parameter- Training Performance Effect

== training_loss == training_acc training_auc

iteration

SEAL-BankAccount-Parameter- Test Performance Effect

= test loss == test acc

A

test_auc

050 04
025 02
ooo L)

5 10 15 20 25 30

iteration

SEAL-Email-Parameter-Training Performance Effect

iteration

SEAL-Email-Parameter-Test Performance Effect

= fraining_loss == training_acc fraining_auc = test_loss = lest_acc 1est_auc
1.00 1.00
075 /_\/_/- o7s /
—_—— —_— —
\/ \
0.50 0.50
025 025
0.00 0.00
5 10 15 20 25 30 5 10 15 20 25 30

iteration

iteration

Figure 5.3. SEAL Performance Effects of Parameter Changes on Each Iteration

The performance outputs of the parameters used in SEAL iterations is given in

Figure 5.3. Regardless of the size of the datasets, iterations 9, 21 and 29 show the worst

performance. As the dataset size getting smaller, performance began to be negatively

affected in all iterations between 17-32. When looking at the effects of the hop parameter

56

changes on performance, it can be said that all the first-order neighbors of a component
belonging to a software model, the representation is learned best by DGCNN. A special
case occurs in the 16th iteration, setting the batch size to minimum value 1 and learning
rate to 0.001 (which is the biggest learning rate used in experiments) even the model
overfits in large datasets, small positive effect was observed on performance in small
datasets. When the iterations with the best results are examined, the performance is higher
in the iterations 1, 2, 5, 8, 11 and 26 in large datasets, while the iterations 3, 4, 7, 12 and
16 showed higher performance in smaller iterations. When the results are examined in
general, it has been observed that giving the batch size value as 1 increases the possibility
of overfitting. It has been observed that changing the batch size value and the learning
rate values inversely increases the performance. As the size of the dataset grows, using a

larger value batch size and a smaller learning rate affects the performance positively.

57

DeepLinker-ISELTA-Parameter- Training Performance Effect
== fraining_loss == training_acc

100

025

0.00

iteration

DeepLinker-Student-Parameter- Training Performance Effect
== fraining_loss == training_acc

1.00

000

DeepLinker-ISELTA-Parameter- Test Performance Effect

= test loss == test acc test_auc

100

DeeplLinker-Student-Parameter- Test Performance Effect

== fest loss == test acc test_auc

08

D Y R Y, 2 NG
UGJ\/_\/«J\/\/’_‘\\/_/\/,

02

0o

iteration

DeepLinker-Bank-Parameter- Training Performance Effect

= training_loss == training_acc

1.00
- %
050

iteration

DeepLinker-BankAccount-Parameter- Test Performance Effect

= test loss = test_acc test_auc

100

A Lo

DeepLinker-Email-Parameter- Training Performance Effect
== {raining_loss == training_acc

100

050

DeepLinker-Email-Parameter- Test Performance Effect

== test loss == test acc test_auc

100

ors

:fcﬁvi/\/é\ﬁ‘*

iteration

iteration

Figure 5.4. DeepLinker Performance Effects of Parameter Changes on Each Iteration

When the parameters used in DeepLinker iterations and the performance outputs

of these parameters are compared in Figure 5.4, performance is distributed around 0.5,

which is closed to random estimation, even if the tunings performed by changing the

parameters, it makes a +-10% performance changes. While the model was being trained,

58

the distribution of the dataset between negative and positive classes (negative meaning
no link and positive meaning there is a link between nodes) was made equally and at the
same time, the distribution within batches was adjusted to be equal. In such a result, it
can be thought that software models are relatively small models and there is not enough
data for GAT to learn the relationships between nodes. When the datasets used in the
article where GAT model is used for link prediction are examined, it is seen that large
scale graphs are used. For example, the cora dataset used in the article [18] consists of
2708 nodes, 5429 edge and 1433 node features. On the other hand, ISELTA, which is the

largest dataset used in this thesis, has 68 nodes, 249 edge and 1 node feature.

Dataset Size Performance Effect
== test_|oss == test_auc

1.00

075 ————
/’\

0.50

025

0.00
50 100 150 200 250

Mumber Of Edges

Figure 5.5. SEAL — Dataset size Performance Effect

As expected, as the size of the dataset increases, the learning and prediction
performance of the model also increases as shown in Figure 5.5. On average, when the
size of the dataset is increased from 100 to 250, the loss value decreases by 30% and the
auc value increases by 12%. Dataset sizes have been listed in Table 5.9.

Experiments on two different machine learning models with 4 different datasets
have shown that one of the best ways to understand how components used in software
models is to form a pattern with neighboring components through the sub-graphs (in other
words, micro-models) they create with the neighboring components, but not through the
attributes of the component and the attributes of its neighboring components. In this way,

even with relatively small datasets, success can be achieved.

59

One of the disadvantages of SEAL is that when a disconnected graph is given, it
is not possible to make edge prediction from scratch (without any edge definition) since
it cannot generate sub-graphs for this graph. However, this is possible with GNN model,
which learns the feature representation of these nodes, and performs link prediction by
learning the relationships between the hidden representation of the nodes, not the edges.

As a result, although GAT model showed higher performance than GCN models
in large datasets, realizing graph similarity estimation approach using deep graph
convolutional neural networks results in higher performance in predicting connections

between components of software models.

S.p.)e;:\al N
[— - = add |) (Al)
L Data 1 S S A~

'delete Special [1

e

edit Special } ata 2 ::|

=&

cancel

Figure 5.6. Original Specials ESG

/(" Special \ { \ o

| delete Special | ; |]
save) \
/ / (cancel

cancel

edit Special

Figure 5.7. Specials ESG “edit Special” Node Qualitative Link Predictions

60

i . L
Special
[s :—j—- add

ok

save

Special s D __________‘
el Spece B

cancel

cancel

Figure 5-8 Specials ESG “delete Special” Node Qualitative Link Predictions.

Figure 5.7 and Figure 5.8 shows the qualitative link prediction results for specials
ESG given in Figure 5.6. A SEAL-ESG model is trained using ISELTA dataset. Using
this trained model two link prediction scenarios are executed for the nodes "edit Special"
and "delete Special". Green dotted arrows are the new links predicted by the trained model
those are not defined in original ESG. For the “edit Special” node, link predictions and
the probabilities generated by trained model are listed in Table 5.15 given in the Figure
5.7. For the “delete Special” node, link predictions and the probabilities generated by
trained model are also listed in Table 5.15 given in the Figure 5.8. The results suggested
by the model can be evaluated as follows. There are two new possible connection
suggestions for the ‘edit Special’ node with probabilities %79 and %73. These
suggestions should be taken into consideration by the modeler. In addition, a suggestion
with probability value %49 is presented for the connection between ‘edit Special’ and
‘cancel’. This suggestion may be thought as “don’t care” and the connection can be left
as it is or removed by the discretion of the modeler. For the ‘delete Special’ node, it is
seen that two new connections and one low-probability connection are offered. The
connection from 'cancel' to 'delete Special' has a probability value %31, it may be

considered as to break this existing connection entirely.

61

Table 5.15. Link Predictions Made by the Trained Model

Node Link Probability Of Existence
{[*, ’edit Special’} %79
{ ‘Ok’, ‘edit Special’} %73
= {‘add’, ‘edit Special’} %60
;g {‘edit Special’, ‘save’} %73
";5: {‘edit Special’, ‘SpecialData2’} %78
{“edit Special’, ‘cancel’} %49
{‘cancel’, ‘edit Special’} %73
{*[*, ’delete Special’} %95
{“delete Special’, ‘Ok’} %94
:% {‘delete Special’, ‘Cancel’} %78
% {‘save’, ‘delete Special’} %78
% {*SpecialData2’, ‘delete Special’} %70
= {‘add’, ‘delete Special’} %61
{‘cancel’, ‘delete Special’} %31

5.4. Threats to Validity

Internal Validity: To make the studies in this thesis trustworthy, all the datasets
are selected from different domains and different size of software applications. Two
different GNN models which are applicable to link prediction problem, are selected for
experiments. The performance of these models are measured with different set of
parameter values. All the software applications modeled by ESG and drawn by TSD.

External Validity: It is unlikely to say that proposed method in this thesis will
work on different software modelling tools and methods, even if'it's possible. Considering
a class diagram which is modeled with UML notation, they are heterogenous directed
multi graphs but ESGs are homogenous directed graphs. Connection between classes has

completely different meanings in comparison with ESGs.

62

CHAPTER 6
CONCLUSION AND FUTURE WORK

Enterprise software applications are generally sophisticated. Such systems can
have many sub-systems and components in them. In order to design, configure, update or
implement a software system, the details of the system are required to be understood at
varying levels of management, design, implementation of the system. Typical software
modeling systems may not be able to reduce this complexity for engineers. Predicting the
connections between software components has great importance in modelling. From the
software engineering perspective, deciding and connecting components with each other
require significant effort. It is also error prone. Instead of putting all the workload on the
software engineer, giving some recommendation can help engineers with modeling the
composition and interaction of components in a software system.

The method proposed in this thesis is to help software engineers on software
modelling. The modeling technique used in this thesis is ESG, which is used to model
transition between GUI components. The goal of this thesis is to propose a method that
finds missing or forgotten transitions between components defined in ESG. Graph neural
network models (GNN) are used to solve this problem. Selected GNN variations are graph
convolutional neural networks (GCN) and graph attention neural networks (GAT). Steps
of the process to find missing links between components are listed as follows: (i) find the
ESG models, (ii) transform ESG models into graph structured data and extract features
of the components, (iii) train the GNN model, (iv) evaluate the performance of the trained
model. Experiments are performed on different datasets with different GNN models. The
results show that there are hidden patterns between ESG components. It is possible to
extract them over machine learning algorithms, which are specialized for graphs, and
make recommendations on missing links or edges of the graph-based system model.

This thesis is focused on ESG models to find missing links between components.
Four datasets are used in this study. Diversifying datasets and evaluating their results in
larger datasets could be the of the subject to future studies. There are many software
modelling tools and methods in literature. Other methods used for software modeling
could be worked on in the future. As another application area, it can be used to increase

the accuracy of models created automatically with the ripping method.

63

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

G. ROZENBERG, Handbook of graph grammars and computing by graph
transformation. World Scientific, 1997.

F. Belli, “Finite state testing and analysis of graphical user interfaces,” in
Proceedings 12th International Symposium on Software Reliability Engineering,
Hong Kong, China, 2001, pp. 34-43, doi: 10.1109/ISSRE.2001.989456.

F. Belli, C. J. Budnik, and L. White, “Event-based modelling, analysis and testing
of user interactions: approach and case study,” Softw. Test. Verification Reliab., vol.
16, no. 1, pp. 3-32, Mar. 2006, doi: 10.1002/stvr.335.

D. Liben-Nowell and J. Kleinberg, “The Link-Prediction Problem for Social
Networks,” p. 23.

L. A. Adamic and E. Adar, “Friends and neighbors on the Web,” Soc. Netw., vol.
25, no. 3, pp. 211-230, Jul. 2003, doi: 10.1016/S0378-8733(03)00009-1.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed Membership
Stochastic Blockmodels,” p. 34.

Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques for
Recommender Systems,” Computer, vol. 42, no. 8, pp. 30-37, Aug. 2009, doi:
10.1109/MC.2009.263.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A Review of Relational
Machine Learning for Knowledge Graphs,” ArXivi50300759 Cs Stat, Sep. 2015,
doi: 10.1109/JPROC.2015.2483592.

J.-B. Cordonnier and A. Loukas, “Extrapolating paths with graph neural networks,”
ArXivi90307518 Cs Stat, Mar. 2019, Accessed: Oct. 13, 2020. [Online]. Available:
http://arxiv.org/abs/1903.07518.

T. Oyetunde, M. Zhang, Y. Chen, Y. Tang, and C. Lo, “BoostGAPFILL: improving
the fidelity of metabolic network reconstructions through integrated constraint and
pattern-based methods,” Bioinformatics, p. btw684, Oct. 2016, doi:
10.1093/bioinformatics/btw684.

F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini, “The
Graph Neural Network Model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 61—
80, Jan. 2009, doi: 10.1109/TNN.2008.2005605.

64

[12] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning Convolutional Neural Networks
for Graphs,” ArXivi60505273 Cs Stat, Jun. 2016, Accessed: Oct. 22, 2020. [Online].
Available: http://arxiv.org/abs/1605.05273.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering,” ArXivI60609375 Cs Stat, Feb.
2017, Accessed: Oct. 15, 2020. [Online]. Available:
http://arxiv.org/abs/1606.09375.

[14] J. Zhang, X. Shi, J. Xie, H. Ma, L. King, and D.-Y. Yeung, “GaAN: Gated Attention
Networks for Learning on Large and Spatiotemporal Graphs,” ArXivi80307294 Cs,
Mar. 2018, Accessed: Oct. 22, 2020. [Online]. Available:
http://arxiv.org/abs/1803.07294.

[15] P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Li0, and Y. Bengio, “Graph
Attention Networks,” ArXiv1 71010903 Cs Stat, Feb. 2018, Accessed: Oct. 15, 2020.
[Online]. Available: http://arxiv.org/abs/1710.10903.

[16] M. Zhang and Y. Chen, “Weisfeiler-Lehman Neural Machine for Link Prediction,”
in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax NS Canada, Aug. 2017, pp. 575-583, doi:
10.1145/3097983.3097996.

[17] M. Zhang and Y. Chen, “Link Prediction Based on Graph Neural Networks,” p. 18.

[18] W. Gu, F. Gao, X. Lou, and J. Zhang, “Link Prediction via Graph Attention
Network,” ArXivi91004807 Cs, Oct. 2019, Accessed: Oct. 13, 2020. [Online].
Available: http://arxiv.org/abs/1910.04807.

[19] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” Psychol. Rev., vol. 65, no. 6, pp. 386—408, 1958, doi:
10.1037/h0042519.

[20] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and classification,” IEEE
Trans. Neural Netw., vol. 3, no. 5, pp. 683—-697, Sep. 1992, doi: 10.1109/72.159058.

[21] Y. LeCun, Y. Bengio, and T. B. Laboratories, “Convolutional Networks for Images,
Speech, and Time-Series,” p. 15.

[22] S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget, “Recurrent Neural Network
Based Language Modeling in Meeting Recognition,” p. 4.

[23] J. L. ELMAN, “Finding structure in time,” 1990.

[24] S. Hochreiter and J. Schmidhuber, “LONG SHORT-TERM MEMORY,” 1997.

65

[25] H. Bourlard, “Auto-association by multilayer perceptrons and singular value
decomposition,” 2000.

[26] 1. Goodfellow et al., “Generative Adversarial Nets,” p. 9.

[27] F. Harary and G. Gupta, “Dynamic graph models,” Math. Comput. Model., vol. 25,
no. 7, pp. 79-87, Apr. 1997, doi: 10.1016/S0895-7177(97)00050-2.

[28] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,
“Graph Kernels,” 2010.

[29] N. Shervashidze, “Weisfeiler-Lehman Graph Kernels,” p. 23.

[30] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via
spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129-150,
Mar. 2011, doi: 10.1016/j.acha.2010.04.005.

[31] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An End-to-End Deep Learning
Architecture for Graph Classification,” p. 8, 2018.

[32] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning on
Large Graphs,” p. 19.

[33] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learning with Graph Convolutional
Networks via Importance Sampling,” ArXivIi80110247 Cs, Jan. 2018, Accessed:
Oct. 25, 2020. [Online]. Available: http://arxiv.org/abs/1801.10247.

[34] Z. Lin et al., “A Structured Self-attentive Sentence Embedding,” ArXivi70303130
Cs, Mar. 2017, Accessed: Oct. 25, 2020. [Online]. Available:
http://arxiv.org/abs/1703.03130.

[35] A. Vaswani et al., “Attention is All you Need,” p. 11.

[36] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social
Representations,” Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. -
KDD 14, pp. 701-710, 2014, doi: 10.1145/2623330.2623732.

[37] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-scale
Information Network Embedding,” ArXivi50303578 Cs, Mar. 2015, doi:
10.1145/2736277.2741093.

[38] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco California USA, Aug. 2016, pp. 855—
864, doi: 10.1145/2939672.2939754.

66

[39] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” ArXiv1 60902907 Cs Stat, Feb. 2017, Accessed: Oct. 15,
2020. [Online]. Available: http://arxiv.org/abs/1609.02907.

[40] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-Labeling Graph Neural Network for
Few-Shot Learning,” p. 10.

[41] L. Gong and Q. Cheng, “Exploiting Edge Features for Graph Neural Networks,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, Jun. 2019, pp. 9203-9211, doi: 10.1109/CVPR.2019.00943.

[42] Istvan A. Kovacs et al., “Network-based prediction of protein interactions,” 2019,
doi: https://doi.org/10.1038/s41467-019-09177-y.

[43] B. Shneiderman, Designing the User Interface. 1998.

[44] D. Oztiirk, “A MODEL-BASED TEST GENERATION APPROACH FOR AGILE
SOFTWARE PRODUCT LINES,” M.Sc. Thesis, izmir Institute of Technology,
2020.

[45] T. Tuglular, F. Belli, and M. Linschulte, “Input Contract Testing of Graphical User
Interfaces,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 02, pp. 183-215, Mar. 2016,
doi: 10.1142/S0218194016500091.

[46] Y. Bengio, R. Ducharme, and P. Vincent, “A Neural Probabilistic Language
Model,” p. 7.

[47] M. Zhang, SEAL. 2018.

67

© % N & A w & ~ [Iteration

NN NN NN NN NN N NN NN NN NN
S N AN U AN W NN DS Y SN SN AR W NN

APPENDIX A
SEAL — ESG DATASET RESULTS

Table A.1. SEAL-ESG ISELTA Dataset Iteration Best Results

loss
0.326
0.324
0.341
0.522
0.360
0.358
0.370
0.386
0.639
0.569
0.407
0.390
0.338
0.323
0.341
0.422
0.389
0.326
0.336
0.376
0.594
0.500
0.431
0.332
0.399
0.347
0.364
0.380

Training
acc
0.872
0.880
0.896
0.767
0.856
0.855
0.850
0.837
0.696
0.731
0.825
0.830
0.868
0.884
0.868
0.813
0.836
0.884
0.882
0.851
0.712
0.778
0.811
0.861
0.844
0.865
0.857
0.833

auc

0.934
0.933
0.928
0.813
0.921
0.921
0.914
0.906
0.746
0.809
0.899
0.908
0.932
0.939
0.929
0.882
0.908
0.937
0.931
0.910
0.763
0.853
0.885
0.929
0.906
0.929
0.917
0.911

SEAL-ESG - ISELTA Dataset

loss
0.267
0.317
0.351
0.482
0.306
0.298
0.324
0.339
0.627
0.545
0.336
0.299
0.369
0.384
0.392
0.453
0.429
0.397
0.400
0.410
0.689
0.606
0.492
0.449
0.420
0.377
0.411
0.358

Validation
ace
0.938
0.875
0.906
0.813
0.875
0.875
0.875
0.906
0.719
0.750
0.844
0.906
0.844
0.844
0.844
0.781
0.750
0.844
0.844
0.844
0.688
0.688
0.688
0.813
0.813
0.844
0.844
0.875

auc
0.969
0.949
0.953
0.859
0.957
0.953
0.965
0.961
0.805
0.836
0.945
0.965
0.918
0.922
0.918
0.879
0.871
0.922
0.898
0.922
0.660
0.754
0.848
0.902
0.879
0.918
0.922
0.945

loss
0.474
0.488
0.529
0.461
0.462
0.497
0.531
0.492
0.651
0.565
0.478
0.534
0.549
0.535
0.577
0.683
0.578
0.559
0.604
0.635
0.681
0.641
0.595
0.645
0.568
0.504
0.589
0.548

Test
acc
0.813
0.800
0.738
0.863
0.800
0.800
0.750
0.788
0.688
0.775
0.800
0.750
0.750
0.750
0.738
0.650
0.775
0.738
0.713
0.688
0.588
0.650
0.688
0.688
0.750
0.750
0.750
0.750

auc

0.874
0.866
0.873
0.870
0.884
0.863
0.869
0.896
0.845
0.834
0.874
0.860
0.826
0.832
0.819
0.776
0.795
0.821
0.799
0.801
0.597
0.750
0.794
0.825
0.800
0.849
0.806
0.837

(cont. on next page)

68

29
30
31
32

Table A.1. (cont.)

0.589 0.716 0.760 0.691 0.656 0.637 0.681 0.588
0.534 0.745 0.825 0.625 0.625 0.758 0.645 0.600
0.454 0.793 0.876 0.501 0.750 0.848 0.599 0.675
0.366 0.851 0.918 0.397 0.844 0.918 0.559 0.750

ISELTA Dataset Training Performance - lteration 1

== 055 == acc auc

1.00

075

050 2=

025

0.00

10 20 30 40 50

epoch

Figure A.1. SEAL - ISELTA Dataset — Training — Iteration.1

ISELTA Dataset Validation Performance - Iteration 1
== |05 == acc auc

1.00

075

050

025

0.00

10 20 a0 40 50

epoch

Figure A.2. SEAL - ISELTA Dataset — Validation — Iteration.1

0.573
0.714
0.781
0.839

69

© % N & A @ ot ~ [Iteration

NN NN NN NN
N N N W NN NS

ISELTA Dataset Test Performance - Iteration 1

= ACC auc

1.00
075 W
050
025

0.00

10 20 30 40 50

epoch

Figure A.3. SEAL - ISELTA Dataset — Test — Iteration.1

Table A.2. SEAL-ESG Bank Account Dataset Iteration Best Results

SEAL-ESG - Bank Account Dataset
Training Validation Test
loss ace auc loss acc auc loss acc
0.380 0.880 0.903 0.695 0.400 NaN 0.646 0.786
0.329 0.880 0.924 0.696 0.400 NaN 0.665 0.786
0.261 0.900 0.964 0.745 0.600 NaN 0.659 0.786
0.331 0.868 0.932 0.451 0.800 NaN 0.617 0.786
0.457 0.820 0.896 0.686 0.400 NaN 0.658 0.643
0.387 0.860 0.907 0.687 0.400 NaN 0.660 0.786
0.317 0.880 0.932 0.711 0.400 NaN 0.654 0.786
0.363 0.887 0.921 0.734 0.400 NaN 0.630 0.786
0.644 0.780 0.844 0.678 NaN NaN 0.675 0.643
0.609 0.780 0.810 0.679 NaN NaN 0.663 0.643
0.473 0.840 0.916 0.683 0.600 NaN 0.657 0.643
0.427 0.849 0.876 0.701 0.400 NaN 0.646 0.786
0.400 0.880 0.920 0.616 0.600 NaN 0.702 0.500
0.371 0.880 0.925 0.519 0.800 NaN 0.702 0.500
0.261 0.900 0.968 0.465 0.600 NaN 0.720 0.500
0.471 0.811 0.874 0.330 0.800 NaN 0.601 0.714
0.476 0.820 0.885 0.653 0.600 NaN 0.701 0.571

auc
0.714
0.673
0.796
0.755
0.673
0.694
0.776
0.694
0.694
0.673
0.714
0.714
0.449
0.510
0.592
0.735
0.388

(cont. on next page)

70

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Table A.2. (cont.)
0.438 0.860 0.883 0.605 0.600 NaN 0.699 0.571
0.343 0.880 0.942 0.533 0.600 NaN 0.710 0.500
0.263 0.906 0.961 0.362 NaN NaN 0.706 0.571
0.609 0.740 0.825 0.728 0.000 NaN 0.700 0.500
0.589 0.860 0.844 0.724 0.400 NaN 0.700 0.571
0.537 0.820 0.839 0.718 0.600 NaN 0.703 0.571
0.458 0.849 0.864 0.534 0.600 NaN 0.703 0.500
0.555 0.820 0.846 0.671 0.600 NaN 0.694 0.571
0.481 0.820 0.862 0.623 0.800 NaN 0.695 0.571
0.393 0.860 0.899 0.532 0.800 NaN 0.699 0.500
0.427 0.830 0.901 0.418 0.800 NaN 0.695 0.500
0.643 0.680 0.812 0.722 0.000 NaN 0.695 0.500
0.630 0.800 0.838 0.722 0.000 NaN 0.695 0.571
0.586 0.760 0.828 0.729 0.400 NaN 0.696 0.571
0.494 0.811 0.864 0.586 0.800 NaN 0.695 0.500

Bank Account Dataset Training Performance - lteration 2
== |05 == ACC auc

1.00

AN N

075 “‘W'\/J

050

0.25

0.00
10 20 a0 40 50

epoch

Figure A.4. SEAL — Bank Account Dataset — Training — Iteration.2

0.449
0.490
0.490
0.367
0.408
0.408
0.429
0.449
0.449
0.469
0.551
0.510
0.469
0.408
0.449

71

Bank Account Dataset Validation Performance - Iteration 2
== loss == 3Qcc

1.25

1.00
075

050

025 —\ f

0.00

10 20 30 40 50

epoch

Figure A.5. SEAL — Bank Account Dataset — Validation — Iteration.2

Bank Account Dataset Test Performance - lteration 2

== ACC auc
o S\
= _J
X
06 F/_ /
7

04

02

0.0

10 20 30 40 50

epoch

Figure A.6. SEAL — Bank Account Dataset — Test — Iteration.2

72

© % N ™ A w & ~ [teration

W W W NN NN NN NN NN NN NN NN NN NN
N N S 0 & N & YU A W N NS S YN SN RN N

Table A.3. SEAL-ESG Email Dataset Iteration Best Results

loss
0.454
0.400
0.150
0.085
0.588
0.560
0.369
0.146
0.676
0.668
0.658
0.523
0.627
0.617
0.468
0.487
0.650
0.652
0.599
0.428
0.674
0.664
0.675
0.595
0.661
0.648
0.622
0.606
0.673
0.665
0.671
0.630

Training
acc
0.825
0.920
0.975
0.977
0.775
0.840
0.900
0.955
0.725
0.720
0.750
0.795
0.775
0.760
0.875
0.818
0.750
0.840
0.800
0.818
0.675
0.720
0.725
0.705
0.725
0.760
0.700
0.773
0.675
0.720
0.675
0.750

auc
0.877
0.936
0.997
NaN
0.827
0.929
0.947
0.998
0.764
0.865
0.835
0.835
0.754
0.821
0.880
0.837
0.777
0.885
0.815
0.888
0.719
0.827
0.764
0.806
0.749
0.821
0.782
0.769
0.682
0.827
0.704
0.754

SEAL-ESG — Email Dataset

loss
0.326
0.371
0.074
0.085
0.541
0.565
0.270
0.022
0.674
0.671
0.647
0.391
0.690
0.673
0.371
0.559
0.688
0.680
0.650
0.522
0.693
0.691
0.691
0.689
0.690
0.689
0.621
0.657
0.689
0.689
0.689
0.689

Validation
acc
NaN
NaN
NaN
NaN
0.750
0.750
NaN
NaN
0.500
0.500
0.750
NaN
0.750
0.750
0.750
0.750
0.750
0.750
0.750
0.750
0.500
0.500
0.750
0.750
0.750
0.750
0.750
0.750
0.750
0.750
0.750
0.750

auc
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
0.750
0.750
NaN
NaN
0.750
0.750
0.750
NaN
0.500
0.500
0.750
0.750
0.750
0.750
0.750
0.750
0.750
0.500
0.750
0.750

loss
0.588
0.573
0.454
0.378
0.659
0.631
0.608
0.470
0.682
0.678
0.675
0.638
0.679
0.675
0.666
0.599
0.683
0.690
0.666
0.678
0.693
0.695
0.688
0.689
0.684
0.689
0.689
0.635
0.692
0.693
0.691
0.688

Test
acc
0.600
0.900
0.700
0.900
0.600
0.700
0.700
0.700
0.600
0.600
0.600
0.600
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.500
0.500
0.600
0.500
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.600

auc
0.880
0.800
0.880
0.920
0.880
0.800
0.800
0.920
0.880
0.840
0.800
0.800
0.600
0.600
0.640
0.920
0.600
0.560
0.800
0.800
0.640
0.640
0.680
0.760
0.840
0.760
0.760
0.840
0.600
0.560
0.600
0.880

73

Email Dataset Training Performance - lteration 2

== |0§5 == acc auc

1.00
075 :

- NW\—/\/

J/Vr
050
025
0.00

10 20 30 40 50
epoch

Figure A.7. SEAL — Email Dataset — Training — Iteration.2

Email Dataset Validation Performance - Iteration 2

== |oss == acc

1.00 //

075

050

025

0.00

10 20 30 40 50

epoch

Figure A.8. SEAL — Email Dataset — Validation — Iteration.2

Email Dataset Test Performance - Iteration 2

== ACC auc

050
025
0.00
10 20 30 40 50
epoch

Figure A.9. SEAL — Email Dataset — Test — Iteration.2

74

© % N ™ A w & ~ [teration

W W W NN NN NN NN NN NN NN NN NN NN
N N S 0 & N & YU A W N NS S YN SN RN N

Table A.4. SEAL-ESG Student Attendance Dataset Iteration Best Results

loss
0.451
0.467
0.241
0.319
0.553
0.563
0.508
0.321
0.660
0.644
0.573
0.510
0.261
0.119
0.174
0.382
0.519
0.404
0.155
0.110
0.645
0.625
0.600
0.350
0.567
0.456
0.257
0.289
0.649
0.649
0.616
0.379

Training
acc
0.800
0.840
0.909
0.862
0.720
0.720
0.764
0.879
0.600
0.670
0.736
0.776
0.910
0.970
0.936
0.836
0.770
0.830
0.955
0.966
0.680
0.690
0.691
0.853
0.720
0.820
0.909
0.888
0.680
0.690
0.700
0.836

SEAL-ESG - Student Attendance Dataset

auc
0.875
0.862
0.968
0.935
0.788
0.779
0.830
0.937
0.747
0.761
0.790
0.849
0.968
0.996
0.985
0.913
0.847
0.901
0.993
0.991
0.739
0.770
0.770
0.934
0.800
0.882
0.969
0.950
0.729
0.718
0.759
0.924

loss
0.564
0.721
0.473
0.416
0.719
0.708
0.702
0.408
0.721
0.721
0.716
0.537
0.498
0.507
0.389
0.605
0.520
0.558
0.289
0.371
0.683
0.665
0.603
0.545
0.613
0.621
0.388
0.456
0.705
0.686
0.664
0.593

Validation
acc
0.667
0.667
0.833
0.917
0.583
0.583
0.583
1.000
0.333
0.417
0.667
0.750
0.833
0.833
0.833
0.833
0.750
0.833
0.917
0.917
0.583
0.667
0.750
0.833
0.667
0.833
0.917
0.833
0.500
0.500
0.583
0.833

auc
0.844
0.500
0.906
0.906
0.719
0.625
0.813
1.000
0.563
0.594
0.563
0.813
0.875
0.844
0.938
0.906
0.781
0.750
1.000
0.938
0.719
0.688
0.750
0.781
0.719
0.719
0.938
0.844
0.750
0.750
0.781
0.750

loss
0.680
0.613
0.674
0.665
0.676
0.683
0.684
0.682
0.687
0.683
0.661
0.652
0.689
0.691
0.690
0.689
0.687
0.687
0.689
0.660
0.693
0.692
0.690
0.691
0.684
0.691
0.650
0.653
0.694
0.692
0.692
0.692

Test
ace
0.656
0.719
0.719
0.719
0.688
0.625
0.688
0.688
0.563
0.656
0.750
0.656
0.656
0.688
0.719
0.594
0.656
0.594
0.719
0.719
0.531
0.500
0.563
0.656
0.594
0.594
0.688
0.688
0.500
0.500
0.531
0.625

auc
0.709
0.740
0.764
0.803
0.689
0.824
0.773
0.826
0.686
0.697
0.732
0.717
0.658
0.695
0.734
0.623
0.660
0.682
0.715
0.709
0.605
0.607
0.639
0.684
0.645
0.619
0.725
0.740
0.588
0.602
0.576
0.672

75

Student Attendance Dataset Training Performance - lteration 2
== 0SS == 3ACC auc

1.00

0.25

0.00

10 20 30 40 50

epach

Figure A.10. SEAL — Student Attendance Dataset — Training — Iteration.2

Student Attendance Dataset Validation Performance-lteration 2
== |055 == acc auc

1.00

075 w
0.50)
I.'"I \ J

0.25

0.00

10 20 30 40 50

epoch

Figure A.11. SEAL — Student Attendance Dataset — Validation — Iteration.2

Student Attendance Dataset Test Performance - Iteration 2
== ACC auc

08

—
08 _/M
04

02

0.0
10 20 30 40 50

epoch

Figure A.12. SEAL — Student Attendance Dataset — Test — Iteration.2

© % 9 & »n & W o = Iteration

N N N NN e e e s m m m m m
A W N = © O ® O & U A WN = O

APPENDIX B

DEEPLINKER - ESG DATASET RESULTS

Table B.1. DeepLinker-ESG ISELTA Dataset Iteration Best Results

loss
0.690
0.693
0.692
5.274
0.692
2.767
0.691
0.693
0.693
0.693
0.691
0.612
0.691
0.679
0.692
0.652
0.691
0.691
0.674
0.747
0.519
0.692
0.637
0.707

Training
acc
0.553
0.502
0.542
0.539
0.547
0.561
0.530
0.552
0.547
0.517
0.531
0.642
0.555
0.613
0.538
0.641
0.534
0.553
0.567
0.563
0.000
0.536
0.617
0.545

DeepLinker-ESG — ISELTA Dataset

auc

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

loss
0.683
0.693
0.683
0.655
0.674
0.699
0.615
0.652
0.691
0.686
0.616
0.577
0.686
0.921
0.689
0.664
0.667
0.678
0.689
0.623
0.531
0.676
0.571
0.654

Validation
acc
0.750
0.500
0.625
0.625
0.813
0.500
0.938
0.875
0.563
0.688
0.500
0.750
0.594
0.406
0.625
0.781
0.594
0.594
0.719
0.750
0.000
0.688
0.813
0.625

auc
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

loss
0.689
0.694
0.691
0.763
0.694
0.899
0.691
0.688
0.683
0.693
0.702
0.626
0.693
0.851
0.690
0.622
0.695
0.692
0.645
0.687
0.479
0.694
0.633
0.695

Test
acc
0.563
0.479
0.604
0.547
0.469
0.547
0.656
0.594
0.688
0.557
0.526
0.708
0.599
0.547
0.682
0.729
0.516
0.578
0.708
0.656
0.535
0.604
0.703
0.578

auc
0.590
0.526
0.642
0.500
0.605
0.548
0.705
0.587
0.653
0.603
0.585
0.684
0.559
0.456
0.646
0.777
0.587
0.627
0.761
0.653
0.519
0.599
0.732
0.665

71

ISELTA Dataset Training Performance - lteration 8

== |0§5 == acc auc

1.00

0.75 _M

050 WM_J——VW-N—\/

0.25

0.00 - :
10 20 30 40 50

epoch

Figure B.1. DeepLinker - ISELTA Dataset — Training — Iteration.8

ISELTA Dataset Validation Performance - lteration 8

= 0S5 == 3cC auc
1.00
075
050
025
0.00 - |
10 20 30 40 50
epoch

Figure B.2. DeepLinker - ISELTA Dataset — Validation — Iteration.8

© % 9 & » & W o = Iteration

N I U = T N =
N QN N A WN = o

ISELTA Dataset Test Performance - Iteration 8

== |0§5 == acc auc

0.8

0.

02

0.0

’ D A—p A W o
N\ VAV AP AV Y AL SGaVA

10

20

30

epoch

40

50

Figure B.3. DeepLinker - ISELTA Dataset — Test — Iteration.8

Table B.2. DeepLinker-ESG Bank Account Dataset Iteration Best Results

loss
0.668
0.647
0.578
0.678
0.676
0.679
0.667
0.675
0.685
0.666
0.605

N/A
0.720
0.684
0.956
2.543
0.771

Training
acc
0.607
0.652
0.714
0.616
0.554
0.589
0.616
0.643
0.563
0.589
0.696
N/A
0.555
0.563
0.719
0.617
0.594

DeepLinker-ESG — Bank Account Dataset

auc
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
N/A
NaN
NaN
NaN
NaN
NaN

loss
0.671
0.663
0.566
0.684
0.692
0.596
0.686
0.671
0.683
0.684
0.693

N/A
0.627
0.728
1.030
0.693
0.660

Validation
acc
0.667
0.500
0.833
0.667
0.500
0.667
0.667
0.667
0.833
0.833
0.667
N/A
0.833
0.500
0.667
0.500
0.500

auc
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
N/A
NaN
NaN
NaN
NaN
NaN

loss
0.689
0.676
0.695
0.688
0.693
0.695
0.693
0.681
0.688
0.685
0.692

N/A
0.696
0.676
1.606
0.696
0.647

Test
acc
0.688
0.656
0.656
0.781
0.500
0.531
0.781
0.781
0.516
0.594
0.656
N/A
0.500
0.500
0.641
0.563
0.625

auc
0.672
0.578
0.594
0.766
0.660
0.551
0.738
0.703
0.695
0.641
0.648

N/A
0.715
0.600
0.637
0.586
0.678

(cont. on next page)

79

18
19
20
21
22
23
24

0.652
0.647
0.685
0.669
0.679
0.594
0.680

Figure

Figure B.5. DeepLinker — Bank Account Dataset — Validation — Iteration.8

Table B.2. (cont.)
0.547 NaN 0.623 0.500 NaN 0.693 0.500
0.633 NaN 0.627 0.833 NaN 0.721 0.656
0.617 NaN 0.691 0.833 NaN 0.685 0.719
0.633 NaN 0.683 0.667 NaN 0.691 0.500
0.602 NaN 0.670 0.833 NaN 0.692 0.594
0.680 NaN 0.694 0.667 NaN 0.677 0.750
0.594 NaN 0.696 0.833 NaN 0.690 0.750

Bank Account Dataset Training Performance - lteration 8
== |055 == ACC auc

1.00

01 w
030 ’\/\’\/\/—M\,\/\’VV_A/_\/\WA

0.25

0.00 :
10 20 a0 40 50

epoch

B.4. DeepLinker — Bank Account Dataset — Training — Iteration.8

Bank Account Dataset Validation Performance - Iteration 8
== |05 == acc auc

08

e

\/V\[\Fv e

0.0

10 20 30 40 50

epoch

0.602
0.570
0.633
0.687
0.531
0.652
0.682

80

Figure B.6. DeepLinker — Bank Account Dataset — Test — Iteration.8

Bank Account Dataset Test Performance - lteration 8

08

= |oss == acc auc

N W &\/\Jf\\]%ﬁ/’

04

02

0.0

10

20

30

epoch

40

50

Table B.3. DeepLinker-ESG Student Attendance Dataset Iteration Best Results

© ® 9 o W»n & W o = Iteration

L e s e e
NN N ARV =R o

loss
0.702
0.685
0.688
0.688
0.883
0.689
0.689
0.684
0.690
0.683
0.686
0.681
0.689
0.693
0.681
0.681
0.691

Training
acc
0.563
0.518
0.585
0.581
0.577
0.540
0.551
0.574
0.526
0.540
0.559
0.559
0.573
0.566
0.566
0.576
0.528

DeepLinker-ESG — Student Attendance Dataset

auc
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

loss
0.627
0.650
0.562
0.659
0.590
0.684
0.686
0.646
0.685
0.681
0.706
0.679
0.665
0.666
0.619
0.677
0.672

Validation
acc
0.714
0.714
0.714
0.643
0.786
0.571
0.714
0.571
0.571
0.571
0.571
0.714
0.714
0.786
0.571
0.643
0.714

auc
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

loss
0.662
0.676
0.691
0.694
0.686
0.691
0.690
0.683
0.692
0.673
0.688
0.686
0.681
0.684
0.667
0.693
0.685

Test
acc
0.521
0.521
0.635
0.531
0.552
0.552
0.479
0.625
0.563
0.646
0.542
0.583
0.573
0.646
0.656
0.615
0.583

auc
0.685
0.659
0.670
0.711
0.667
0.524
0.703
0.625
0.568
0.708
0.634
0.607
0.688
0.664
0.664
0.582
0.758

(cont. on next page)

81

18
19
20
21
22
23
24

Figure B.8. DeepLinker — Student Attendance Dataset — Validation — Iteration.8

4.665
0.694
0.670
0.685
0.688
0.686
1.443

Table B.3. (cont.)

0.545 0.000 0.653 0.571 | 0.000 = 0.775 0.479 0.539
0.573 0.000 0.659 0.643 0.000 0.703 0.594 0.495
0.573 0.000 0.591 0.571 | 0.000 0.684 0.583 0.640
0.569 0.000 0.691 0.643 0.000 0.662 0.646 0.638
0.535 0.000 0.687 0.643 | 0.000 0.693 0.531 0.531
0.573 0.000 0.623 0.714 0.000 0.696 0.573 0.533
0.601 0.000 0.698 0.571 | 0.000 = 0.690 0.594 0.627

Student Attendnace Dataset Training Performance - lteration 8
== |055 == ACC auc

125

1.00
075
050 ——~ AN A AN\ ——

0.25

0.00
10 20 a0 40 50

epoch

Figure B.7. DeepLinker — Student Attendance Dataset — Training — Iteration.8

Student Attendnace Dataset Test Performance - Iteration 8
== |oss == acc auc

* IR\ NAIRANV I

02

0.0
10 20 30 40 50

epoch

82

© ® 9 o »n & w o = Iteration

A I = L
A N A WN =S

Figure B.9. DeepLinker — Student Attendance Dataset — Test — Iteration.8

Student Attendance Dataset Test - Iteration.3

0.8

== |0§5 == acc auc

NN ATV

04

02

0.0

10

20

30

epoch

40

50

Table B.4. DeepLinker-ESG Email Dataset Iteration Best Results

loss
0.662
0.681
0.642
0.645
0.666
0.671
0.687
0.676
0.649
0.667
0.654
0.673
0.683
6.214
0.678
0.677

Training
acc
0.635
0.521
0.646
0.625
0.615
0.594
0.604
0.594
0.615
0.583
0.604
0.594
0.625
0.604
0.573
0.573

auc
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

DeepLinker-ESG — Email Dataset

loss
0.671
0.655
0.620
0.535
0.694
0.538
0.656
0.668
0.681
0.525
0.672
0.610
0.692
1.663
0.644
0.596

Validation
acc
0.600
0.600
1.000
0.600
0.600
0.600
1.000
1.000
0.600
0.800
0.600
0.800
0.600
0.600
0.800
0.800

auc
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

loss
0.682
0.653
0.676
0.673
0.697
0.690
0.681
0.687
0.683
0.669
0.681
0.705
0.688
1.803
0.674
0.629

Test
acc
0.571
0.500
0.714
0.500
0.464
0.571
0.679
0.607
0.643
0.500
0.679
0.643
0.571
0.500
0.607
0.821

auc
0.699
0.561
0.643
0.694
0.316
0.717
0.633
0.577
0.781
0.531
0.704
0.546
0.500
0.500
0.668
0.883

(cont. on next page)

83

17
18
19
20
21
22
23
24

0.687
0.673
0.673
0.673
0.690
0.663
0.674
0.747

Table B.4. (cont.)
0.552 0.000 0.687 0.600 0.000 0.692 0.571
0.552 0.000 0.676 0.600 0.000 0.693 0.571
0.583 0.000 0.669 0.800 0.000 0.693 0.714
0.604 0.000 0.678 1.000 0.000 0.691 0.750
0.594 0.000 0.692 0.800 0.000 0.680 0.607
0.594 0.000 0.605 0.600 0.000 0.683 0.607
0.567 0.000 0.689 0.719 0.000 0.645 0.708
0.563 0.000 0.623 0.750 0.000 0.687 0.656

Email Dataset Training Performance - lteration 8
== |055 == ACC auc

125

1.00
075 W
050 MWW/\\/W/‘

0.25

0.00
10 20 a0 40 50

epoch

Figure B.10. DeepLinker - Email Dataset — Training — Iteration.8

Email Dataset Validation Performance - Iteration 8

== 0S5 == 3cC auc
1.00
075 [\ f
0.50 f \ } \/
025
0.00
10 20 30 40 50

epoch

Figure B.11. DeepLinker - Email Dataset — Validation — Iteration.8

0.592
0.541
0.612
0.684
0.546
0.556
0.761
0.653

84

Email Dataset Test Performance - Iteration 8

== JCC == Juc

0.8
06 1 /}
04
02
0.0
10 20 30 40 50
epoch

Figure B.12. DeepLinker - Email Dataset — Test — Iteration.8

85

