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ABSTRACT

PHYSICS OF HIGHER SPIN FIELDS

Spin-3/2 fields are the next spin multiplet we look for in the general particle

search. Although these fields can be either fundamental vector-spinors or just excited

leptons and quarks we assume that they are fundamental throughout this thesis. These

higher-spin fields, described by the Rarita-Schwinger equations have to obey certain con-

straints to have correct degrees of freedom when they are on the physical shell.

In the first chapter after the introduction, we introduce these spinor-vector fields

to the reader by first going through the different representations that can be employed to

describe them. We then recapitulate some facts on the most general free lagrangian and

the propagator for these fields.

In the next chapters we investigate different phenomenological implications. We

start out in chapter 3 with a massive spin-3/2 field hidden in the standard model (SM)

spectrum thanks to the form of the special interaction that vanishes when the field falls

into the mass shell. Different collider signatures are investigated through analytical com-

putations and numerical predictions.

In chapter 4, we assume that the Higgs boson stays stable via a finely tuned hidden

sector which involves a spin-3/2 field that is split from the SM and whose sole contact with

it at the renormalizable level is through the neutrino portal. Then, the total mass correction

to the Higgs mass is used as a constraint to calculate the mass scale of the spin-3/2 field.

Lastly, we investigate the possible role that a spin-3/2 field could play in leptoge-

nesis. Our model incorporates a spin-3/2 field in addition to the type-I see-saw fields in

inducing the CP asymmetry and mitigating the naturalness problem of the Higgs boson.

We investigate the plausibility in regard to successful leptogenesis with no side effects,

specifically the naturalness of the Higgs boson and correct prediction of the active neu-

trino masses.

iii



ÖZET

YÜKSEK SPİNLİ ALANLARIN FİZİĞİ

Spin-3/2 alanlar genel parçacık araştırmalarında aradığımız sıradaki spin çok-

lusudur. Bu alanlar temel vektör spinörler ya da sadece uyarılmış lepton veya kuarklar ola-

bildikleri halde bu tez boyunca temel alanlar oldukları varsayılmıştır. Rarita-Schwinger

denklemleri ile tanımlanan bu yüksek spinli alanlar fiziksel kütle kabuğunda olduklarında

doğru serbestlik derecelerine sahip olabilmek için bazı kısıtları sağlamak zorundadırlar.

Birinci bölümde, bu spinör-vektör alanlar öncelikle kendilerini tanımlamak için

kullanılan farklı gösterimler üzerinden geçilerek okuyucuya tanıtılmıştır. Daha sonra bu

alanların en genel lagranjiyeni ve propagatörü hakkında bazı unsurlar özetlenmiştir.

Daha sonraki bölümlerde farklı fenomenolojik olgular incelenir. Üçüncü bölümde

kütle kabuğuna geldiğinde yok olan özel bir etkileşim şekli sayesinde standard model

(SM) tayfında gizlenen kütleli bir spin-3/2 alanla başlanmıştır. Analitik hesaplamalar ve

nümerik tahminler yoluyla farklı çarpıştırıcı sinyalleri araştırılmıştır.

Dördüncü bölümde, Higgs bozonunun standard modelden ayrık ve SM ile renor-

malize düzeyde yegane teması nötrino portalı üzerinden olan ince ayarlı bir saklı sektör

vasıtası ile kararlı kalabildiği varsayılmıştır. Sonra, Higgs kütlesine gelen toplam kütle

düzeltmesi spin-3/2 alanın kütle skalasını hesaplamak için bir kısıt olarak kullanılmıştır.

Son olarak, spin-3/2 alanın leptogenesis içerisinde oynayabileceği muhtemel rol

araştırılmıştır. Modelimiz CP asimetrisi indüklemede ve Higgs bosonunun doğallık prob-

lemini gidermede tip-I see-saw alanlarına ek olarak bir spin-3/2 alan içerir. Başarılı ve

yan etkilerden muaf leptogenesis olasılığı, Higgs bozonunun doğallığı ve aktif nötrino-

ların kütlelerinin doğru tahmini bağlamında irdelenmiştir.
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CHAPTER 1

INTRODUCTION

Physics of higher spin fields, especially spin-3/2, is a candidate to become an ac-

tive research area in particle physics due to the need that physicists feel to account for the

structure of hadrons like the ∆(1232) in the resonance regions. Although a fundamental

particle with spin-3/2 is yet to be observed in laboratory, these aspirant fields have a po-

tential role in deciphering some of the pressing problems of particle physics. Two such

problems are the Hierarchy problem of the Higgs boson mass and the baryon asymmetry

of the universe.

The Hierarchy problem is simply stated as the situation where there is a vast dif-

ference between the fundamental value and the effective value of a parameter such as a

coupling or a mass in a theory. Effective value is the quantity that one measures in an

experiment. The main reason why the hierarchy constitutes a problem is because the fun-

damental and effective values of a parameter are related to each other through a procedure

called renormalization. When this procedure is carried out, sometimes the quantum cor-

rections induced on top of the fundamental value of a parameter turns out to be orders of

magnitude larger than the fundamental value and the effective value as well. This hints at

a contingent cancellation between the fundamental value and the quantum corrections so

that one observes a much smaller effective value for the parameter.

The Higgs field is the fundamental scalar of the standard model (SM) which sets

the scale for all the masses of the theory through the spontaneous breaking of electroweak

symmetry. And the hierarchy problem we consider in this thesis is specifically associated

with the quantum corrections to the Higgs mass-squared m2
h. As opposed to the fermions

and gauge bosons whose masses are under control by chiral and gauge symmetries re-

spectively, masses of fundamental scalars are not protected by any kind of symmetry.

This makes them vulnerable to divergent radiative corrections they get from loop dia-

grams. Even in the SM, the quantum corrections induced are capable of destabilizing the

Higgs boson. In order to keep it stable different symmetries have been put forward that

requires new physics beyond the SM, such as supersymmetry. Another possibility in this
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regard is to stabilize the elektroweak sector by means of a fine tuning of the parameters of

a new sector which is separate from the SM. This is the mechanism we employ in the first

part of this thesis. We study the Higgs mass stabilization problem by a hidden spin-3/2

particle high above the electroweak scale and examine the radiative corrections it induces

on the Higgs self energy in an effective field theory approach using cut-off regularization

so as to obtain an estimate of the mass of this new particle by demanding that the total one

loop corrections to the Higgs mass should cancel. The main advantage of our model over

the singlet scalar approaches is that while the latter need auxiliary fields such as vector-

like fermions in order to stabilize the NP sector itself, hidden spin-3/2 field is free from

such requirements. Due to the unique character of our spin-3/2 interaction with the SM,

it is impossible to observe a spin-3/2 particle on mass shell. This means that the BSM

sector in our model is a genuinely stable hidden extension of SM.

The second problem that we touch upon in this work is the baryonic asymmetry

of the universe. The universe we inhabit is a matter universe. According to Cosmic

Microwave Background (CMB) and Big Bang Nucleosynthesis (BBN) measurements, the

universe has a non-zero positive baryon density. This dominance of matter over antimatter

is contrary to the predictions drawn from SM, because SM treats matter and antimatter

on an equal footing, meaning that according to the SM the overall baryon density of the

universe should be zero, i.e. there should have been same amount of matter as there is

antimatter.

The most widely recognized explanation for the baryon asymmetry of the universe

is that it is a result of a dynamical generation mechanism that takes place after inflation.

Inflation is an integral part of the well established Λ-CDM model and it leaves no room

for the naive explanation which assumes the non-zero value of baryon density to be an

initial condition imposed on the universe that needs no explanation at all.

Leptogenesis is considered to be the most plausible candidate for the dynamical

generation of the baryon asymmetry of the universe due to its connection with the see-

saw mechanism which is put forward to account for the nonzero neutrino masses. The

canonical (minimal) leptogenesis is based on the type-I see-saw mechanism in which the

SM is extended by heavy gauge singlet right handed (RH) Majorana neutrinos which give

rise to neutrino masses. The cosmological consequence of the see-saw mechanism is the

generation of a leptonic CP asymmetry as a result of the out of equilibrium decays of the
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RH neutrinos. This lepton asymmetry is then partially reprocessed into a baryonic asym-

metry by sphaleron processes and this constitutes the main mechanism of baryogenesis

through leptogenesis scenario. The successful realization of canonical thermal leptoge-

nesis requires the lightest of the heavy neutrinos to have a mass M1 & 2 × 109 GeV .

To be able to produce such massive N1 thermally, a reheat temperature after inflation of

Trh > M1 & 2 × 109 is needed. However, introducing such ultra heavy particles with

direct coupling to the Higgs boson, unsurprisingly induces dangerous loop corrections to

the Higgs mass. These large quadratic corrections give cause to the hierarchy problem.

The problem is that Trh > M1 & 2×109 for successful leptogenesis but the vacuum

stability and the naturalness forbids this mass range. How can then we have leptogenesis?

This is the question we explore in the present work. We propose to add a heavy spin-3/2

field to the SM spectrum, and investigate its plausibility in regard to successful lepto-

genesis with no side effects, specifically the naturalness of the Higgs boson and correct

prediction of the active neutrino masses. Our model incorporates spin-3/2 field in addi-

tion to the type-I see-saw fields in inducing the CP-violation parameter ε. The motivation

behind this model is that the spin-3/2 field is already shown to be capable of cancelling

out the power-law divergences in the Higgs for a mass in the ball park of Mψ ' 1016 GeV .

(Sargın, 2020)
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CHAPTER 2

RARITA-SCHWINGER FORMALISM

Working with higher spin fields is complicated by the fact that their descriptions

contain lower spin components in addition to the higher spin of interest and that the iden-

tification of these lower spin components is not unique.

In the present chapter, we first investigate the spin content of the spin-3/2 fields

arising from the usual spinor-vector representation and examine the two different irre-

ducible representations that can be classified by which primary constraint is chosen to be

satisfied by the spinor-vector field ψµ. Then we identify the representation referred to as

the Rarita-Schwinger field out of the two different options.

Next, we introduce the most general free Lagrangian for the spin-3/2 fields. This

Lagrangian is constructed such that it is invariant under point transformations and in-

corporates first-order derivatives only. Then the usual Rarita-Schwinger Lagrangian and

propagator is introduced by the appropriate choice of the transformation parameter.

2.1. Spin content of the spin-3/2 field

First, let us recall the construction of the vector-spinor representation. But before,

let us remind ourselves that the Lorentz group is essentially S U(2) ⊗ S U(2). This can be

made clearer by writing the generators of the Lorentz group in a different basis. To this

end, let us define the generators

A =
1
2

(
J + iK

)
, (2.1)

B =
1
2

(
J − iK

)
.

4



Then, one can write from the commutation relations of J and K

[Km,Kn] = −iεmnkJk , (2.2)

[Jm,Kn] = iεmnkKk ,

the commutation relations

[Am, An] = iεmnkAk , (2.3)

[Bm, Bn] = iεmnkBk ,

[Am, Bn] = 0.

This confirms that A and B each generate a S U(2) group and the two groups commute

with each other. This is a manifestation of the fact that the Lorentz group is a direct

product of two S U(2) groups. The states that transform in a well defined manner under

the Lorentz group is denoted by two spins ( j1, j2).

Starting with the basic spin-1/2 spinors of the S U(2)⊗S U(2) spinor representation

( 1
2 , 0) and (0, 1

2 ) , (2.4)

a spin-1 vector is constructed by taking a tensor product between these spinors and ob-

tained as

( 1
2 , 0) ⊗ (0, 1

2 ) = ( 1
2 ,

1
2 ) . (2.5)

Similarly a spin-3/2 spinor is introduced as the tensor product of a vector and a sym-

metrized block of spin-1/2 spinors, i.e.,

(1
2 ,

1
2 ) ⊗

[
( 1

2 , 0) ⊕ (0, 1
2 )

]
= (1, 1

2 ) ⊕ (0, 1
2 ) ⊕ (1

2 , 1) ⊕ ( 1
2 , 0) . (2.6)

The spin decomposition of this field is given by

(1, 0) ⊗
1
2

=
3
2

+
1
2

+
1
2
. (2.7)

As clearly stated in Eqs. (2.6) and (2.7), the spin-3/2 field incorporates one proper
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spin-3/2 component in (1, 1
2 ). In addition, it has two auxiliary spin-1/2 contributions, one

from the Dirac spinor (0, 1
2 ) and one from combining the spins 1 and 1

2 in (1, 1
2 ) to a total

spin 1
2 .

This brings one to the fact that there are different representations possible to clas-

sify the spin blocks arising from the spinor-vector construction. In the following subsec-

tions we will investigate two different ways to introduce these representations (Haberzettl,

1998).

2.1.1. Selecting pµψµ = 0 as the primary constraint

One may identify pµψµ with (0, 1
2 ) once it is realized that pµψµ transforms in the

same way as a Dirac field i.e.,

(0, 1
2 ) = pµψµ , (2.8)

where pµ is the four-momentum of the particle described by the field ψµ.

The remaining part of the ψµ which is complementary to (2.8) is then given by

(1, 1
2 ) =

(
gµν −

pµpν

p2

)
ψν , (2.9)

which has a zero contraction with pµ.

Eq. (2.9) contains spin-3/2 proper as well as an auxiliary spin-1/2 contribution.

One must construct a projector whose contraction with pµ is zero, but whose contraction

with γµ is nonzero, so as to isolate this spin-1/2 contribution still contained within (1, 1
2 ).

The projector that isolates the second spin-1/2 component is denoted by (P11)µν in

the following

gµν −
pµpν

p2 = Dµν + (P11)µν , (2.10)

where

Dµν = gµν −
pµpν

p2 −
(pµ − γµp/)(pν − p/γν)

3p2 (2.11)

is the projector that projects on to the subspace associated with spin-3/2 proper and the

6



desired projector (P11)µν is defined as

(P11)µν =
(pµ − γµp/)(pν − p/γν)

3p2 (2.12)

along with the projector associated with (0, 1
2 ) defined as

(P22)µν =
pµpν

p2 . (2.13)

The projectors D, P11, and P22 are mutually orthogonal and one can expand the

identity as

gµν = Dµν + (P11)µν + (P22)µν . (2.14)

The most obvious drawback of this set of irreducible representations is that they

suffer from an unphysical singularity at p2 = 0 which spoils the metric tensor for the (1, 1
2 )

spinor-vector subspace

gµν −
pµpν

p2 . (2.15)

2.1.2. Implementing γµψµ = 0 as the primary constraint

Since γµψµ also transforms the same way as a Dirac spinor, one may identify (0, 1
2 )

with γµψµ, i.e,

(0, 1
2 ) = γµψµ (2.16)

can be used as an obvious alternative to (2.8).

The component complementary to (0, 1
2 ) is given by

(1, 1
2 ) =

(
gµν − 1

4γ
µγν

)
ψν , (2.17)

and has zero contraction with γµ. This means that we now have implemented γµψµ = 0

as the primary constraint for the (1, 1
2 ) field contributions instead of the pµψµ = 0, which

7



has been chosen in the previous subsection. This representation of (1, 1
2 ) is commonly

referred to as the Rarita-Schwinger field (Rarita and Schwinger, 1941). Contrary to the

pµψµ = 0 representation, the metric tensor of the subspace associated to (1, 1
2 ) ,

gµν − 1
4γ

µγν , (2.18)

is nonsingular.

Introducing the projection operator that projects onto the subspace of (0, 1
2 ) as,

Pµν = 1
4γ

µγν , (2.19)

and the complementary projector as

Dµν = gµν − 1
4γ

µγν , (2.20)

the spin-3/2 field can then be decomposed as

ψµ = ψ
µ
D + ψ

µ
P = Dµνψν + Pµνψν , (2.21)

where

ψ
µ
P = Pµνψν (2.22)

contains only one of the auxiliary spin-1/2 components. The projector that isolates the

spin-1/2 component within the RS field is defined as

P
µν

=
4(pµ − 1

4γ
µp/)(pν − 1

4 p/γν)
3p2 . (2.23)

The proper spin-3/2 projector of Eq. (2.11) can be written in this representation as

Dµν = gµν − 1
4γ

µγν −
4(pµ − 1

4γ
µp/)(pν − 1

4 p/γν)
3p2 . (2.24)
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D, P, and P again constitute a mutually orthogonal set of projectors. Similarly, P and P

are also irreducible representations which constitute an alternative to P11 and P22, i.e.,

P + P = P11 + P22 . (2.25)

Since the metric associated with (1, 1
2 ) and defined in Eq. (2.18) is nonsingular we

will use the spin-1/2 representations introduced here in the rest of this thesis.

2.2. Lagrangian and propagator of the spin-3/2 field

The most general free Lagrangian for the spin-3/2 field containing up to first-order

derivatives only takes the form

L = ψµΛ
µνψν . (2.26)

where Λµν is given by (Moldauer and Case, 1956), (Benmerrouche, Davidson and

Mukhopadhyay, 1989)

Λµν = (p/ − M)gµν + A(γµpν + pµγν)

+ 1
2 (3A2 + 2A + 1)γµp/γν

+ M(3A2 + 3A + 1)γµγν , (2.27)

in which pµ = i∂µ and M is the momentum and mass of the spin-3/2 particle respectively

and also A is an arbitrary transformation parameter.

The Lagrangian is constructed such that it is invariant under point transformations,

ψµ → ψ′µ = (gµν + aγµγν)ψν , (2.28)

A→ A′ =
A − 2a
1 + 4a

, (2.29)

where a is a parameter which is arbitrary except that a = −1
4 is excluded since it would

cause the transformation (2.29) to be singular. Similarly, the transformation parameter A

9



is arbitrary except that A = −1
2 is not allowed for it results in a propagator which would

become infinite.

The Rarita–Schwinger (RS) Lagrangian is obtained by choosing A = −1 in (2.27),

i.e.,

Λ
µν
RS = gµν(p/ − M) − (γµpν + pµγν) + γµp/γν + Mγµγν . (2.30)

The propagator for spin-3/2 is obtained by solving

ΛµρG
ρν
RS = g ν

µ (2.31)

in momentum space. The resulting propagator is

Gµν
RS =

(p/ + M)∆µν
RS

p2 − M2 , (2.32)

where

∆
µν
RS = gµν − 1

3γ
µγν −

2pµpν

3M2 −
γµpν − γνpµ

3M
. (2.33)

The general solution of Eq. (2.31) without choosing A in the beginning results in

an additional A-dependent contact term given by

Gµν
A = −

1
3M2

A + 1
(2A + 1)2

×
[
(2A + 1)(γµpν + pµγν)

− A+1
2 γµ(p/ + 2M)γν + Mγµγν

]
. (2.34)

This contact term must be added to Gµν
RS, and the RS choice A = −1 makes this term

vanish. Notice that, Gµν
A becomes infinite for A = −1

2 , .
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CHAPTER 3

HIDDEN SPIN-3/2 FIELD IN THE STANDARD MODEL

Here we show that a massive spin-3/2 field can hide in the SM spectrum in a way

revealing itself only virtually. We study collider signatures of this field. We show that this

spin-3/2 field has a rich linear collider phenomenology and motivates consideration of a

neutrino-Higgs collider.

3.1. Introduction

The Standard Model (SM) of strong and electroweak interactions, spectrally com-

pleted by the discovery of its Higgs boson at the LHC (Aad et al., 2015), seems to be the

model of the physics at the Fermi energies. It does so because various experiments have

revealed so far no new particles beyond the SM spectrum. There is, however, at least the

dark matter (DM), which requires new particles beyond the SM. Physically, therefore, we

must use every opportunity to understand where those new particles can hide, if any.

In the present work we study a massive spin-3/2 field hidden in the SM spectrum.

This higher-spin field, described by the Rarita-Schwinger equations (Pascalutsa, 2001),

has to obey certain constraints to have correct degrees of freedom when it is on the physi-

cal shell. At the renormalizable level, it can couple to the SM matter via only the neutrino

portal (the composite SM singlet formed by the lepton doublet and the Higgs field). This

interaction is such that it vanishes when the spin-3/2 field is on shell. In Sec. 2 below we

give the model and basic constraints on the spin-3/2 field.

In Sec. 3 we study collider signatures of the spin-3/2 field. We study there

νLh → νLh and e−e+ → W+W− scatterings in detail. We give analytical computations

and numerical predictions. We propose there a neutrino-Higgs collider and emphasize

importance of the linear collider in probing the spin-3/2 field.

In Sec. 4 we conclude. There, we give a brief list of problems that can be studied

as furthering of the material presented in this work.
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3.2. A Light Spin-3/2 Field

Introduced for the first time by Rarita and Schwinger (Rarita and Schwinger,

1941), ψµ propagates with

S αβ(p) =
i

/p − M
Παβ(p), (3.1)

to carry one spin-3/2 and two spin-1/2 components through the projector (Pilling, 2005)

Παβ = −ηαβ +
γαγβ

3
+

(
γαpβ − γβpα

)
3M

+
2pαpβ

3M2 , (3.2)

that exhibits both spinor and vector characteristics. It is necessary to impose

pµψµ(p)cp2=M2 = 0, (3.3)

and

γµψµ(p)cp2=M2 = 0, (3.4)

to eliminate the two spin-1/2 components to make ψµ satisfy the Dirac equation

(
/p − M

)
ψµ = 0 (3.5)

as expected of an on-shell fermion. The constraints (3.3) and (3.4) imply that pµψµ(p)

and γµψµ(p) both vanish on the physical shell p2 = M2. The latter is illustrated in Figure

3.1 taking ψµ on-shell.

Characteristic of singlet fermions, the ψµ, at the renormalizable level, makes con-
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tact with the SM via

L
(int)
3/2 = ci

3/2LiHγµψµ + h.c. (3.6)

in which

Li =

 ν`L`L


i

(3.7)

is the lepton doublet (i = 1, 2, 3), and

H =
1
√

2

 v + h + iϕ0

√
2ϕ−

 (3.8)

is the Higgs doublet with vacuum expectation value v ≈ 246 GeV, Higgs boson h, and

Goldstone bosons ϕ−, ϕ0 and ϕ+ (forming the longitudinal components of W−, Z and W+

bosons, respectively).

In general, neutrinos are sensitive probes of singlet fermions. They can get masses

through, for instance, the Yukawa interaction (3.6), which leads to the Majorana mass

matrix

(mν)
i j
3/2 ∝ ci

3/2
v2

M
c? j

3/2 (3.9)

after integrating out ψµ. This mass matrix can, however, not lead to the experimentally

known neutrino mixings (Babu, Ma and Valle, 2003). This means that flavor structures

necessitate additional singlet fermions. Of such are the right-handed neutrinos νk
R of mass

Mk (k = 1, 2, 3, . . . ), which interact with the SM through

L
(int)
R = cik

R L̄iHνk
R + h.c. (3.10)

13



to generate the neutrino Majorana masses (Grimus and Lavoura, 2004)

(mν)
i j
R ∝ cik

R
v2

Mk
c?k j

R (3.11)

of more general flavor structure. This mass matrix must have enough degrees of freedom

to fit to the data (Ma, 2016).

“on-shell ψµ”

h

≡ 0

νL

Figure 3.1. ψµ − h − νL coupling with vertex factor ic3/2γ
µ. Scatterings in which ψµ is

on shell must all be forbidden since c3/2γ
µψµ vanishes on mass shell by the

constraint (3.4). This ensures stability of ψµ against decays and all sort of
co-annihilations.

νL νL

h h

νL

Z

Z

Z

Figure 3.2. The ν − Z box mediating the νLh → νLh scattering in the SM. The e −W
box is not shown.

Here we make a pivotal assumption. We assume that ψµ and νk
R can weigh as low

as a TeV, and that ci
3/2 and some of cik

R can beO(1). We, however, require that contributions
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νL

h

νL

h

ψµ

Figure 3.3. νLh→ νLh scattering with ψµ mediation. No resonance can occur at
√

s =

M because ψDM cannot come to mass shell.

to neutrino masses from ψµ and νR add up to reproduce with experimental result

(mν)
i j
3/2 + (mν)

i j
R ≈ (mν)i j

exp (3.12)

via cancellations among different terms. We therefore take

c3/2 . O(1) , M & TeV (3.13)

and investigate the physics of ψµ. This cancellation requirement does not have to cause

any excessive fine-tuning simply because ψµ and νk
R can have appropriate symmetries that

correlate their couplings. One possible symmetry would be rotation of γµψµ and νk
R into

each other. The right-handed sector, which can involve many νk
R fields, is interesting by

itself but hereon we focus on ψµ and take, for simplicity, ci
3/2 real and family-universal

(ci
3/2 = c3/2 for ∀ i).

3.3. Spin-3/2 Field at Colliders

It is only when it is off-shell that ψµ can reveal itself through the interaction (3.6).

This means that its effects are restricted to modifications in scattering rates of the SM

particles. To this end, as follows from (3.6), it participates in

1. νLh→ νLh (and also νLνL → hh)
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2. e+e− → W+
L W−

L (and also νLνL → ZLZL)

at the tree level. They are analyzed below in detail.

3.3.1. νLh→ νLh Scattering

Shown in Figure 3.2 are the two box diagrams which enable νLh→ νLh scattering

in the SM. Added to this loop-suppressed SM piece is the ψµ piece depicted in Figure 3.3.

The two contributions add up to give the cross section

dσ(νLh→ νLh)
dt

=
1

16π
Tνh(s, t)
(s − m2

h)2
(3.14)

in which the squared matrix element

Tνh(s, t) = 9
(c3/2

3M

)4((
s − m2

h

)2
+ st

)
−16

(c3/2

3M

)2(
2
(
s − m2

h

)2
+
(
2s − m2

h

)
t
)
L+ (3.15)

2
(
s − m2

h

) (
s + t − m2

h

)
L2

involves the loop factor

L =
(g2

W +g2
Y)2M2

Zm2
hI(MZ)

192π2 +
g4

W M2
Wm2

hI(MW)
96π2 (3.16)

in which gW (gY) is the isospin (hypercharge) gauge coupling, and

I(µ) =

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

(
(s − m2

h)(x + y + z − 1)y − txz

+m2
hy(y − 1) + µ2(x + y + z)

)−2
(3.17)

is the box function. In Figure 3.4, we plot the total cross section σ(νLh → νLh) as a

function of the neutrino-Higgs center-of-mass energy for different M values. The first
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important thing about the plot is that there is no resonance formation around
√

s = M.

This confirms the fact that ψµ, under the constraint (3.4), cannot come to physical shell

with the couplings in (3.6). In consequence, the main search strategy for ψµ is to look

for deviations from the SM rates rather than resonance shapes. The second important

thing about the plot is that, in general, as revealed by (3.15), larger the M smaller the ψµ

contribution. The cross section starts around 10−7 pb, and falls rapidly with
√

s. (The

SM piece, as a loop effect, is too tiny to be observable: σ(νLh → νLh) . 10−17 pb). It

is necessary to have some 104/ f b integrated luminosity (100 times the target luminosity

at the LHC) to observe few events in a year. This means that νLνL → hh scattering can

probe ψµ at only high luminosity but with a completely new scattering scheme.

1000500200 300 700
10-20

10-17

10-14

10-11

10-8

s @GeVD

Σ
HΝ

L
+

h
®

Ν
L

+
h

L@p
bD

SM

M=1TeV
M=2TeV
M=3TeV

Figure 3.4. The total cross section for νLh → νLh scattering as a function of the
neutrino-Higgs center-of-mass energy

√
s for M = 1, 2 and 3 TeV at

c3/2 = 1. Cases with c3/2 , 1 can be reached via the rescaling M → M/c3/2.

Figure 3.4 shows that neutrino-Higgs scattering can be a promising channel to

probe ψµ (at high-luminosity, high-energy machines). The requisite experimental setup

would involve crossing of Higgs factories with accelerator neutrinos. The setup, schemat-

ically depicted in Figure 3.5, can be viewed as incorporating future Higgs (CEPC (Ruan,

2016), FCC-ee (d’Enterria, 2016) and ILC (Moortgat-Pick, 2015)) and neutrino (Chou-

bey et al., 2011) factories. If ever realized, it could be a rather clean experiment with neg-

ligible SM background. This hypothetical “neutrino-Higgs collider”, depicted in Figure

3.5, must have, as suggested by Figure 3.4, some 104/ f b integrated luminosity to be able
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Accelerator Neutrinos
(like MINOS)

Higgs bosons

(like γγ factory)

(Spin-3/2)

Figure 3.5. Possible neutrino-Higgs collider to probe ψµ.

to probe a TeV-scale ψµ. In general, need to high luminosities is a disadvantage of this

channel. (Feasibility study, technical design and possible realization of a “neutrino-Higgs

collider” falls outside the scope of the present work.)

e− W−

L

W+

Le+

ψµ

Figure 3.6. The Feynman diagram for e+e− → W+
L W−

L scattering. The νLνL → ZLZL

scattering has the same topology.

3.3.2. e+e− → W+
L W−

L Scattering

It is clear that ψµ directly couples to the Goldstone bosons ϕ+,−,0 via (3.6). The

Goldstones, though eaten up by the W and Z bosons in acquiring their masses, reveal

themselves at high energies. In fact, the Goldstone equivalence theorem (Cornwall,
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Levin and Tiktopoulos, 1974) states that scatterings at energy E involving longitudinal

W±
L bosons are equal to scatterings that involve ϕ± up to terms O(M2

W/E
2). This theorem,

with similar equivalence for the longitudinal Z boson, provides a different way of probing

ψµ. In this regard, depicted in Figure 3.6 is ψµ contribution to e+e− → W+
L W−

L scattering in

light of the Goldstone equivalence. The SM amplitude is given in (Peskin and Schroeder,

1995). The total differential cross section

dσ(e+e− → W+
L W−

L )
dt

=
1

16πs2TWLWL(s, t) (3.18)

involves the squared matrix element

TWLWL(s, t)=

 g2
W

s − M2
Z

(
−1 +

M2
Z

4M2
W

+
M2

Z − M2
W

s

)
+

g2
W

s − 4M2
Z

(
1 +

M2
W

t

)
+

c2
3/2

3M2

2

× (3.19)

(
−2sM2

W − 2(t − M2
W)2

)
+

c4
3/2s

18M2

(
4 +

t
t − M2

)2

Plotted in Figure 3.7 is σ(e+e− → W+
L W−

L ) as a function of the e+e− center-of-mass energy

for different values of M. The cross section, which falls with
√

s without exhibiting a res-

onance shape, is seen to be large enough to be measurable at the ILC (Baer et al., 2013).

In general, larger the M smaller the cross section but even 1/ f b luminosity is sufficient

for probing ψµ for a wide range of mass values. Collider searches for ψµ, as illustrated

by νLh → νLh and e−e+ → W+W− scatterings, can access spin-3/2 fields of several TeV

mass. For instance, the ILC, depending on its precision, can confirm or exclude a ψµ of

even 5 TeV mass with an integrated luminosity around 1/ f b. Depending on possibility

and feasibility of a neutrino-neutrino collider (mainly accelerator neutrinos), it may be

possible to study also νLνL → hh and νLνL → ZLZL scatterings, which are expected to

have similar sensitivities to M.
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Figure 3.7. The total cross section for e−e+ → W+W− scattering as a function of the
electron-positron center-of-mass energy

√
s for M = 1, 2 and 3 TeV at

c3/2 = 1. Cases with c3/2 , 1 can be reached via the rescaling M → M/c3/2.

3.4. Summary and Outlook

In this chapter we have studied a massive spin-3/2 particle ψµ obeying the con-

straint (3.4) and interacting with the SM via (3.6). It hides in the SM spectrum as an

inherently off-shell field. We discussed its collider signatures by studying νLh→ νLh and

e−e+ → W+W− scatterings in detail in Sec. 3.

The material presented in this chapter can be extended in various ways. A partial

list would include:

• Determining under what conditions right-handed neutrinos can lift the constraints

on ψµ from the neutrino masses,

• Improving the analyses of νLh → νLh and e−e+ → W+W− scatterings by including

loop contributions,

• Simulating e−e+ → W+W− at the ILC by taking into account planned detector

acceptances and collider energies,

• Performing a feasibility study of the proposed neutrino-Higgs collider associated

with νLh→ νLh scattering,

We will continue to study the spin-3/2 hidden field starting with some of these points.
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CHAPTER 4

FINE-TUNED SPIN-3/2 AND THE HIERARCHY

PROBLEM

In the past, Kundu et al. and Chakraborty et al. used extra scalar fields to cancel

the quadratic divergences in the Higgs mass squared and they determined the mass of the

required scalar field. In this work, a spin-3/2 particle has been used in the same manner

to nullify the power-law divergences and it is determined that the mass of the spin-3/2

particle resides in the ball park of the GUT scale.

4.1. Introduction

With the discovery of a resonance at the LHC (Aad et al., 2012), (Chatrchyan

et al., 2012) that seems to be rather consistent with the standard model Higgs boson in

light of ongoing assessment of its properties (Gray, 2019), (CMS Collaboration, 2020),

(CMS Collaboration, 2019) ; the electroweak naturalness (Weisskopf, 1939), (Wilson,

1971) is the foremost problem that we should turn our attention to. Even though many

new physics theories have been suggested in order to cure the destabilization of the Higgs

mass (Susskind, 1979), (Weinberg, 1976), (Dimopoulos, 1981), (Arkani-Hamed et al.,

1998), (Randall and Sundrum, 1999), (Arkani-Hamed et al., 2002); so far no signal of

these has been observed (CMS Collaboration, 2020), (Bailey, 2018), (Morvaj, 2020),

(CMS Collaboration, 2020), (CMS Collaboration, 2020), (ATLAS Collaboration, 2020).

The lack of any new physics particle at the TeV scale casts doubts on the relevance of the

idea of naturalness and strengthens the view that the Standard Model (SM) of electroweak

and strong interactions may well be the model of physics at Fermi scale (Altarelli, 2013),

(Giudcie, 2013), (Feng, 2013), (Wells, 2013). However, this situation does not change

the fact that SM is an incomplete, effective theory since, for one thing, it is missing the

essential dark matter (DM) candidate (Roszkowski, 2018), (Giagu, 2019), (Arcadi, 2018),

(Liu, 2017), (Bertone, 2005), (Feng, 2010), (Porter et al., 2011) and for another, it offers
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no dynamical principle that generates the masses and couplings of the theory (Ahmad et

al., 2001), (Fukuda et al., 1998), (Ahn et al., 2012), (Abe et al., 2013).

Since requiring that the SM be technically natural brings us to a dead end in terms

of guidelines to New Physics (NP), we explore an orthogonal possibility here and assume

that the electroweak scale is stabilized via a mechanism based on the fine-tuning of a sec-

tor which is split from the SM. The same line of reasoning has been employed before by

Kundu et al. (Kundu and Raychaudhuri , 1996) and Chakraborty et al. (Chakraborty

and Kundu , 2013) through different models based on singlet scalars. The main motive

behind this approach is to cancel the power-law divergences in the Higgs mass squared

via the loops of extra fields and fine-tuning the parameters of the specific BSM model that

is utilised (Bazzocchi et al., 2007), (Andrianov et al., 1995). Even though this is intrinsi-

cally a fine-tuning operation, it brings along valuable advantages such as accommodating

viable dark matter candidates (McDonald, 1994), (Demir et al., 2014), ( Guo et al., 2010).

However, exploiting real scalar fields for this, comes with its own drawbacks. Since real

singlet scalars with a vacuum expectation value are bound to mixing with the CP-even

component of the SM Higgs field itself; an all-encompassing, simultaneous cancellation

is not achievable (Karahan and Korutlu, 2014).

In the present work, we study the Higgs mass stabilization problem by a hidden

spin-3/2 particle high above the electroweak scale and examine the radiative corrections

it induces on the Higgs self energy in an effective field theory approach using cut-off

regularization so as to obtain an estimate of the mass of this new particle by demanding

that the total one loop corrections to the Higgs mass should cancel. The main advantage

of our model over the singlet scalar approaches is that while the latter need auxiliary fields

such as vector-like fermions in order to stabilize the NP sector itself, hidden spin-3/2 field

is free from such requirements. Due to the unique character of our spin-3/2 interaction

with the SM, it is impossible to observe a spin-3/2 particle on mass shell. This means

that the BSM sector in our model is a genuinely stable hidden extension of SM. This

constitutes a phenomenological advantage, which has important implications not just for

the electroweak stabilization but also for the Higgs boson and hidden sector correlation.

Another implication is related to the fact that our calculations reveal that this higher spin

particle resides in the ball park of GUT scale. If ongoing searches at the LHC reveal no

particles at the TeV scale combined with the fact that the next higher spin particle (spin-
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3/2) inhabits the GUT scale may strengthen the grand desert notion in the GUTs without

TeV scale NP (Dimopoulos, 1990).

4.2. The Hierarchy Problem

Spontaneous breaking of electroweak symmetry is implemented in the SM by pos-

tulating the existence of a fundamental scalar, the Higgs field, whose potential is param-

eterized by a dimensionful mass-squared parameter µ2 and a dimensionless Higgs self-

coupling λ. The Higgs field takes on a constant value everywhere in space-time called

the vacuum expectation value (vev) v =
√
µ2/λ = 246 GeV, which being a dimensionful

parameter sets the scale for all the masses of the theory in terms of the Yukawa couplings.

Fundamental scalars are widely considered as unnatural. As opposed to the fermi-

ons and gauge bosons whose masses are under control by chiral and gauge symmetries

respectively, masses of fundamental scalars are not protected by any kind of symmetry.

This makes them vulnerable to divergent radiative corrections they get from loop dia-

grams. The technical usage of the term naturalness is related to the quantum corrections

that a parameter gets when one makes use of perturbation theory to calculate the proper-

ties of a theory.

The hierarchy problem we consider here is specifically associated with the quan-

tum corrections to the Higgs mass-squared m2
h. A simple statement of the problem can

be given as follows. In an effective field theory with a hard ultraviolet cut-off Λ, loop

diagrams induce radiative corrections in the Higgs self energy such that

m2
h = (m2

h)bare + F (λ, g2
i )Λ2, (4.1)

where mh =
√

2λv is the physical Higgs boson mass, gi are the renormalized gauge cou-

plings of the SM and the second term signifies the O(Λ2) quantum corrections. If the

second term in equation (4.1) is of the same order or smaller than the measured value of

the Higgs mass, it is said that the parameter is natural; however, if the measured value

turns out to be much smaller than the radiative correction term, it is said that the theory

is unnatural because this hints at a contingent cancellation between the bare mass and the
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quantum effects so as to produce the measured value of the Higgs boson mass.

Originally put forward by Veltman (Veltman, 1981), the SM one-loop corrections

to the Higgs boson mass reads

(δm2
h)S M =

Λ2

8π2

(
− 6λ2

t +
9
4

g2 +
3
4

g′ 2 + 6λ
)

(4.2)

where g and g′ are the S U(2)L and U(1)Y gauge couplings in the SM respectively, and λt is

the top quark Yukawa coupling. Only the top quark Yukawa coupling appears in equation

(4.2) because the contributions of other fermions are considerably small. Veltman stated

that the Higgs mass should be stable against loop corrections and the above criterion is

used as a means to estimate the Higgs boson mass, hence this expression is commonly

called the Veltman condition (VC).

The Higgs mass estimated using VC is in conflict with the experimental value

today and we are in a bit of quandary. Considering the fact that the cutoff regulator

can get as high as the Planck mass, we are faced with an unnaturalness of 32 orders of

magnitude. If we require that the Higgs be technically natural, there should appear new

physics around TeV scale and remove the quadratic dependence on the cutoff scale Λ.

People following this motivation have come up with many NP theories and chief

among them is Supersymmetry (Lykken, 1996), (Martin, 1998). However, despite all the

extensive searches, no compelling evidence in favor of any of these NP theories has been

observed during the LHC runs reaching well above the TeV scale.

Having no TeV scale NP to prevent the destabilization of the Higgs boson, new

mechanisms have been put forward which involve extensions beyond the SM and gen-

eral relativity. One such mechanism which makes use of conformal symmetry has been

introduced by W. A. Bardeen in 1995 (Bardeen, 1995), and paved the way for many

variants since then. Anti-gravity effects have also been claimed to be viable in improving

the naturalness of electroweak sector (Salvio et al., 2014). Another interesting possibil-

ity is exploiting the coupling between the Higgs boson and the space-time curvature as a

means of harmless, soft fine-tuning that was shown to be capable of solving the hierarchy

problem (Demir, 2014).

Aside from all these different approaches, a general practice is to invoke a cancel-

lation mechanism which involves fine-tuning of counter terms that mixes together both
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low and high scale physical degrees of freedom. The scheme that has been followed here

in this work is in line with the aforementioned cancellation mechanism approach but it

is a completely new model with a unique interaction. The next section is devoted to the

description of this model. We first start by a quick review of spin-3/2 and then continue

on with the details of the interaction Lagrangian. The interaction is such that, at the renor-

malizable level it is only through the neutrino portal that spin-3/2 makes contact with the

SM. Due to the special constraints that these fields should obey, they can participate in-

teractions only as virtual particles. Without further ado, lets get to the details in the next

section.

4.3. The Model

Spin-3/2 fields, commonly called vector spinors, ψµ, are introduced to the liter-

ature for the first time by Rarita and Schwinger (Rarita and Schwinger, 1941). The

propagator for the ψµ reads

S αβ(p) =
i

/p − M
Παβ(p), (4.3)

and it involves one spin-3/2 and two spin-1/2 components embedded in the projector

(Pilling, 2005)

Παβ = −ηαβ +
γαγβ

3
+

(
γαpβ − γβpα

)
3M

+
2pαpβ

3M2 , (4.4)

that exhibits both spinor and vector characteristics. In order to remove the two spin-1/2

components we impose the two constraints (Pascalutsa, 2001)

pµψµ(p)cp2=M2 = 0, (4.5)
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and

γµψµ(p)cp2=M2 = 0, (4.6)

after which ψµ satisfies the Dirac equation

(
/p − M

)
ψµ = 0 (4.7)

as expected of an on-shell fermion. The constraints (4.5) and (4.6) imply that pµψµ(p)

and γµψµ(p) both vanish on the physical shell p2 = M2.

Characteristic of singlet fermions, the ψµ, at the renormalizable level, makes con-

tact with the SM via

L
(int)
3/2 = ci

3/2LiHγµψµ + h.c. (4.8)

in which

Li =

 ν`L

`L


i

(4.9)

is the lepton doublet (i = 1, 2, 3), and

H =
1
√

2

 v + h + iϕ0

√
2ϕ−

 (4.10)

is the Higgs doublet with vacuum expectation value v ≈ 246 GeV, Higgs boson h, and

Goldstone bosons ϕ−, ϕ0 and ϕ+ (forming the longitudinal components of W−, Z and W+

bosons, respectively).

Because of the constraint in equation (4.6), effects of the vector spinor is mainly

restricted to the loop diagrams. One such diagram is depicted in the Figure 4.1. As a result
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of this interaction, ψµ contributes to the Higgs boson mass correction given in equation

(4.2).

h h

ψµ

νL

Figure 4.1. The ψµ − νL loop that generates the quartic correction in the Higgs mass.

The contribution of the Feynman diagram in the Figure 4.1 is given by

−iΣδ4(p − p
′

)(2π)4 = (4.11)

−Tr
{∫

d4q1

(2π)4

d4q2

(2π)4

( ic3/2
√

2
γαPL

)[ i( /q1 + M)
q2

1 − M2
Παβ

]( ic3/2
√

2
γβPL

)( i /q2

q2
2

)
(2π)4δ4(p + q2 − q1)(2π)4δ4(q1 − q2 − p

′

)
}
.

The term in the square brackets is the propagator of ψµ where Παβ is the projector

as a function of the loop momentum q1 of ψµ, the explicit form of which is

Παβ = −ηαβ +
γαγβ

3
+

(
γαqβ1 − γ

βqα1
)

3M
+

2qα1qβ1
3M2 . (4.12)

The leftmost vertex is designated by α and the other by β, hence the two vertex

factors are

i
c3/2
√

2
γαPL (4.13)
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and

i
c3/2
√

2
γβPL (4.14)

respectively.

After taking the integral over the loop momentum of the neutrino q2, the expres-

sion takes the form

iΣ =
c2

3/2

2

∫
d4q1

(2π)4 Tr
{
γαPL

( /q1 + M)
q2

1 − M2

[
− ηαβ +

γαγβ

3
+ (4.15)(

γαqβ1 − γ
βqα1

)
3M

+
2qα1qβ1
3M2

]
γβPL

/q1

q2
1

}
.

There are five traces that should be evaluated and they are denoted by a, b, c, d

and e in the following:

a ≡ Tr
{
γαPL( /q1 + M)ηαβγβPL /q1

}
= −4q1 · q1 (4.16)

b ≡ Tr
{
γαPL( /q1 + M)γβPL /q1

}
= 4q1αq1 β − 2ηαβ q1 · q1 (4.17)

c ≡ Tr
{
γαPL( /q1 + M)γαγβγβPL /q1

}
= −16q1 · q1 (4.18)

d ≡ Tr
{
γαPL( /q1 + M)γαγβPL /q1

}
= 8Mq1 β (4.19)
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e ≡ Tr
{
γαPL( /q1 + M)γβγβPL /q1

}
= 8Mq1α . (4.20)

Equation (4.15) in terms of the five traces can be written as

Σ =
ic2

3/2

2

∫
d4q1

(2π)4

[
a − 2qα1 qβ1

3M2 b − c
3 −

(
qβ1d−qα1 e

)
3M

]
(q2

1 − M2)q2
1

(4.21)

After replacing the values of the traces, the term in the square brackets in equation

(4.21) becomes

[
a −

2qα1qβ1
3M2 b −

c
3
−

(
qβ1d − qα1e

)
3M

]
=

4
3

(
q1 · q1 −

(q1 · q1)2

M2

)
. (4.22)

Plugging equation (4.22) in equation (4.21), it is possible to split the integral over q1 into

two halves

Σ =
2ic2

3/2

3

{∫
d4q1

(2π)4

1
(q2

1 − M2)
−

1
M2

∫
d4q1

(2π)4

q2
1

(q2
1 − M2)

}
. (4.23)

Denoting the fist integral by I1 and the second by I2, equation (4.23) takes the form

Σ =
2ic2

3/2

3

{
I1 −

1
M2 I2

}
. (4.24)

Using cutoff regularization, the two integrals I1 and I2 are evaluated to be

I1 = −
i

16π2

[
Λ2 − M2 ln

(Λ2 + M2

M2

)]
, (4.25)
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I2 =
i

16π2

[
(Λ2 + M2)2 − M4

2
− 2M2Λ2 + M4 ln

(Λ2 + M2

M2

)]
; (4.26)

where Λ designates the cutoff scale.

After inserting equations (4.25) and (4.26) into (4.24), the mass correction to the

Higgs mass due to spin-3/2 particle becomes

Σ =
c2

3/2

48π2

Λ4

M2 = (δm2
h)3/2 . (4.27)

It is interesting to note that the mass correction in (4.27) is of positive sign and

purely quartic (no quadratic correction arises due to spin-3/2) although one would expect

it to have the opposite sign since this is a fermion that we are dealing with. The crucial

point is that the origin of this quartic contribution can be traced back to the last term in

the propagator of the spin-3/2, to wit, the pαpβ term in equation (4.4) and that tells us that

the longitudinal component of the propagator overrides the fermionic character at high

energy.

After this remark, now let us get back to the calculation. Recall that the SM one

loop correction to the Higgs mass reads

(δm2
h)S M =

Λ2

8π2

(
− 6λ2

t +
9
4

g2 +
3
4

g′ 2 + 6λ
)
. (4.28)

The total correction to the Higgs mass is the sum of SM part plus the spin-3/2

contribution; to wit

δm2
h = (δm2

h)S M + (δm2
h)3/2 . (4.29)

If we allow the possibility that the hidden sector is finely tuned such that the total

quantum correction to m2
h vanishes, i.e.

δm2
h = 0, (4.30)
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we have a clear constraint on the mass scale of the quanta of the spin-3/2 field

Λ2

8π2

(
− 6λ2

t +
9
4

g2 +
3
4

g′ 2 + 6λ
)

+
c2

3/2

48π2

Λ4

M2 = 0. (4.31)

If we take the cutoff scale to be the Planck mass and the coupling constant of the

spin-3/2, c3/2, of order unity, this gives us

M ≈ 1016 GeV (4.32)

as the mass scale of spin-3/2 quanta.

4.4. Summary

In this work we have taken up the Hierarchy problem from a different angle. Con-

trary to the general acceptance that electroweak scale should be technically natural, we

have allowed the possibility that fine tuning may well be the option that nature favors. The

rationale behind this choice is the non-existence of any experimental proof of the natural

theories of BSM that predict TeV-scale NP so as to stabilize the Higgs boson.

We have assumed that the Higgs boson stays stable via a finely tuned hidden sector

which involves a spin-3/2 field that is split from the SM and whose sole contact with it at

the renormalizable level is through the neutrino portal. The interaction lagrangian of our

model is given by equation (4.8) along with the two constraint equations (4.5) and (4.6)

that these fields should obey so as to satisfy the Dirac equation. The distinctive feature

of this model is that the spin-3/2 field is enforced to be inherently off-shell due to the

constraint equation (4.6). As such, this field is hidden from the SM and the effects of it is

mainly expected to be visible through the loop diagrams.

One such diagram that one can witness the effects of ψµ is the loop given in Figure

4.1 which designates the contribution of the spin-3/2 to the Higgs self energy. As such,

this diagram plays an important role in the Hierarchy problem.

The loop diagram that we have depicted in Figure 4.1 induces a quartic radiative

correction in the Higgs mass. However, contrary to the general expectation that fermions
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should have negative radiative powerlaw corrections to the Higgs mass, what we observe

here is that the spin-3/2 field has a positive contribution. This strange phenomenon can be

traced back to the longitudinal terms in the propagator of ψµ and reveals that the fermionic

character is washed out at high energy.

After making the pivotal assumption that the Higgs mass stays stable via a mech-

anism that involves a finely tuned hidden sector, we have used the total mass correction

to the Higgs mass as a constraint to calculate the mass scale of the spin-3/2 field. This

calculation has revealed that the spin-3/2 field is indeed split from the SM because it re-

sides well above the SM with a mass around M ≈ 1016 GeV which is in the ball park

of GUT scale. Even though there is no phenomenological possibility so far to prove the

correctness of the theory which extends to the GUT scale, this finding offers a plausible

support for the notion called the grand desert in the GUTs without TeV scale NP.
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CHAPTER 5

LEPTOGENESIS VIA SPIN-3/2 FIELD

CP violating decays of right-handed neutrinos into leptons play an important role

in "canonical (minimal) leptogenesis". Here we investigate a somewhat different model

than the usual type-I see-saw which incorporates an additional spin-3/2 field to generate

an asymmetry in lepton number that is afterwards partially reprocessed into a baryonic

asymmetry by sphaleron processes. We discuss the main physics and make some esti-

mates on the plausibility of the mechanism .

5.1. Introduction

One of the outstanding problems of contemporary physics is the fact that there is

an imbalance of baryons and antibaryons in the observable universe. The reason why this

predominance of matter particles over the antimatter is a serious problem is twofold. On

the one hand, the extremely small nature of the baryon number of the universe hints at a

likely fine tuning in a theory in which this number is introduced (Steigman and Scherrer,

2018). On the other hand, the Standard Model (SM) of particle physics predicts that the

total number of baryons in the universe should be equal to the total number of antibaryons,

resulting in the zero overall baryon number (Primakoff and Rosen, 1981).

Considering the matter-antimatter symmetry of the SM; namely there is no differ-

ence between the matter and antimatter in terms of mass, life-time etc. except that they

have opposite quantum numbers; one would a priori expect that the universe would have

50% matter and 50% antimatter.

Contrary to this expectation, experiments report that the universe we inhabit is

matter dominated. Basically, there are two different sources of information on the baryon

number of the universe. Big Bang Nucleosynthesis (BBN) gives the first measurement

of the amount of baryons in a window of time, (t ∼ 1 − 300s), in the history of the

universe which falls in between the freeze out of neutron to proton abundance ratio and

the Deuterium synthesis. In the standard BBN, it is possible to express the primordial
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nuclear abundances in terms of the baryon to photon number ratio, ηB = (nB − nB̄)/nγ,

once you fix the neutron life time. Therefore experimental measurement of any nuclear

abundance translates into a simultaneous and indirect measurement of the ηB. Among

the primordial nuclear abundances Deuterium is the most sensitive one to the baryon

to photon ratio (Epstein et al.,1976). Therefore from the measurements of Deuterium

abundance it is found that (Kirkman et al.,2003)

ηBBN
B = (5.9 ± 0.5) × 10−10 . (5.1)

The second measurement of ηB comes from the measurement of Cosmic Microwave Back-

ground (CMB) anisotropies; more precisely, the acoustic peaks in the power spectrum

allow us to determine the nB/nγ during recombination era. A fit of the nine year Wilkin-

son Microwave Anisotropy Probe (WMAP) data with Λ-CDM model gives the amount of

baryons as (Hinshaw et al., 2013)

ηCMB
B = (6.19 ± 0.14) × 10−10 . (5.2)

It should be stressed that the amazing coincidence between the two different mea-

surements of the baryon to photon number ratio enhances the view that ηB does not vary

after BBN, and therefore one can safely regard the CMB measurement of ηB as the present

day value. This view is also supported by the fact that any mechanism that would change

the baryon to photon ratio would hardly be successful without also distorting the thermal

equilibrium of CMB.

Another point to be stressed is that both BBN and CMB measurements of the

baryon to photon number ratio are indifferent to the sign of ηB. What this means is that

they are not by themselves capable of determining the baryon antibaryon asymmetry of

the universe. At fist glance, this makes one think that maybe the universe is matter-

antimatter symmetric in actuality and somehow they are separated from each other; maybe

there is a patch of antimatter in a distant corner of the universe that escapes detection.
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However this is a feeble possibility because if this were the case the deviations from ther-

mal equilibrium of CMB would not be as small and we would be able to observe cosmic

rays stemming from the annihilations at the borders of matter and antimatter domains

unless they exhibit some ad hoc geometry (Cohen et al., 1998). All these facts guide

one to conclude that the measured value of ηB is positive indeed and that the primordial

number density of baryons is much higher than antibaryons. Therefore the universe is

matter antimatter asymmetric and there is no antimatter present.

This assertion may not be so disturbing at first glance; after all one may assume

that the value of ηB is an initial condition imposed on the universe and therefore it needs

no explanation at all. However, inflation is an integral part of the Λ-CDM model and it

leaves no room for this naive explanation. Λ-CDM model is the minimal cosmological

model which is put to firm ground by observational cosmology in the last decade. Infla-

tion is the necessary ingredient in explaining the homogeneity, flatness and the isotropic

nature of the universe (Guth, 1981). According to inflation our universe corresponds to

a superluminal expansion of such a tiny region that it can safely be assumed empty at

the end of this process except that the vacuum energy which had driven the inflation still

persists. Therefore, the matter content of the universe including any asymmetry has to

be created after inflation. This brings one to the conclusion that any asymmetry must be

dynamically generated.

Andrej Sakharov was the first to point out that non- existence of any primordial

anti baryons in the observable universe could be explained by a dynamical model which

would have CP violation as a necessary ingredient (Sakharov, 1967). Sakharov put for-

ward some necessary but not sufficient general criteria which have to be satisfied by a

dynamical baryogenesis model; these are now commonly called Sakharov’s conditions

and given by:

1. Baryon number violation: It is obvious that in order to have baryonic asymmetry

in the macroscopic realm there should exist a microphysical process which violates

B-number.

2. C and CP violation: C and CP violation are also required ingredients because other-

wise the rate of a process and its conjugated process, whether it be a C-conjugation

or a CP-conjugation, would have to be the same. Therefore it would not be possible

to create any net baryon number.
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3. Departure from thermal equilibrium: CPT invariance is quite generally considered

to be essential for formulating a consistent local quantum field theory. Unless ther-

mal equilibrium is somehow broken, CPT symmetry will necessitate a compensa-

tion between B-number increasing and decreasing processes.

Three prominent theories satisfying the Sakharov conditions have emerged over the time.

These are Electroweak baryogenesis (Kuzmin et al., 1985), (Morrissey and Ramsey-

Musolf, 2012), GUT baryogenesis (Yoshimura, 1978) and Leptogenesis (Fukugita and

Yanagida, 1986). The most minimal alternative out of these three is the Electroweak

baryogenesis since it does not need any new physics beyond the SM. All other alternatives

require some kind of extension to the SM.

The Sakharov conditions are satisfied to some extend within the SM (Dolgov,

1992). In the context of the SM, there is no experimental evidence that hints at a pertur-

bative breaking of the conservation of baryon number. In the Electroweak baryogenesis

scenario (Rubakov and Shaposhnikov, 1996), (Riotto and Trodden, 1999), (Cline, 2006),

the B-number violation is accomplished through the non-perturbative electroweak (EW)

interactions called sphaleron processes. The EW sector of the SM already breaks the

C-symmetry maximally. CP-symmetry is broken through the complex phase in the CKM

matrix (Kobayashi and Maskawa, 1973); however, the amount of asymmetry generated is

suppressed by the smallness of the quark masses (Gavela et al.), (Gavela et al.). The third

Sakharov condition above, namely the out of thermal equilibrium condition, is assumed to

be fulfilled by a strong first order EW phase transition (Trodden, 1999,K) which requires

mh . 40 GeV . However, the discovery of the resonance at the LHC in 2012 (Aad et al.,

2012), (Chatrchyan et al., 2012), which has rather consistent properties with the Higgs

boson of SM, favors a second order, smooth phase transition of the Higgs vev. Thus, EW

baryogenesis is practically ruled out at the moment.

GUT baryogenesis is a class of models where the baryon asymmetry is generated

by the out of equilibrium decays of the new heavy gauge bosons (Ellis et al., 1979),

(Weinberg, 1979), (Yildiz and Cox, 1980). It is easy to fulfill the Sakharov’s conditions

in GUT theories, however, the minimal GUT models based on SU(5) create (B+L) asym-

metry but no (B-L) asymmetry. The (B+L) asymmetry generated at the GUT scale is

washed out by the consequent (B+L) violating SM sphalerons, which are in equilibrium

at T . 1013 GeV . Another problem with the GUT baryogenesis models is related to the
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fact that they predict proton decay, the non-observation of which imposes a lower bound

on the mass of the decaying heavy gauge boson, therefore, on the reheat temperature

of the universe as well. Canonical inflation models do not anticipate such high reheat

temperatures.

Leptogenesis is considered to be the most plausible candidate for the explanation

of the baryon asymmetry of the universe due to its connection with the see-saw mech-

anism for the generation of the neutrino masses. The discovery of neutrino oscillations

(Fukuda et al., 1998) in 1998, has experimentally confirmed that neutrinos are massive

and the fact that the flavour eigenstates of neutrinos do not coincide with their mass eigen-

states. This discovery indicates new physics beyond the SM. The see-saw mechanism is

the most promising model for explaining the tiny neutrino masses (Minkowski, 1977),

(Gell-Mann et al., 1979), (Mohapatra and Senjanovic, 1980).

The canonical (minimal) leptogenesis is based on the type-I see-saw mechanism

(Luty, 1992), (Buchmüller and Plumacher, 1996), (Barbieri et al., 2000), (Giudice et al.,

2004), (Buchmuller,Peccei and Yanagida, 2005). The SM is extended by heavy gauge

singlet right handed (RH) Majorana neutrinos Ni, which give rise to neutrino masses

mνi = (λνi〈H〉)
2/MNi where λνi is the neutrino Yukawa coupling, 〈H〉 is the Higgs vacuum

expectation value and MNi ∼ 109 − 1015 GeV .

The canonical thermal leptogenesis begins right after the end of inflation. At the

beginning of the radiation dominated reheating phase the temperature of the universe is

the reheating temperature Trh. Below this temperature the inflation is considered to be

completed. As the universe cools down to T . Trh, inflaton decays to other fields and the

RH neutrinos are produced by the Yukawa interactions of leptons and the Higgs field. As a

result, the abundance of N1 approaches the thermal equilibrium value. As the temperature

reaches down to the mass of the lightest RH neutrino N1, that is, T ∼ M1, the equilibrium

abundance of the heavy neutrinos faces a sudden drop. However the RH neutrinos cannot

decay fast enough to cope with this abrupt change and therefore the thermal equilibrium

gets lost. As T < M1 the majorana neutrinos continue to decay out of equilibrium and

in the process they violate CP and produce more leptons than anti-leptons. When the

net lepton number starts to rise, the washout processes start to compete with the rate of

the decay processes. The sphaleron processes (Klinkhammer and Manton, 1984) are in

equilibrium between T ∼ 100 GeV and T ∼ 1013 GeV , due to their (B+L) violating but (B-
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L) conserving nature they start to convert any leptonic asymmetry into a partial baryonic

asymmetry as the temperature gets down T . 1013 GeV . In the mean time the decays

and wash out processes start to freeze out when the universe cools sufficiently, however

the sphalerons are fast enough to keep the baryon number at its equilibrium value. At

T ∼ TEW the electroweak symmetry is spontaneously broken and the fermions acquire

mass; at the same time Boltzmann suppression in the sphaleron processes causes them to

freeze out. From this point on the baryon number violating processes are suppressed and

any baryon number generated up to that point is frozen.

The successful realization of canonical thermal leptogenesis requires the lightest

of the heavy neutrinos N1 to have a mass M1 & 2 × 109 GeV . To be able to produce such

massive N1 thermally, a reheat temperature after inflation of Trh > M1 & 2×109 is needed

(Buchmüller, Di Bari and Plumacher, 2002), (Buchmüller,Di Bari and Plumacher, 2005),

(Buchmüller, Di Bari and Plumacher, 2004).

The extension of SM with right handed singlet neutrinos Ni, in the context of type-

I see-saw has major consequences on the SM Higgs sector. The most obvious of these

is related to the naturalness problem of the Higgs boson mass. Introducing such ultra

heavy particles with mass MNi with direct coupling to the Higgs boson, unsurprisingly

induces dangerous loop corrections to the Higgs mass. These large quadratic corrections

give cause to the hierarchy problem. Naturalness arguments (Bambhaniya et al., 2017),

(Vissani, 1998), (Casas et al., 2004), (Farina et al., 2013) set an upper limit on the right

handed neutrino masses of M1 . 2.7× 107 GeV , which is clearly at odds with the thermal

leptogenesis lower bound given above.

It is important to be able to mitigate the naturalness bound on the right handed

neutrino masses so that there is an opportunity for successful leptogenesis. One possible

solution in this regard is to incorporate weak scale softly broken supersymmetry (SUSY)

into the theory such that the quadratic divergences are reduced to milder logarithmic ones

(Baer and Tata, 2006). Even though this attempt is successful in ameliorating the natu-

ralness problem, it also causes a new predicament of its own called the gravitino problem

(Weinberg, 1982). Gravitino problem is the recognition that when the reheating tempera-

ture Trh exceeds a certain value, gravitinos, superpartners of the gravitons, will either be

overproduced such that they will overshoot the WMAP and other relic density limits on

the LSP dark matter or else they will disrupt the BBN predictions by being late decaying
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quasi-stable particles, the decay products of which break up the newly synthesized light

elements (Khlopov and Linde, 1984). The most common solution to the gravitino prob-

lem in the context of thermal leptogenesis is to ensure that the reheat temperature is low

enough that thermal production of gravitinos are reduced considerably. It turns out that for

gravitinos in the mass range of a few TeV, the reheat temperature should be Trh . 105 GeV

to avoid the gravitino problem, which is even more strict than the naturalness bound on

the MNi .

The problem is that Trh > M1 & 2×109 for successful leptogenesis but the vacuum

stability and the naturalness forbids this mass range. How can then we have leptogenesis?

This is the question we explore in the present work. We propose to add a heavy spin-3/2

field to the SM spectrum, and investigate its plausibility in regard to successful lepto-

genesis with no side effects, specifically the naturalness of the Higgs boson and correct

prediction of the active neutrino masses. Our model incorporates spin-3/2 field in addi-

tion to the type-I see-saw fields in inducing the CP-violation parameter ε. The motivation

behind this model is that the spin-3/2 field is already shown to be capable of cancelling

out the power-law divergences in the Higgs for a mass in the ball park of Mψ ' 1016 GeV .

(Sargın, 2020)

In the next section we introduce the model and discuss its salient physics. Section

3 is devoted to the calculation of the CP asymmetry in heavy Majorana neutrino decays

that results from the interference of the tree level graph with the loop diagrams. The last

section concludes and gives an assessment of the model.

5.2. The Model

Here we introduce the model and discuss its salient physics. To be able to convey

the essential points, we consider a simplified model with one lepton doublet L and two RH

neutrinos Ni which we denote by N1 and N2,3. We further assume that the RH neutrinos

are hierarchical with N1 < N2,3.

We extend the see-saw spectrum by a spin-3/2 vector-spinor ψµ so that the SM

Lagrangian receives the contributions
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∆LS M = λ1LHN1 + λ2,3LHN2,3 + λ 3
2
LHγµψµ + h.c. (5.3)

in addition to the Ni and ψµ kinetic terms. These interactions can give rise to

various non-SM effects, which can be detected at colliders and astrophysical phenomena.

At the loop level their most prominent effect is the shift in the Higgs boson mass

δm2
h =

1
8π2

(
9
4

g2 +
3
4

g′2 + 6λH − 6h2
t − λ

2
νi

)
Λ2

U +

λ2
3
2

48π2

Λ4
U

M2
ψ

+
λ2
νi

4π2 M2
Ni

log
Λ2

U

M2
Ni

(5.4)

where ΛU is the UV cutoff on the loop momenta (`µE`
µ
E < Λ2

U , for Euclidean loop

momentum `
µ
E). This correction to Higgs boson mass clearly shows that there are neither

quadratic nor logarithmic corrections from the vector-spinor ψµ. It gives only quartic

contributions. In fact, one of us (Sargın, 2020) has already shown that the quadratic

and quartic contributions to the Higgs mass shift δm2
h cancel out for M3/2 ' 1016 GeV,

the supersymmetric unification scale. (This appearance of the GUT scale in an unrelated

setting might be an indication of the fact that spin-3/2 fields could be part of the stringy

or other completions.)

The other important quantity is the mass of the active neutrinos. They emerge

through the see-saw mechanism. This means that the heavy fields, Ni and ψ3/2, need be

integrated out form the light spectrum of fields. But integration of a field, say ψ3/2, out of

the light spectrum involves solution of its equation of motion (in powers of ( momentum /

M3/2)) but physical consistency (Demir et al., 2017) of the spin-3/2 field requires γµψµ ≡

0 and ∂µψµ ≡ 0. These two constraints ensure that it is simply not possible to integrate out

ψ3/2 to create a contribution to the active neutrino masses. It then follows that neutrino

masses derive from the right-handed neutrinos as usual

mνi = λ2
i
〈H〉2

MNi

(5.5)
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which must lie below the eV scale as follows from neutrino oscillations.

The calculations in the baryogenesis through thermal leptogenesis scenario pro-

ceeds in two steps (Di Bari, 2012). The first one is the calculation of the RH neutrino

abundance while the second step is the actual calculation of the baryon asymmetry. One

of the most important parameters in both of these calculations is the decay parameters Ki.

The decay parameters are defined as

Ki ≡
Γ̃i

H(T = Mi)
(5.6)

where Γ̃i ≡ (Γi + Γ̄i)T�Mi is the total decay width of the RH neutrinos and H(T =

Mi) is the Hubble expansion rate at the time when they begin to be non-relativistic. It is

also possible to regard the decay parameters Ki as an indicator which tells us how much

out-of-equilibrium the RH neutrinos’ decay is. The total decay width of the RH neutrinos

Γ̃i is by definition equal to the inverse life time of the Ni, namely Γ̃i = τ−1
i ; while the

inverse of the Hubble rate is essentially the age of the universe, H−1 = 2t. Therefore

the decay parameters are actually a ratio of the age of the universe to the life time of the

heavy neutrinos. If Ki � 1, the RH neutrinos have ample time to decay and inverse decay

many times before t(T = Mi) because their life time is much shorter. In that case, their

abundance closely follows the thermal equilibrium distribution. This case is called the

strong wash-out regime. On the other hand, if Ki � 1, which is the weak wash-out case,

the RH neutrinos decay mostly out of equilibrium when they begin to be non-relativistic.

The Boltzmann equation governing their abundance (abundance of Ni) is given by

dNNi

dz
= −Di(NNi − Neq

Ni
) (5.7)

where z ≡ M1/T and we are assuming that initially there exits one relativistic RH neutrino

in thermal equilibrium in a portion of a co-moving volume. The decay factors Di in (5.7)
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is defined as

Di ≡
ΓD,i

H z
= Ki xi z

〈
1
γ

〉
, (5.8)

where xi ≡ M2
i /M

2
1 and ΓD,i ≡ Γ̃i 〈1/γ〉. The thermally avergaed dilation factor 〈1/γ〉 is

the ratio of the modified Bessel functions K1(z)/K2(z).

In the most basic canonical thermal leptogenesis scenario the flavour composition

of the light leptons is neglected. In this scheme, commonly dubbed as the unflavoured

or one-flavoured leptogenesis, the Boltzmann equation governing the B− L asymmetry is

given by

dNB−L

dz
=

∑
i

εi Di (NNi − Neq
Ni

) − NB−L

[
∆W(z) +

∑
i

W ID
i (z)

]
, (5.9)

which needs to be solved together with the Boltzmann equation (5.7). The first term in

(5.9) acts as the source term for the B− L asymmetry and the εi is the total CP asymmetry

associated to each Ni, defined as

εi ≡ −
Γi − Γ̄i

Γi + Γ̄i
, (5.10)

and it also corresponds to the B − L asymmetry created for each Ni decay.

The second term in (5.9) is the washout term and it consists of two different contri-

butions. The first one, ∆W(z), is the term that designates the ∆L = 2 scattering processes

(`i + φ† ↔ ¯̀i + φ). On the other hand,
∑

i W ID
i (z) term is the one that takes into account

the inverse decays (`i +φ
† → Ni) or ( ¯̀i +φ→ Ni) . The inverse decay wash-out terms can

be written as

W ID
i (z) =

1
4

Ki
√

xiK1(zi) z3
i (5.11)

where zi ≡ z
√

xi = Mi/T .

The eventual value of the created B − L asymmetry can be written as the sum of
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the product of each total CP asymmetry εi and an individual efficiency factor κ f
i (Ki)

N f
B−L =

∑
i

εi κ
f
i (Ki) (5.12)

where the approximate value of the efficiency factors are given by

κ
f
i ∼ Min [1, 1/Ki] . (5.13)

If one further assumes that the RH neutrinos are hierarchical with M2 & 3M1,

the N1 dominated scenario holds and the asymmetry is primarily produced by the out of

equilibrium decays of the lightest RH neutrino. In that case the sum in (5.12) reduces to

the first term only, which is

N f
B−L = ε1 κ

f
1 (K1) . (5.14)

The baryon to photon ratio of the universe can be calculated from the final B − L

asymmetry using the relation

ηB = αsph
N f

B−L

Nγ

' 0.96 × 10−2 N f
B−L (5.15)

where αsph = 28/79 ' 1/3 is there to reflect the fact that not all the N f
B−L is transformed

into a baryonic asymmetry (approximately only a third gets converted). Nγ ' 37 is a factor

that takes into account the dilution effect of the photon production after leptogenesis.

As it is obvious from (5.14), the success of a N1-dominated unflavoured thermal

leptogenesis model primarily depends on two key parameters. These are the total CP

asymmetry ε1 and the efficiency κ f
1 (K1) of the lightest RH neutrino decay process. In the

next section, we calculate the total CP asymmetry ε1 for N1 decays via spin-3/2.

Here we want to reiterate that realizing successful leptogenesis is quite nontrivial

in that one has to suppress the Higgs mass corrections in (5.4) (which is known from
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(Sargın, 2020) to occur for Mψ ' MGUT ), induce the active neutrino masses in (5.5)

correctly, and generate the baryon excess in (5.15) with the right amount. In the next

section we will show that all these three requirements are met through the contributions

of the spin-3/2 field.

5.3. CP-asymmetry

The total CP asymmetry produced via the N1 decay is defined as

ε1 ≡ −
Γ(N1 → LH) − Γ(N1 → L H)

Γ(N1 → LH) + Γ(N1 → L H)
. (5.16)

In the minimal leptogenesis scheme, which is depicted in Figure 5.1, a perturbative cal-

culation incorporating the interference between the tree level amplitude and the one-loop

vertex correction and one-loop self-energy correction is employed (Strumia, 2006), and

the CP asymmetry parameter in is found to take the form

ε1 ∼ −
1

4π
M1

M2,3
Im λ2

2,3 . (5.17)

N1

L

H

N1

L

H

H

L

N2,3

N1

L L

N2,3

H H

Figure 5.1. The Feynman diagrams for the tree-level, one-loop vertex, and one-loop
self-energy amplitudes contributing to the CP-violating N1 decay in the
minimal leptogenesis scenario.

This imaginary part and consequently the total CP asymmetry results from the fact
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that the intermediate states can come on the physical shell to develop a CP-even phase.

Indeed, Cutkosky rule guarantees that the Feynman amplitudes develop imaginary parts

(Cutkosky, 1960).

In our model, set forth in (5.3), the total CP asymmetry is again calculated using

(5.16). However, in this case the perturbative calculation is pursued as per the diagrams

in Figure 5.2.

N1

L

H

N1

L

H

H

L

ψµ

N1

L L

ψµ

H H

Figure 5.2. CP violating N1 decay via the spin-3/2 vector-spinor. The red lines indicate
the unitarity cuts needed to calculate the imaginary part of the amplitude.

We start out calculation with the tree-level diagram. The expression for the am-

plitude of this diagram is given by

M1 = λ1u(p2)u(p1) (5.18)

where p1 and p2 are the momenta of N1 and L respectively. The amplitude can be squared

to find

|M1|
2 = |λ1|

2 Tr [( /p1 + M1) + ( /p2 + mL)] = 4|λ1|
2 [(p1 · p2) + M1mL] ≈ 2|λ1|

2M2
1 (5.19)

so that N1 decay rate

Γ1 =
|p|

8πM2
1

|M1|
2 (5.20)
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reduces to

Γ1 ≈ |λ1|
2 M1

8π
(5.21)

after using the momentum value

|p| =
1

2M1

√
M4

1 + m4
L + m4

H − 2M2
1m2

L − 2M2
1m2

H − 2m2
Lm2

H ≈
M1

2
. (5.22)

It is clear that Γ1, whose size is set by M1, is constrained by the active neutrino masses in

(5.5) due to its direct λ1 dependence.

The calculation of the amplitudes corresponding to the loop diagrams in Figure

5.2 proceed in two separate steps. First, we obtain the real part of the amplitude and then

assess the imaginary part. We start with the real parts of the loop diagrams. The amplitude

for the vertex diagram is

M2 =

∫
d4q

(2π)4 u(p2)
(
− iλ 3

2
γβPL

)[ i(/q + Mψ)
q2 − M2

ψ

Πβα

](
− iλ 3

2
γαPL

)( i(/q + /p3 + mL)
(q + p3)2 − m2

L

)
×

λ∗1u(p1)
( i
(q − p2)2 − m2

H

)
(5.23)

where the term in the square brackets is the propagator of ψµ where Πβα is the projector

as a function of the loop momentum q of ψµ. Its explicit form is given by

Πβα = −ηβα +
γβγα

3
+

(
γβqα − γαqβ

)
3Mψ

+
2qβqα

3M2
ψ

. (5.24)

After some algebra the amplitude simplifies to

M2 =
2iλ∗1
3M2

ψ

λ2
3
2

∫
d4q

(2π)4

u(p2)PR{q2 + /q( /p3 + mL)}u(p1)
[(q + p3)2 − m2

L][(q − p2)2 − m2
H]

(5.25)
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and it takes the form

M2 =
2iλ∗1
3M2

ψ

λ2
3
2
u(p2)PR

{∫ 1

0
dxI1(x) +

∫ 1

0
dxI2(x)[x2M2

1 − x(M2
1 + 2mLM1 − 2m2

L)(5.26)

+(mLM1 + m2
L)]

}
u(p1)

after Feynman parametrization. The functions I1(x) and I2(x) in this expression

I1(x) =
−i

16π2

{
Λ2

U − 2
[
x2M2

1 − x(M2
1 − m2

L + m2
H) + m2

H

]
×

log
(
Λ2

U + x2M2
1 − x(M2

1 − m2
L + m2

H) + m2
H

x2M2
1 − x(M2

1 − m2
L + m2

H) + m2
H

)
−

[
x2M2

1 − x(M2
1 − m2

L + m2
H) + m2

H
]2

Λ2
U + x2M2

1 − x(M2
1 − m2

L + m2
H) + m2

H

+ x2M2
1 − x(M2

1 − m2
L + m2

H) + m2
H

}
(5.27)

and

I2(x) =
i

16π2

{
log

(
Λ2

U + x2M2
1 − x(M2

1 − m2
L + m2

H) + m2
H

x2M2
1 − x(M2

1 − m2
L + m2

H) + m2
H

)
(5.28)

+
x2M2

1 − x(M2
1 − m2

L + m2
H) + m2

H

Λ2
U + x2M2

1 − x(M2
1 − m2

L + m2
H) + m2

H

− 1
}

result from Feynman parameter integration. This is all for the vertex diagram. Coming to

the self-energy diagram, its amplitude is found to be

M3 =

∫
d4q

(2π)4 u(p2)
(
− iλ 3

2
γβPL

)[ i( /p1 + Mψ)
p2

1 − M2
ψ

Πβα

](
− iλ 3

2
γαPL

)( i(/q + mL)
q2 − m2

L

)
×

λ∗1u(p1)
( i
(q − p1)2 − m2

H

) (5.29)

where Πβα is the projector defined in (5.24) in which q is replaced with p1. After some
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algebra this amplitude reduces to

M3 =
2iλ∗1
3M2

ψ

λ2
3
2

∫
d4q

(2π)4

u(p2)PR /p1(/q + mL)u(p1)
[q2 − m2

L][(q − p1)2 − m2
H]

(5.30)

and takes the form

M3 =
2iλ∗1
3M2

ψ

λ2
3
2
u(p2)PR

{∫ 1

0
dxI2(x)

[
− xM2

1 + (M2
1 + mLM1)

]}
u(p1) (5.31)

after Feynman parametrization. Needless to say, the function I2(x) is the one in (5.28).

After performing Feynman parameter integrations and summing them up the total

amplitude

Mtot =M1 +M2 +M3 (5.32)

is found to have the real part

Re[Mtot] = λ1u(p2)u(p1) +
λ∗1Λ

2
U

24π2M2
ψ

λ2
3
2

u(p2)PR u(p1) (5.33)

in which the first term corresponds to the tree level amplitude and the second term

is the loop contribution.

Now, we start computing the imaginary parts of the loop diagrams. We will do this

by using the Cutkosky cutting rules pertaining to the loop diagrams (see Figure 5.2). In

this way, we will not have to worry about any branch cuts of the logarithms. To this end,

calculation of the imaginary part of vertex diagram starts with by applying the Cutkosky

cutting rules to its expression

M2 =
2iλ∗1
3M2

ψ

λ2
3
2

∫
d4q

(2π)4

u(p2)PR/q(q2 − M2
ψ)(/q + /p3 + mL)u(p1)

[q2 − M2
ψ + iε][(q + p3)2 − m2

L + iε][(q − p2)2 − m2
H + iε]

(5.34)

where we cut the diagram following the red lines in Figure 5.2.

The imaginary part of the amplitude is obtained by replacing the cut propagators
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in (5.34) with delta functions as well as step functions. We also include a factor of (2πi)

for each line we cut. On the other hand the uncut propagator is replaced with the principal

value propagator, i.e. we set ε → 0. The step function is used in order to account for

the energy flow through the cut. For example for the cut in Figure 5.2, if we assume that

the momentum flow from left to right through the cut is positive; the argument of the step

function for the lepton line should be positive whereas the argument for the step function

of the Higgs line should be negative. Applying this procedure what we get is

2 Im[M2] =
2λ∗1
3M2

ψ

λ2
3
2

∫
d4q

(2π)4

u(p2)PR /q(q2 − M2
ψ)(/q + /p3 + mL)u(p1)

(q2 − M2
ψ)

×

(2πi) θ(q0 + p3,0) δ1((q + p3)2 − m2
L)×

(2πi) θ(−(q0 − p2,0)) δ2((q − p2)2 − m2
H) .

(5.35)

For convenience, we continue the calculation of (5.35) by carrying p1 to the

center-of-mass (COM) frame. By momentum conservation we have

(p1,0 , ~p1) = (p2,0 + p3,0 , ~p2 + ~p3) . (5.36)

In p1-COM frame

p1 = (M1, 0) ⇒ ~p2 + ~p3 = 0 ⇒ ~p2 = −~p3 ≡ −~p (5.37)

and

p2,0 =

√
~p2 + m2

L ≡ EL , p3,0 =

√
~p2 + m2

H ≡ EH , EL + EH = M1 . (5.38)
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Then, the expression in (5.35) takes the following form in p1-COM frame

Im[M2] =
−λ∗1

12π2M2
ψ

λ2
3
2

u(p2)PR

{∫
d4q

{
(q2

0 − ~q
2) + (q0γ

0 + ~q · ~γ)M1

}
×

θ(q0 + EH)θ(EL − q0)δ1((q0 + EH)2 − (~q + ~p )2 − m2
L) ×

δ2((q0 − EL)2 − (~q + ~p )2 − m2
H)

}
u(p1)

(5.39)

which, after shifting the three momenta as ~q→ ~q − ~p, takes the form

Im[M2] =
−λ∗1

12π2M2
ψ

λ2
3
2

u(p2)PR

{∫
d4q

{
(q2

0 − (~q − ~p )2) + (q0γ
0 + (~q − ~p ) · ~γ )M1

}
×

θ(q0 + EH)θ(EL − q0)δ1((q0 + EH)2 − ~q 2 − m2
L) δ2((q0 − EL)2 − ~q 2 − m2

H)
}

u(p1) .

(5.40)

Examining (5.40) we notice that it contains a multiple of two delta functions each of

which is a function of two variables, namely, what we have is

δ1( f (q0, |~q |)) δ2(g(q0, |~q |)) (5.41)

where

f (q0, |~q |) ≡ (q0 + EH)2 − ~q 2 − m2
L , g(q0, |~q |) ≡ (q0 − EL)2 − ~q 2 − m2

H . (5.42)

To proceed further, we will use an identity for the multiple of two delta functions, to wit

δ1( f (x, y)) δ2(g(x, y)) =
δ(x − x0)δ(y − y0)∣∣∣∣∂ f
∂x

∂g
∂y −

∂g
∂x

∂ f
∂y

∣∣∣∣
(x0,y0)

(5.43)
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where x0 and y0 are the roots of f (x, y) and g(x, y)

f (x0, y0) = 0 , g(x0, y0) = 0 (5.44)

and the term in the denominator of (5.43) is the Jacobian evaluated at the common roots

of the two functions in (5.44). Now, we use the identity (5.43) to calculate (5.41) and put

the result in (5.40) so that the imaginary part ofM2 becomes

Im[M2] =
−λ∗1

12π2M2
ψ

λ2
3
2

u(p2)PR
1

4M1

√(M2
1+m2

L−m2
H

2M1

)2
− m2

L

{∫
d4q

{
(q2

0 − (~q − ~p )2)

+ (q0γ
0 + (~q − ~p ) · ~γ )M1

}
θ(q0 + EH)θ(EL − q0)δ(q0 − q̂0)δ(|~q| − |~̃q |)

}
u(p1) .

(5.45)

Taking the integral we get

Im[M2] =
−λ∗1

6πM2
ψ

λ2
3
2

u(p2)PR
1

4M1

√(M2
1+m2

L−m2
H

2M1

)2
− m2

L

{
|~̃q |2

{
2(q̂2

0 − |~̃q |
2 − |~p |2) (5.46)

+ 2M1(q̂0γ
0 − |~p |γ3)

}}
u(p1)

where |~̃q| and q̂0

|~̃q | =

√(M2
1 + m2

L − m2
H

2M1

)2
− m2

L , q̂0 =
m2

L − m2
H

M1
(5.47)

are the simultaneous roots of (5.42), and

|~p | =

√
(M2

1 − m2
H − m2

L)2 − 4m2
Hm2

L

2M1
(5.48)

is the magnitude of the momenta of outgoing lepton and Higgs.
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After inserting (5.47) and (5.48) into (5.46) we obtain the final expression for the

imaginary part of the vertex diagram, which is

Im[M2] =

−λ∗1 λ
2
3
2

24πM1M2
ψ

√(M2
1 + m2

L − m2
H

2M1

)2
− m2

L u(p2)PR

{
2(m2

L − m2
H)γ0

+
(2m4

L − 12m2
Hm2

L + 2m4
H − 2M4

1 + 4M2
1m2

L + 4M2
1m2

H

2M2
1

)
− γ3

√
(M2

1 − m2
H − m2

L)2 − 4m2
Hm2

L

}
u(p1) .

(5.49)

The calculation of the imaginary part of the self energy diagram using the Cutkosky rule

begins with the amplitude expression for the diagram

M3 =
2iλ∗1
3M2

ψ

λ2
3
2

∫
d4q

(2π)4

u(p2)PR /p1(p2
1 − M2

ψ)(/q + mL)u(p1)

[p2
1 − M2

ψ + iε][q2 − m2
L + iε][(q − p1)2 − m2

H + iε]
. (5.50)

Now, we cut the diagram as denoted with the red line in Figure (5.2) and follow the same

procedure we have used above for the vertex diagram. The result is

Im[M3] =

−λ∗1 λ
2
3
2

24πM1M2
ψ

√(M2
1 + m2

L − m2
H

2M1

)2
− m2

L u(p2)PR ×{
2(M2

1 + m2
L − m2

H + mLM1) − (M2
1 + m2

L − m2
H)γ0

}
u(p1) .

(5.51)

Now, adding (5.49) and (5.51) imaginary part of the total amplitude is found to be

Im[Mtot] =

−λ∗1 λ
2
3
2
M2

1

48πM2
ψ

u(p2)PR {1 − γ0 − γ3} u(p1) (5.52)
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whose combination with the real part in (5.33) leads to the total decay amplitude

Mtot(N1 → LH) =

(
λ1u(p2)u(p1) +

λ∗1Λ
2
U

24π2M2
ψ

λ2
3
2

u(p2)PR u(p1)
)

(5.53)

−i
(λ∗1 λ2

3
2
M2

1

48πM2
ψ

u(p2)PR {1 − γ0 − γ3} u(p1)
)
.

From (5.53), it is easy to infer the form of total amplitude for the conjugated process

Mtot(N1 → L H) =

(
λ∗1u(p2)u(p1) +

λ1Λ
2
U

24π2M2
ψ

λ∗
2

3
2

u(p2)PR u(p1)
)

(5.54)

−i
(λ1 λ

∗2

3
2

M2
1

48πM2
ψ

u(p2)PR {1 − γ0 − γ3} u(p1)
)
.

Squaring the amplitudes as

|Mtot(N1 → L H)|2 =

{
2|λ1|

2M2
1 + λ2

1λ
2∗
3
2

Λ2
U M2

1

24π2M2
ψ

+ λ∗
2

1 λ
2
3
2

Λ2
U M2

1

24π2M2
ψ

}
(5.55)

+i
{
λ2

1λ
2∗
3
2

M4
1

48πM2
ψ

− λ∗
2

1 λ
2
3
2

M4
1

48πM2
ψ

}

and

|Mtot(N1 → L H)|2 =

{
2|λ1|

2M2
1 + λ∗

2

1 λ
2
3
2

Λ2
U M2

1

24π2M2
ψ

+ λ2
1λ
∗2

3
2

Λ2
U M2

1

24π2M2
ψ

}
(5.56)

+i
{
λ∗

2

1 λ
2
3
2

M4
1

48πM2
ψ

− λ2
1λ
∗2

3
2

M4
1

48πM2
ψ

}

and using them in the decay rate Γtot(N1 → L H) ∝ |Mtot(N1 → L H)|2 we obtain the

CP-violation parameter

ε1 =

M2
1

12πM2
ψ

Im[λ2
1λ

2∗
3
2

]

4|λ1|
2 +

Λ2
U

6π2 M2
ψ

Re[λ2
1λ

2∗
3
2

]
(5.57)
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Figure 5.3. The CP asymmetry parameter vs. the relative phase between λ2
1 and λ2

3
2

-log plot.

after using the definition in (5.16). This CP-violation parameter, which involves the rela-

tive phase between λ2
1 and λ2

3
2
, explicitly encodes the effects of the spin-3/2 vector-spinor,

including its mass.

In (5.57), we have calculated the total CP asymmetry parameter pertaining to the

N1 decays via spin-3/2. We can write this in terms of the relative phase between λ2
1 and

λ2
3/2 by noting

Im[λ2
1λ

2∗
3
2

] = |λ2∗ ||λ2∗
3
2
| S in(δφ), (5.58)

and similarly,

Re[λ2
1λ

2∗
3
2

] = |λ2∗ ||λ2∗
3
2
| Cos(δφ) . (5.59)

Then;

ε1 =

M2
1

12πM2
ψ

|λ2∗ ||λ2∗
3
2
| S in(δφ)

4|λ1|
2 +

Λ2
U

6π2 M2
ψ

|λ2∗ ||λ2∗
3
2
| Cos(δφ)

. (5.60)
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Figure 5.4. The CP asymmetry parameter vs. the relative phase between λ2
1 and λ2

3
2
.

Upon inspecting (5.60), one can observe that to be able to induce the maximum

CP asymmetry possible, the second term in the denominator i.e. the term containing Λ2
U

6π2 M2
ψ

should be suppressed. This can be possible if the phase difference between λ2
1 and λ2

3/2 ,

i.e. , δφ approaches δφ ∼ π/2 so that Re[λ2
1λ

2∗
3
2

] = |λ2∗ ||λ2∗
3
2
| Cos(δφ) → 0. This is the

behavior which we observe in the Figs. (5.3) and (5.4).

In Figure (5.5) and Figure (5.6), we investigate the change in the total CP asymme-

try resulting from the change in the mass of the lightest right handed neutrino. We observe

from these figures that for a spin-3/2 mass Mψ ∼ 1016 GeV , that were shown to stabilize

the m2
h in Chapter 2, and assuming the imaginary couplings λ1 and λ 3

2
of moduli ∼ 10−1

while taking ΛU = MPlanck = 1.2x1019 GeV; the CP asymmetry parameter ε1 calculated in

(5.57) and the decay parameter K1 defined in (5.6) has the potential to generate a viable

baryon to photon ratio if the lightest RH neutrino mass is of the order M1 ∼ 1014−15 GeV .

We conclude that, it is possible to redefine the phases of N1, L and ψµ and set M1,

Mψ and λ1 real but this leaves an ineliminable CP violating phase in λ2
3
2

which should be
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Figure 5.5. The CP asymmetry parameter vs. the lightest right handed neutrino mass
scatter plot

around π/2 to successfully induce a baryon asymmetry of the order of the observed value.

Even though reheat temperatures Trh ∼ 1015 GeV is in the accessible range according

to CMB observations, a lightest RH neutrino of mass 1014 GeV is quite marginal. For

this reason, it may be safer to consider the spin-3/2 generated CP asymmetry as an extra

contribution to the already existing ε1, which is originated from the see-saw fields and

given in (5.17), in which case the spin-3/2 field can be considered as a "flanker" whose

primary role is to protect the Higgs mass and therefore ameliorate the naturalness bound

on M1.

5.4. Summary of the chapter

The maximal baryonic asymmetry of the universe is a serious problem that SM

does not have a solution for. There are a number of theories attempting at a solution. The

most promising one out of these is considered to be the thermal leptogenesis. Thermal

leptogenesis is a cosmological consequence of the see-saw mechanism which is an ex-
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Figure 5.6. The CP asymmetry parameter vs. the lightest right handed neutrino mass.

tension to the SM aimed at explaining the non-zero but very small masses of the active

neutrinos. According to the see-saw mechanism the active neutrino masses are a result of

the interplay between two much higher energy scales, one being the Dirac mass scale the

other being the Majorana mass scale. Introducing such high energy scale RH neutrinos

with Yukawa couplings to the Higgs, causes the Higgs mass to be destabilized. Natural-

ness arguments dictate the lightest RH neutrino mass to be M1 . 2.7×107 GeV. However,

successful thermal leptogenesis requires a lightest RH neutrino mass of M1 & 2×109 GeV.

In this chapter, we investigate a thermal leptogenesis scenario which involves a

spin-3/2 field in addition to the usual heavy neutrinos of the see-saw mechanism. The

motivation behind this model is the potential of such a spin-3/2 field in stabilizing the

Higgs mass such that the naturalness bound on the lightest of the see-saw neutrinos can

be revoked.

Furthermore, Yukawa coupling of the spin-3/2 field to the lepton doublet and the

Higgs field enables it to play the same role that a second heaviest RH neutrino plays

in creating a ε-type CP asymmetry in the out of equilibrium decays of the lightest RH

neutrino.
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CHAPTER 6

CONCLUSION

In this thesis, we have investigated different phenomenological applications of the

spin-3/2 vector spinor fundamental fields, which are the next spin multiplet we look for in

the general particle search. These higher-spin fields, described by the Rarita-Schwinger

equations have to obey certain constraints to have correct degrees of freedom when they

are on the physical shell.

In the first chapter, we have introduced these spinor-vector fields to the reader by

first going through the different representations that can be employed to describe them.

We have then recapitulated some facts on the most general free lagrangian and the propa-

gator for these fields and introduced the constraints that they obey.

In chapter 2 we have investigated a massive spin-3/2 field hidden in the standard

model (SM) spectrum thanks to the form of the special interaction that vanishes when

the field falls into the mass shell. Different collider signatures, specifically νLh → νLh

and e−e+ → W+W− scatterings have been investigated through analytical computations

and numerical predictions. We have concluded that collider searches for ψµ, as illustrated

by νLh → νLh and e−e+ → W+W− scatterings, can access spin-3/2 fields of several TeV

mass. For instance, the ILC, depending on its precision, can confirm or exclude a ψµ of

even 5 TeV mass with an integrated luminosity around 1/ f b. Depending on possibility

and feasibility of a neutrino-neutrino collider, it may be possible to study also νLνL → hh

and νLνL → ZLZL scatterings, which are expected to have similar sensitivities to M.

In chapter 3, we have studied the Higgs mass stabilization problem by a hidden

spin-3/2 particle high above the electroweak scale and examined the radiative corrections

it induces on the Higgs self energy in an effective field theory approach using cut-off

regularization so as to obtain an estimate of the mass of this new particle by demanding

that the total one loop corrections to the Higgs mass should cancel. The main advantage

of our model over the singlet scalar approaches is that while the latter need auxiliary fields

such as vector-like fermions in order to stabilize the NP sector itself, hidden spin-3/2 field

is free from such requirements. Due to the unique character of our spin-3/2 interaction
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with the SM, it is impossible to observe a spin-3/2 particle on mass shell. This means

that the BSM sector in our model is a genuinely stable hidden extension of SM. Our

calculations have revealed that this higher spin particle resides in the ball park of GUT

scale. If ongoing searches at the LHC reveal no particles at the TeV scale combined with

the fact that the next higher spin particle (spin-3/2) inhabits the GUT scale may strengthen

the grand desert notion in the GUTs without TeV scale NP.

Lastly, we have investigated the possible role that a spin-3/2 field could play in

leptogenesis. Our model incorporates a spin-3/2 field in addition to the type-I see-saw

fields in inducing the CP asymmetry and mitigating the naturalness problem of the Higgs

boson. We have investigated the plausibility in regard to successful leptogenesis with no

side effects, specifically the naturalness of the Higgs boson and correct prediction of the

active neutrino masses. We have concluded that for a spin-3/2 mass Mψ ∼ 1016 GeV , that

were shown to stabilize the m2
h in Chapter 2, and assuming the imaginary couplings λ1

and λ 3
2

of moduli ∼ 10−1 while taking ΛU = MPlanck = 1.2x1019 GeV; the CP asymmetry

parameter ε1 calculated in (5.57) and the decay parameter K1 defined in (5.6) has the

potential to generate a viable baryon to photon ratio if the lightest RH neutrino mass is of

the order M1 ∼ 1014−15 GeV .
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