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ABSTRACT 

 

DETERMINATION OF HYDROCARBON COMPOSITION OF 

NAPHTHA BY USING FOURIER TRANSFORM INFRARED 

SPECTROSCOPY AND MULTIVARIATE CALIBRATION 

 

 Accurate monitoring of the charging and output of the refinery unit is required. 

These direct refineries need to provide a quick response to posts on crude oil compositions 

or directions to their latest request. Determining the physical properties of the 

intermediate products of the crude oil unit in the refinery based on conventional analytical 

methods requires time consuming and expensive processes. At this stage, multivariate 

calibration techniques, creating models that can replace conventional analysis methods 

and obtaining results using fast spectroscopic analysis. For this study, multivariate 

calibration techniques were used to determine the hydrocarbons in the naphtha product 

from crude oil distillation column. The results were evaluated by comparing with using 

the reference conventional method results. Parameters are Aromatics, Olefins, Benzene, 

Naphthenes, Paraffins, C7Plus (the sum of compounds with more than 7 carbons) and 

C6Minus (the sum of compounds with less than 6 carbons). Samples were analyzed by 

Fourier transform near infrared region spectroscopy between 10000 cm-1- 4000 cm-1 

wavenumbers. Calibration models were obtained by partial least squares and genetic 

inverse least squares methods. Using these models, the relevant parameters for the 

validation set samples were estimated and compared statistically with the values of the 

reference analysis methods. The results has been indicated that parameters has been 

successfully modelled with R2 range from 0.917 to 0.998 for LSRN samples and R2 range 

from 0.963 to 0.996 for HSRN samples. 
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ÖZET 

 

NAFTANIN HİDROKARBON BİLEŞİMİNİN FOURIER DÖNÜŞÜMLÜ 
KIZILÖTESİ SPEKTROSKOPİSİ VE ÇOK DEĞİŞKENLİ 

KALİBRASYON İLE BELİRLENMESİ 

 

Birçok farklı fiziksel ve kimyasal süreçler oluşan rafinerilerde yer almaktadır. Bu 

süreçler birbirleriyle ilişki içinde olan bir birim için son ürün olurken diğer birimin 

hammaddesi olmaktadır. Bu nedenle belirli spesifikasyonlara göre üretim yapılmaktadır. 

Rafineri planlamasında ve çeşitli süreçlerin karmaşıklığında gerekli esnekliği, ancak her 

rafineri biriminin değişimini ve son ürününün akışını sıkı bir şekilde gözlemleyerek 

sağlanabilir. Ham petrol damıtma ünitesi süreç koşullarının optimizasyonu her rafineride 

önemli bir parametredir. Analizdeki gecikmeler, süreç koşullarının ayarlanmasında 

gecikmelere neden olur. Rafinerideki ham petrol ünitesinin ara ürünleri için 

konvansiyonel analitik yöntemlere dayalı fiziksel özelliklerinin belirlenmesi zaman alıcı 

ve pahalı işlemler gerektirir. Rutin olarak izlenen özellikler arasından biri olan nafta 

ürünün içindeki hidrokarbon bileşimleri yer alır. Ham petrol ünitesinden üst 

katmanlarından alınan nafta olarak adlandırılan temel hidrokarbon karışımı olan ve içinde 

parafin, aromatik ve olefin gibi hidrokarbon moleküller bulunmaktadır. Nafta genel 

olarak 4 zincirli karbon ile başlayarak 10 zincirli karbon aralığındaki hidrokarbonlardan 

oluşmaktadır. Bu çalışmada 95 hafif naftanın ve 67 ağır nafta kullanılmıştır. Yakın kızıl 

ötesi spektroskopisi ile 10000 cm-1- 4000 cm-1 dalga sayısı aralığında örneklerin 

spektrumları toplanmış ardından referans olan konvansiyonel yöntemlerden elde edilen 

parametrelerin konsantrasyonlarıyla çok değişkenli kalibrasyon modelleri 

oluşturulmuştur. Elde edilen sonuçları karıştırılarak bu modeller ile konvansiyonel 

yöntemin yerine kullanılabilecek daha hızlı, ucuz ve güvenilir alternatif yöntem 

geliştirme amaçlanmıştır. Kısmı en küçük kareler(PLS) ile genetik ters en küçük 

kareler(GILS) 2 farklı çok değişkenli kalibrasyon metodu kullanılmıştır. İlk aşamada 

örneklerin spektrumlara ön işleme tekniği olan Genişletilmiş Çarpımsal Saçılma 

Düzeltmesi(EMSC) uygulanmıştır. Sonuç olarak hem hafif nafta hem de ağır nafta için 

iki farklı modelleme tekniğiyle başarılı sonuçlar elde edilmiştir. 
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1. CHAPTER 1. 

 

INTRODUCTION 

 

1.1. Petroleum Refineries  

 

Crude oil or petroleum is a fossil fuel. It is the transformation of organic substances 

into hydrocarbons because of various chemical reactions after millions of years. Crude 

oil, usually buried in the form of a deposit, sometimes appears close on earth, so 

humankind has known this since ancient times. In the world, oil has been used in many 

fields such as construction and medical purposes. However, with the industrial revolution 

that took place in Europe and America in the middle of the 19th century, the use of 

petroleum began to increase very rapidly as it started to replace coal to meet its energy 

needs. The United States rushes into oil and the country becomes the world's largest oil 

producer. Originally, it was the light source using only distilled oil in lamps. Then it 

started to form a significant majority of the transportation, as it offers a better calorific 

value than coal. Today, crude oil appears to be an important and fundamental function in 

human life. Crude oil is present in every part of our lives such as transportation, energy 

production, heating and chemical factories. As seen in Figure 1.1, the distribution of 

petroleum products used in 2019 and the estimated use in 2045. Therefore, according to 

this Figure 1.1, crude oil will continue to be one of the most important energy sources of 

our lives in the coming years. 

 

 

Figure 1.1. Daily usage of crude oil1 
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Petroleum oil is a mixture of different solid, liquid, and gaseous hydrocarbons. In 

addition, hydrocarbons, nitrogen, oxygen, sulfur, and a trace amount of some metals in 

Petroleum oil. This content can change according to the region and its formation 

conditions. Therefore, petroleum oil can find various combinations of these hydrocarbons 

and other materials. The lengths of these hydrocarbons reach from 1 to 60 carbon atom 

chain lengths and have different boiling points. 

Refineries are more complex than other chemical industries. They have many 

different physical and chemical processes. Some processes like cracking isomerization, 

hydrogenation, desulfurization, aromatization, and blending that are linked to each other 

and can affect each other’s charge. Refinery profitability is affected quickly and serious 

losses by unit shut down or out of control processes. Therefore, certain specifications can 

be very important for any process. Refineries often process different region’s crude oil.  

Crude oil prices can be affected by almost every situation like capability limits of crude 

oil tanks, political instabilities of crude oil-exporting countries, regulations in product 

specifications. Crude oil blending is one of the most important actions of refineries to 

increase profit margin. Variations in the crude oil composition affect the planned 

production capacities in order to meet the final product quantities. Most refineries are 

designed to process crude oil in a certain specification. Generally, general properties and 

properties can be determined by the American Petroleum Institute gravity or API gravity 

shown in equation 1.1. 

 

°𝐴𝑃𝐼 =  ( 141

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦60 /60℉
) − 131.5                                 (1.1) 

 

 API gravity help to understand the weight of crude oil with comparison to water. If crude 

oil has API gravity more than 10 it refers to light crude oil which means have light 

hydrocarbons like a paraffinic hydrocarbon. Crude oil has API gravity less than 10, which 

means that longer hydrocarbon chains like asphalt molecules.  

After the crude oil coming to refineries, it enters the fractional distillation column 

under atmospheric pressure. Products with different carbon numbers in the oil in this 

column begin to separate according to their boiling points as shown Figure 1.2.  
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Figure 1.2. Atmospheric distillation column (Url-1) 

 

 As can be seen in Figure 1.2, Light products such as LPG and Naphtha are drawn 

from the top of the column. Products such as heavy kerosene, light diesel, and heavy 

diesel are gradually drawn through bottom of the column. The products drawn from here 

are generally referred to as intermediate products separated according to certain boiling 

points. These products are transformed into products such as gasoline, diesel fuel, jet fuel, 

and asphalt by passing through various processes. Light straight run naphtha (LSRN) 

consists of C5 to C6 carbon molecules while heavy straight run naphtha (HSRN) consists 

of C6 to C10 long carbon molecule. The naphtha product coming out of the column is 

converted to gasoline after adjusting octane number, benzene reduction etc. Since the 

composition of the oil coming to refineries can change continuously and this oil first 

enters the atmospheric column, different hydrocarbon ratios in the oil are constantly 

changing. 

 In this direction, it is very important to collect and analyze products such as 

naphtha daily, to determine the actions to be taken by the production management team 

according to the hydrocarbon components of the product to be produced, and to produce 

products with a certain standard. ASTM (American Society for Testing and Materials) 

helps manufacturers, sellers, buyers, developers, and users to describe all the features of 

the product they want with one or a few words by drawing a framework for the production 

method, chemical, and physical properties of these standards. 
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1.2. Quality Control Methods 

 

Gas Chromatography, which is a standard analysis method, performs qualitative 

and quantitative analyzes according to the peak area and time by delivering the products 

passing through a long thin column to the detector at different times by taking advantage 

of the difference in boiling points. It is very well known and used as analysis of volatile 

compounds since the 1950s. 

Gas chromatography uses carrier gas through a narrow tube known as a column 

with a volatile sample. Samples are moving with the carrier gas thought column and 

separate based on their boiling point difference and their interaction with specific column 

properties. Schematic representation of a typical gas chromatography instrument is shown 

Figure 1.3. Components in the sample have a unique retention time, so the time starting 

with the injection of the sample ends when it reaches the detector. This is used to identify 

the sample, and the area under the peak is used to determine the concentration. 

 

 

Figure 1.3 Gas Chromatography Scheme (Url-2) 

 

The analysis of LSRN and HSRN products such as Paraffins, Olefins, Naphthenes, 

Aromatics, and benzene determine their concentration by the calculation of the area under 

their responsible peak. The American Petroleum Institute determine the standards of these 

products. A typical chromatogram of gasoline is given in Figure 1.4. 
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Figure 1.4 A typical Gas chromatogram of gasoline (Url-3) 

 

1.3. Hydrocarbons Analysis 

 

 Naphtha includes various types of hydrocarbons from 5 carbons to 10 carbons. 

Paraffins, Olefins, Naphtenes and Aromatics (PONA) are important hydrocarbon groups. 

PONA analysis is the separation and characterization of these hydrocarbon mixtures, 

consisting of the initials of Paraffins, Olefins, Naphthenes and Aromatics fractions 

according to the carbon number or hydrocarbon type. 

 

Paraffins 

 Their general formula is CnH2n + 2. Some examples of paraffins can be given as 

Methane (CH4), Ethane (C2H6), Propane (C3H8) and Pentane (C5H12) etc. that are shown 

in Figure 1.5. 

 
Figure 1.5. Structure formula of Methane, Ethane, Propane, and Butane 
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Naphthenes 
 
 Their general formula is CnH2n. (Provided that it is C≥3). These hydrocarbons 
are also known as cycloparaffins. Some examples of naphthenes can be given as 

Cyclopentane (C5H10), Cyclohexane (C6H12) etc. that are shown in Figure 1.6. 
 
 

 
Figure 1.6. Structure formula of Cyclohexane, Cyclopentane with a functional group, 

Cyclohexane with the functional group 

 
 

Aromatics 

 

 The general formula for aromatics is CnH2n-6. Benzene (C6H6) is the basic 

aromatics hydrocarbon. Derivatives of benzene molecular structure or those containing 

more than one benzene structure are called aromatic hydrocarbons. Some example of 

aromatic compounds are shown in 1.7. 

 

Figure 1.7. Structure formula of Benzene and ethylbenzene 

 

Olefins 

 

Olefins are known as unsaturated hydrocarbons that have double bonds between 

them. Their general formula is CnH2n. Some examples of olefins can be given as Ethylene, 

Propene, and 1-Butene that are shown in Figure 1.8. 

 

 

 

Figure 1.8. Ethylene, Propene, and 1-Butene 
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1.4. Literature Review 

 

 Researchers in many fields including academia and industry have used 

spectroscopy combining with chemometrics approaches since the 1970s. The acceleration 

of the computer with the developing technology and the advanced high-resolution 

spectrometers by providing opportunities to get faster results. The importance of 

chemometrics is increasing to that extent. To give examples of the main chemometrics 

methods are pattern recognition, classification, experimental design, clustering, and 

multivariate calibration. Using the multivariate calibration techniques are a very effective 

way of finding the concentration of a compound with the property measured in light of 

Beer's law. In general, multivariate calibration is used in complex chemical systems 

where univariate calibration is insufficient. NIR spectroscopy combined with multivariate 

calibration techniques give faster and more reliable results in various fields. The 

following review is based on relevant literature studies. When looking at the literature, 

better results were obtained in naphtha analysis, in which various methods based on 

chromatography were developed for refinery or petrochemical industry laboratories.2-4 In 

addition, the ASTM D-51345  method, based on gas chromatography with flame 

ionization detector, is used for the determination of total Naphtha parameters by Tupras 

quality control laboratories. However, it was seen that the analysis was done in more than 

2 hours. Accordingly, a long time makes it very difficult to optimize the analysis methods 

of continuous and large amounts of naphtha production in the process. It has been seen 

that this disadvantage can be overcome by using NIR spectroscopy and chemometric s 

tools with faster, more effective, and precise results6-7. 

In the study performed by Ku, Min-Sik8, Naphtha samples like total Paraffins, 

Naphthenes, and Aromatics were determined by using NIR spectroscopy with PLS 

regression method. Parameters are predicted with different NIR spectral bands. All bands 

show excellent correlation with compare to conventional gas chromatography. According 

to the conclusion of the article, it is thought that NIR spectroscopy combined with 

multivariate calibrations may replace conventional gas chromatography. In the second 

publication of the author mentioned in the previous article, the quantitative analysis of 

naphtha products was compared using near infrared spectroscopy and Raman 

spectroscopy using PLS regression.9 Chemical composition of total Paraffins with 6 

naphtha parameters, total Naphthenes (cycloalkane), total Aromatics, C6 Paraffins, 
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benzene, and cyclopentane were used. In addition, specific gravity was used as physical 

parameter. PLS calibration models are built with two different methods, NIR and Raman 

spectroscopy. The predictive values showed good correlation with reference analysis in 

both methods. However, NIR was found to have better calibration performance. It has 

been concluded that the successful implementation of NIR can change the concept of 

process control and optimization in many refinery and petrochemical industries. Another 

study was performed with FT-NIR spectroscopy with PLS algorithm.10 Naphtha samples 

were collected from control steam cracker processes. Many preprocess techniques are 

used for best-predicted performance. Nevertheless, control steam cracker process 

products are less impurity than the crude oil distillation products. In a different study for 

determination of the gasoline classification FT-NIR with different chemometrics 

approaches like support vector machine (SVM), K- nearest neighbor (KNN). 14000 cm-

1- 8000 cm-1 NIR spectral region was chosen. According to paper, with using NIR 

spectroscopy can help in the rapid and accurate classification.11 In another study, a 

multivariate calibration was created based on the genetic algorithm established with 

diffuse reflection NIR spectra together with octane numbers of 60 gasoline samples taken 

over web source.12 Divided into three sets. Genetic regression (GR), genetic classical least 

squares (GCLS) and genetic inverse least squares (GILS), which are three different 

genetic multivariate calibration methods, were used. Conclusion of this study that genetic 

algorithm with classical least square (CLS) and inverse least square (ILS) multivariate 

calibration techniques increase the prediction power of the model. In another article, it 

was stated that fast analysis has become an important trend in petroleum refining and 

more detailed molecular composition estimation of naphtha samples based on near 

infrared (NIR), which is a simple and effective analytical approach for rapid analysis, has 

been performed.13 NIR spectra were collected with reference analysis of 101 naphtha 

samples, then the model was established with the chemometrics method Tchebichef curve 

moments (TCMs) and raw NIR spectra. Chemical composition of 26 hydrocarbons were 

used as parameter. It was concluded that the obtained 23 TCMs models reached excellent 

predictive quality. In this respect, it is concluded that NIR and TCMs method can be 

implemented quickly with simple, accurate and reliable analytical results. 

 

 

 

 



 

9 

 

1.5. Aim of the thesis 

 

Reference analyses of naphtha samples analyzes in Tupras refineries are carried 

out by gas chromatography, which is the classical ASTM standard method. However, 

since this method takes a long time and is costly, performing analyses with a 

spectroscopic technique that will be an alternative to this method will provide faster 

results with less cost. LSRN and HSRN analyses using Near-Infrared Spectroscopy (NIR) 

coupled with chemometrics multivariate calibration methods can used to solve these 

problems. 

In Figure 1.9, the modeling process, gathering NIR and GC analysis results then 

predict a successful model for every parameter. 

 

 

Figure 1.9. Chemometrics process 

 

Figure 1.9 shows the schematic of the processes planned to be done in the thesis. The first 

step starts with the collection of naphtha samples. Subsequently, reference analysis and 

FT-NIR analysis of these samples are performed. Then, with these results, models are set 

up with FT-NIR spectra and reference analysis results using multivariate techniques.  

After the FT-NIR spectra of the new samples are obtained, estimation is performed for 

each parameters. 
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2. CHAPTER 2.  

 

NEAR INFRARED (NIR) SPECTROSCOPY 

 

2.1. NIR Spectra and NIR Region  

 

Fourier transform near-infrared spectroscopy (FT-NIR) is a spectroscopic method 

that focuses on the near-infrared region of the electromagnetic spectrum (10000 cm-1 to 

4000 cm-1). Near infrared (NIR) spectroscopy provides quantitative analysis of low 

molecular weight hydrocarbons without damaging the sample. Therefore, with the 

development of computer systems and faster result processing, NIR spectroscopy has 

become an important and popular method for chemical analysis. The discovery of infrared 

radiation is attributed to William Herschel, an astronomer who lived in the 19th century. 

(Url-4) Online analysis facility is an important factor as NIR provides. NIR spectra have 

broad bands that are complex and difficult to assign to a molecular structure. This 

challenge can be solved by using complex chemometrics models that combine 

spectroscopic data. 

NIR is a form of molecular spectroscopy that provides complex structural 

information regarding the vibrational behavior between molecules. Like ultraviolet 

visible and mid-IR spectroscopy, the Beer Law applies to NIR. The main bands in the 

NIR region are the second or third harmonics of the fundamental, C - H, O - H and N - H 

stretching vibrations in the middle IR region. 

 

2.2. Working Principle of FT-NIR 

 

 NIR spectroscopy based on measurement of transmittance, absorbance and 

reflectance are the most important modes.14 Transmittance is calculated as the ratio of 

light passing through the sample to its loss. Information about the structure of the sample 

can be obtained from this type of analysis. The amount of light from the source passing 

through the sample is measured by how much light has passed along with the detector 

measurement. Transmittance is light in wavelengths remaining after the light has been 
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absorbed by the sample. The sample is between the light source and the detector. 

Transmittance (T) or absorbance (A) are given equation 2.1 and 2.2.14-15 

 

𝑇 =
𝐼

𝐼0
                              (2.1) 

 

Here I is the intensity of transmitted radiation and I0 is the intensity of incoming radiation.  

 

                            𝐴 =  − log10 𝑇        𝐴 =  log10 (
1

𝑇
)     𝐴 = log10 (

𝐼0

𝐼
)                       (2.2) 

 

Diffuse Reflection (R) is measured in equation 2.3 by the reflection of the sample. 

The incoming light goes to the sample, some of the light is absorbed, and some is reflected 

again. The reflectance technique may give a better result for solid samples15. 

 

                𝑅 =
𝐼

𝐼𝑟
         𝐴𝑅 = log10 (

1

𝑅
)      𝐴 = log10 (

𝐼𝑟

𝐼
)                                   (2.3) 

 

Here I is the intensity of light reflected from the sample and Ir is the intensity of light 

reflected surface. 

 

2.3. Advantages and disadvantages of NIR 

 

 NIR spectroscopy has an important advantage in providing quantitative analysis 

and structural determination of various sample types in solid and liquid form. NIR 

application is generally preferred because it is fast and easy to give results. After NIR 

analysis, the sample can be used for other analyzes as NIR does not cause any damage to 

the sample. In addition, there is no process such as sample preparation, which is an 

important step for rapid analysis. Taking advantage of fiber optics such as online analysis, 

NIR spectroscopy can be used in industrial areas. With these advantages, NIR is a very 

useful method compared to classical methods. 

 On the other hand, one of the challenges for NIR is the calibration task. For 

quantitative analysis, calibration models should be created separately for each feature. 

Calibrations by process and sample should be controlled occasionally. Combining 
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chemometrics with NIR is a powerful quantitative analysis method but also complex. It 

takes some training and time to spend. 

 

2.4. Evaluation of NIR Spectra 

 

 According to L.G. Weyer16, important spectral information can be seen in 14000 

cm-1 – 4000cm-1 regions. However, spectra–structure correlations can be difficult than 

the mid-infrared (MIR). Aliphatic hydrocarbons are hydrocarbons based on chains of C 

atoms which can be found in the first overtones of C–H stretching occur between 5555–

5882 cm-1, the second overtones between 8264–8696 cm-1, and the third overtones 

between 11 364 cm-1- 10 929 cm-1 which can be related mostly the naphthenic compounds 

in crude oil. The Aromatics CH stretch can produce several bands at shorter wavelengths 

than the aliphatic CH absorptions. For example, benzene, the NIR absorption bands are 

at 8772 cm-1, 5988 cm-1), 4651–4587 cm-1, and 6065 cm-1. The major peak at 5988 cm-1 

has been assigned to the first overtone of the CH stretch. For the olefinic compounds, 

olefinic CH stretch first overtones occur in the NIR region. Appears from 6190–6110 cm-

1, while the symmetric =CH2 appears at about 6110 cm-1. 
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3. CHAPTER 3.  

 

MULTIVARIATE CALIBRATION  

 

3.1. Overview 

 

Chemometrics is a method for extract chemical information, both qualitative and 

quantitative, from the data produced by sophisticated chemical analysis or an experiment.  

With the collected data can be solved with the help of applied statistical and mathematical 

methods to turn it into a mathematical expression.16 

  Generally, data from the spectroscopic method can be used by the calibration 

method, where the known concentration of the sample is related to spectral information 

of the sample, the example of that absorbance. The model created in calibration step is 

then used to predict an concentration of unknown sample with spectral information.17 

There are two types of calibration approach namely Univariate Calibration and 

Multivariate Calibration. 

 

3.2. Univariate Calibration 

 

In univariate calibration, the concentration of a sample is determined by using the 

response of a single signal (i.e., chromatographic peak area) or a single spectroscopic 

wavelength. For the quantitative analysis, Beer-Lambert law is used for model creating, 

where the absorbance at a wavelength is directly linked to the absorptivity coefficient, 

light path length, and concentration, as described in Equation 3.1. Quantitative analysis 

of absorption spectroscopy begins with Beer-Lambert Law and the absorbance (A) at a 

single specified frequency is expressed as: 

 

                                                          A= ε b c                (3.1) 

 

Where ε is the molar absorptivity at the frequency, b is the path length of the 

sample, and c is the concentration of the compound in solution. The law shows that the 

absorption intensity of a compound is linearly proportional to its concentration in the 
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homogenous mixture.  In the case of a linear model, there are two options, namely, 

classical univariate calibration, and inverse univariate calibration. 

 

3.2.1. Classical Univariate Calibration 

 

The simplest calibration method is that the concentration of a compound is related 

to the absorbance value at one wavelength with the given model: 

 

                                                                 𝐱 = 𝐜. s + 𝐞                                (3.2) 

 

Where x is absorbance values at one wavelength for calibration samples, c is 

concentrations, and s; which is the multiplication of molar absorptivity and path length in 

Beer’s law, is a scalar relating those vectors and determined by equation 3.2. Both x and 

c are vectors of the same size n. 

 

The following mathematical operation is solving the scalar𝑠: 

 

                                                                     𝐜′ . 𝐱 = 𝐜′ . 𝐜. s                 (3.3) 

 

                                                     (𝐜′ . 𝐜) −𝟏. 𝐜′ . 𝐱 = (𝐜′ . 𝐜) −𝟏. (𝐜′ . 𝐜). s                (3.4) 

 

                                                             s = (𝐜′ . 𝐜)−𝟏.𝐜′ . 𝐱                 (3.5) 

 

Once 𝑠 is solved, concentration of the unknown sample concentration can be calculated 

by equation (3.6), where the hat symbol shows the predicted values. 

 

                                                                           𝐜̂ =
𝐱̂

s
                                (3.6) 

 

3.2.2. Inverse Univariate Calibration 

 

The classical calibration expects the error on predicted concentration is due to the 

instrumental response. However, the instruments become more sensitive and reproducible 

recent years and the instrumental errors are being reduced. The process of concentration 
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measurement involving human error which is (i.e., diluting, weighing) a great error 

source. Unlike the classical univariate calibration, inverse univariate calibration assumes 

that a property of the sample is a function of a response to minimize the errors due to 

concentration. The classical and inverse calibration is well schematized in Figure 3.1. 

 

 

Figure 3.1. Errors in (a) Classical and (b) Inverse calibration18 

 

The general inverse calibration is given below 

 

                                                                            𝐜 = 𝐱. b                  (3.7) 

 

The different assumptions on the error distribution make the scalar b only 

approximately inverse of 𝑠. It is also evident in equation 3.8 that is very similar to the 

previous solution. 

 

                                                                 b = (𝐱′ .𝐱)−𝟏. 𝐱′. 𝐜                 (3.8) 

 

For a good set of data, the predictions of both classical and inverse calibration models 

should be in fair agreement. If not, there might be other factors such as non-linearit y, 

outliers, and noise distributions.23 

 

 

 

 



 

16 

 

3.3. Multivariate Calibration 

 

With the necessity of finding molar absorptivity for each pure component 

separately, the univariate calibration becomes a challenging task. Multivariate calibration 

allows the multiple components analysis in a sample simultaneously. It can be a more 

selective and reliable tool for fault detection ability and can analyze non-homogenous or 

contaminated analyte21. 

Using multiple wavelengths gives reliable results with the averaging of useful 

information in absorbance as well as noises. Unlike determining multiple components at 

once, multivariate calibration can be used. 

In the following sections, different types of multivariate methods are provided from 

simple to more complex. 

 

3.3.1. Classical Least Squares (CLS) 

 

Classical least squares is very similar to Beer-Lambert Law, in which the 

absorbance values are expressed as a function of concentration. Like classical univariate, 

errors are supposed to be based on instrument responses. X CLS model for m calibration 

samples, l chemical compounds, and n wavelengths, is expressed in matrix as: 

 

                                                                    𝐗 = 𝐂𝐊 + 𝐄𝐗      (3.9) 

 

𝐗 represents an m×n matrix of calibration spectra, 𝐂 m×l matrix of component 

concentrations, 𝐊 l×n matrix of absorptivity path length constants, and 𝐄𝐗 m×n matrix of 

spectral errors or residuals that are not fit by the model. 

The estimation of 𝐊 matrix is done by CLS with Equation 3.10: 

 

                                                     𝐊̂ = (𝐂 ′ .𝐂)−𝟏. 𝐂 ′. 𝐗               (3.10) 

 

The concentrations of unknown samples can be predicted with their spectrum using the 

equation 3.11. Here, x represents the spectrum of an unknown sample. 

 

                                                     𝐜̂ = (𝐊̂. 𝐊̂′)−𝟏. 𝐊̂. 𝐱               (3.11) 
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The drawback of CLS is that the concentrations of interfering species must be known 

apriority and included in the model.20 

 

3.3.2. Inverse Least Squares (ILS) 

 

Inverse least squares, like inverse univariate calibration, describe the properties of 

a sample as a function of the response as in equation 3.12. The model errors of ILS trust 

on the errors in the measurements of component concentrations. 

 

                                                           𝐂 = 𝐗𝐏 + 𝐄𝐜                (3.12) 

 

where, 𝐂 is the m×l concentration matrix, 𝐗 m×n absorbance matrix, 𝐄𝐜 m×l error matrix 

of concentrations that do not fit by the model and 𝐏 is the calibration coefficients matrix 

with the size n×l, relating component concentrations to the spectral intensities. If the 

elements in the 𝐄𝐜 are assumed to be independent, identical analysis for each analyte can 

be done from equation 3.13, where a single component is modeled at a time. 

 

                                                      𝐜 = 𝐗𝐩 + 𝐞𝐜                   (3.13) 

 

Here p is a nx1, e c is a mx1, and thus c is a mx1 matrix. When making calibration, the 

least square solution of p in equation 3.13 yields: 

 

                                                           𝐩 = (𝐗𝐭. 𝐗)−𝟏.𝐗ı × 𝐜                         (3.14) 

 

Finally, the concentration of the component in the unknown sample can be predicted as 

follows: 

 

                                                                   𝒄̂ = 𝐱′ . 𝐩                          (3.15) 

 

Where 𝑐̂ the scalar estimated concentration of the analyzed component and x is the 

spectrum of unknown sample20. The strength of this method is that one does not need to 

know all the components in the sample. In addition, one can select as many variables, i.e., 
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wavelengths, instead of using the full spectra. The main drawbacks of ILS are not being 

able to detect all the outliers, and not being very effective in selecting the optimal 

wavelength for predicted models. Moreover, adding more wavelengths to the model can 

lead to overfitting.21 

 

3.3.3. Partial Component Analysis (PCA) 

 

 In multivariate calibrations, it is often difficult to see the relationship within the 

variables because the data are very large. However, the purpose of using principal 

component analysis is to reduce the size of data by taking its highest variance, while 

preserving important information from the data.21  

Principal components define the variance in independent variables by 

mathematical transformation and can be formulated as Equation 3.16. 

 

X = T ∗ P + E                 (3.16) 

 

PCA divides the original X data matrix into different set of smaller size matrix. It 

represented by the score (T) and loading matrices (P) and E. The score matrix consists of 

column vectors, while the loading vectors are made up of row vectors.22 As a result, the 

data matrix has been reduced to these terms for easy understanding; this is more 

applicable to reduced noise and gets more information from the data set. The data 

visualization can be explained with PC lines, these graphs help spectral understanding for 

discrimination and classification purposes.22 

 

3.3.4. Partial Least Squares (PLS) 

 

Partial Least Squares regression known one of the most used methods of 

multivariate calibration. Herman Wold first used this method in 1966 to model economic 

and social events. Kowalski et. al. have used the PLS method in the field of chemistry. It 

was started to be used after an initial study.23 

PLS1 algorithm uses different number of PLS factors (PCs) for each concentration 

variables. It is supposed that errors can be caused by spectra or concentrations. The most 
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significant distinction of PLS from ILS is being less vulnerable to overfitting and become 

models that are more robust.  

 

In PLS1, 2 model sets are constructed as follows: 

 

                                                                𝐗 = 𝐓𝐏 + 𝐄                         (3.17) 

                                                                 𝒄 = 𝐓𝐪 + 𝐟              (3.18) 

 

Where 𝑋 dependent variable (e.g., absorbance data), 𝑐 independent variable (e.g., 

concentration), scores matrix for T of PLS.  Here, 𝑃 and 𝑞 are analogous to loadings 

vector with the multiplications T with P, and q are used to estimate spectral data and 

concentration. As Figure 3.2. 

The absorbance and concentration matrices are represented as 𝐗 and 𝑐, 

respectively. A crucial feature of PLS is that scores matrix, 𝐓, is common both for 

concentration and measurement. Here, 𝑃 and 𝑞 are analogous to loadings vector, and the 

multiplications 𝐓𝐏 and 𝐓𝐪 are used to approximate spectral data and true concentration, 

respectively. Figure 3.2 represents the matrix operation. The sum of the squares of the 

scores of each component is called an eigenvalue. A more significant component has a 

greater eigenvalue. 

 

 

Figure 3.2. A schematized matrix view of the PLS1 algorithm 
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3.3.5. Genetic Inverse Least Squares (GILS) 

 

ILS with Genetic Algorithm (GA) for selecting wavelengths to build multivariate 

calibration models with reduced data set. The genetic algorithm is a search and 

optimization technique that is from Darwin’s theory of evolution and natural 

selection.28According to Darwin's theory, whoever has higher survival takes place by 

choosing the species and progressing. As this process continues over a long period, 

through generations, subsequent offspring will have a greater chance of survival than 

previous generations. Scientific researches started in the 1960s by biologists doing 

genetic systems experiments on a computer. The pioneer of the field is John Holland, who 

developed a GA in his research on adaptive systems in the early 1960s25. From that day 

to today optimization problems are solved by using GA tools, and applications found in 

calibration, more specifically on wavelength selection.26-27 

Genetic Inverse Least Squares (GILS) is the calibration technique that combines 

GA and ILS.32 The genetic algorithm consists of 5 main steps as follows; 

 

Initialization 

 

A gene is formed with a random selection of instrumental responses. It can be 

represented by the following expression, where 𝑆 symbolizes the gene and 𝐴 the 

absorbance measured wavelength in the subscript: 

 

𝑆 = [𝐴2678𝐴256𝐴1478𝐴560] 

 

A population is the collection of individual genes. In the initialization step, the 

first generation of genes is randomly generated with fixed population size. The random 

selection of responses enables the minimization of bias and maximization of the number 

of recombination. The population size is an important matter since it determines the time 

to complete an individual run of the algorithm, i.e., a larger size needs more time. The 

number of genes in the population needs to be an even number to allow breeding of the 

genes.  

Moreover, there is a constraint in choosing the number of wavelength points in a 

gene, that is, it must be obtained randomly between a specified high and low limit. The 
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higher limit is chosen to prevent overfitting problems and to reduce the computation time, 

and the lower limit is set to 2 to allow single-point crossover. 

 

Evaluation of the Population 

 

In the second step, evaluation and ranking of the genes are done using a fitness function, 

which is defined as the inverse of the standard error of calibration (SECV) with cross-

validation and shown in equation 3.1. 

                                                            𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑆𝐸𝐶𝑉
              (3.19) 

 

SEC indicates the success of each gene and is calculated from equation 3.20. 

 

                                                            𝑆𝐸𝐶𝑉 = √
∑ (𝑐𝑖−𝑐𝑖̂)2𝑚

𝑖=1

𝑚−2
                       (3.20) 

 

Here, 𝑐𝑖 is the reference concentration, 𝑐𝑖̂ is the predicted concentration, 𝑚 − 2 is the 

degrees of freedom, while 𝑚 is the number of samples, and 2 indicates the extracted 

parameters, which are the intercept and the slope between the reference and the predicted 

concentrations. 

 

Selection of Genes for Breeding 

 

This step relies on the natural evolution principle and the members with the 

highest fitness values are selected, who are to be replaced with parent genes. The highest 

fitness means a better-suited gene that can survive and transfer information to the next 

generation. There are several methods for parent selection. One of them is the top-down 

method, in which the genes are ranked in the pool, and they mate consequently, i.e., first 

gene (S1) mate with the second gene (S2) with the third (S3) and so on. This process 

gives all the genes a chance to breed. Another method is called roulette wheel selection, 

and it is illustrated in Figure 3.3. 
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Figure 3.3. A visual representation of the roulette wheel 

 

Each part of the wheel represents a gene, and each area in the wheel is proportional 

to the fitness of a gene. A gene occupying a higher area in the wheel has more chance of 

being selected. In this method, some genes can be selected multiple times, while others 

might not be even selected and thrown out of the pool. After the selection, parents that 

are selected are mated top-down. Since there is no ranking, the number of possible 

recombination increases. 

 

Crossover and Mutation 

 

 Random points are chosen to create new offspring genes and gene comprises the 

fracture process by crosslinking. Most of the work of GA is on this step. In the following, 

the process is illustrated where the parents are S1 and S2 genes, and their offspring are 

S3 and S4. 

Parents: 

 

𝑆1 = [𝐴223𝐴3750𝐴8212 ⋮ 𝐴8123𝐴344]  

𝑆2 = [𝐴140𝐴7786 ⋮ 𝐴569𝐴4064] 

 

Offspring: 

 

𝑆3 = [𝐴223𝐴3750𝐴8212𝐴569𝐴4064]  

𝑆4 = [𝐴140𝐴7786𝐴8123𝐴344] 
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The parent genes are randomly cut from the parts indicated as to ⋮ where separation 

and crossover of the genes take place. 

In addition, sometimes mutation can take place in this step by introducing random 

deviations into the population. One can realize this into the algorithm during mating at a 

rate of 1%, which is a typical rate. Generally, one of the wavelengths is replaced in an 

existing gene with another wavelength. However, the GILS studies today usually do not 

apply mutation.  

 

Replacing the Parent Genes by Their Off-Springs 

 

After the cross-over, the parent genes S1 and S2 are replaced by their offspring 

S3 and S4, which are evaluated and ranked. Now, the selection for breeding starts all over 

again with the new genes and repeated until the predefined iterations or the minimum 

tolerance value is reached.   

Finally, the gene with the lowest SEC is selected for model building, which will 

then be used for the prediction of concentration of the sample being analyzed in the 

validation set. The success of the model in the prediction of validation set is determined 

by the standard error of prediction (SEP), as given by equation 3.21. Here, m represents 

the number of validation samples. 

 

                                                                    𝑆𝐸𝑃 = √
∑ (𝑐𝑖−𝑐𝑖̂)2𝑚

𝑖=1

𝑚
                          (3.21) 

 

Once the predefined iteration number is reached, termination takes place. It can 

also be optimized by extensive statistical tests. Often, the decision of the best run is given 

when the lowest SEC for the calibration is quite close to the SEP value. 

The GILS approach has various advantages over univariate and other multivariate 

calibration methods. It does not require any complex mathematical operation in the 

construction of the model and during the prediction process. In this study, GILS is used 

considering the advantages and accuracy of the method. 
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4. CHAPTER 4. 

 

EXPERIMENTATION AND INSTRUMENTATION 

 

4.1. Experimentation 

 

 A total of 95 light straight run naphtha and a total of 67 heavy straight run naphtha 

samples were obtained for 2 years at Tupras İzmit Refinery from the crude oil 

atmospheric distillation unit. Samples were stored at 4 oC temperature in a dark place 

before analysis to prevent the evaporation of hydrocarbons and possible interferences as 

a result of direct light. 

 

4.2. Instrumentation 

 

 Chemical composition of all samples was determined in Tupras Izmit Refinery 

Quality Control Laboratory, according to the ASTM 5134 (General requirements 

competence of testing and calibration laboratories). The concentration of each sample 

parameters measured by a multidimensional gas chromatography (AC Reformulyzer, 

PAC, USA), which has flame ionization detector. For analysis 0.2 μL to 1.0 μL of naphtha 

samples was injected and temperature programming from 35 °C to 200 °C in 1 °C ⁄min. 

Near-Infrared absorption spectra of samples were recorded on MATRIX-F FT-NIR 

Spectrometer (Bruker-Germany) spectral range from 10000 cm-1 to 4000 cm-1   with using 

2.0 mm pathlength quartz cell.  Before each analysis, a background spectrum of air was 

recorded in with a clean dry cell. All FT-NIR spectra were collected with an average of 4 

scans and resolution of 4 cm-1. The room temperature was kept at 22±2 oC for spectrum 

acquisition. 
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4.3. Data analysis 

 

 The collected spectra in ASCII format were transferred to Microsoft® Excel® 

2016. Then the data analysis are performed by chemometric calibration toolbox 29(OBA 

Quantifier, OBA kemometri Inc. Turkey) which is developed in the MATLAB R2018b 

(Math Works Inc., MA) environment. Genetic Inverse Least Squares (GILS) and Partial 

Least Squares Regression (PLSR) were performed for this study. 
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5. CHAPTER 5. 

 

RESULTS AND DISCUSSION 

 

5.1. Near Infrared Spectra 

 

Infrared ray has a longer wavelength and a lower frequency than visible light. The 

basic theory is that chemical bonds molecules absorb at different frequencies. Therefore, 

the sample with different structure will also have a different spectrum. In addition, the 

same sample with different ratios like different concentration, allow us to use multivariate 

calibration methods to make quantitative predictions and to find expected variation 

patterns. This conquers the restrictions of the conventional analytical chemical 

methodology, where non-analyte source, for examples, interfering compound 

constituents or physical phenomena, should have been eliminated physically in the 

samples before prediction.  The two methodologies can be join into one, comprising of 

information-driven ' chemical ' or 'physical' pre-processing followed by a data-driven 

‘statistical’ calibration modeling. 

Near-Infrared spectra of 95 light straight run naphtha samples were collected for 

2 years. Likewise, Near-Infrared spectra of 67 heavy straight run naphtha samples were 

collected for 2 years. Figure 5.1 and Figure 5.2 shows the raw NIR absorbance spectra, 

which were recorded in the 10,000 cm-1– 4000 cm-1 wavenumber region for raw light 

straight run naphtha and Heavy straight run naphtha respectively. 
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Figure 5.1. Raw FT-NIR spectra of a total of 95 Light straight run naphtha samples 

 

 

 

Figure 5.2. Raw FT-NIR spectra of a total of 67 Heavy straight run naphtha samples 

 

As shown in Figure 5.1 and 5.2 absorbance value between 4450 cm-1 and 4000 

cm-1 spectral region was removed because the absorbance value is found to be greater 

than 2 which can cause nonlinearity problems according to Beer's law rule. In addition, 

the small portion of spectra covering from 4450 cm-1 to 4000 cm-1 shows some noisy 

futures. 

In Figure 5.3 and 5.4, the NIR spectra total of 95 of light straight run naphtha and 

total of 67 of Heavy straight run naphtha samples with narrowed intervals are shown, 

respectively. 

 



 

28 

 

 

Figure 5.3. FT-NIR spectra of a total of 95 Light straight run naphtha with narrowed 
range 

 

 

Figure 5.4. FT-NIR spectra of a total of 67 Heavy straight run naphtha with narrowed 
range 

 

In analyzing samples from the NIR spectrometer, there is a great deal of chemical 

information to be used to identify the sample. However, due to the wide structure of the 

overtones in the NIR spectra, it is very difficult to associate these bands with the chemical 

bonds in the sample. Also, in spectral analyzes, deviations often occur, known as noise, 

that do not contain information about the sample or caused by scattering from the light 

source, sample cell, or particles heterogeneous mixtures in the sample during 

measurement. Therefore, qualitative and quantitative analysis of the sample will not be 

possible without applying any mathematical operation to the spectrum. In this direction, 
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by applying Extended Multiplicative Scattering Correction (EMSC), which is a 

preprocessing technique in the literature. 

Extended Multiplicative Scattering Correction help to remove uncontrolled 

variation in light scattering due to uncontrolled physical variation by subtracting 

interferences at the preprocessing stage improves the interpretability of regression 

modeling. EMSC preprocessing effectively removed most of the path length and baseline 

effects, allowing the subsequent additive PLSR to work well. EMSC provides clear 

improvement over the traditional other preprocess methods34. The Extended 

Multiplicative Scattering Correction is specified in equation 5.1 and 5.2 given below; 

 

 

𝑋 = 𝑎𝑖 + 𝑋̅𝑖 ∗ 𝑏𝑖 + 𝑑𝑖 ∗  𝜆 +  𝑒𝑖 ∗ 𝜆2 + ⋯ +  𝑑𝑛 ∗ 𝜆𝑛 + 𝐸                          (5.1) 

 

 

𝑋𝐶𝑜𝑟𝑟 =  
𝑋𝑖−𝑎𝑖− 𝑑𝑖𝜆− 𝑒𝑖∗𝜆2−⋯−𝑑𝑛∗𝜆𝑛

𝑏𝑖
                                                            (5.2) 

 

 

Where  𝑋 is dependent variable (e.g., absorbance data), 𝑎𝑖 is a constant baseline, 

𝜆 is the wavelength vector; the coefficients 𝑎𝑖 ,𝑏𝑖 , 𝑑𝑖  and 𝑒𝑖  can be estimated by least 

squares regression of 𝑋. 𝑋̅𝑖  is mean of dependent variable. After the calculation  𝑋𝐶𝑜𝑟𝑟, 

which is the corrected dependent variable, used in equation 5.2.30 

By using these equations mentioned in equation 5.1 and equation 5.2. EMSC 

corrected NIR spectra of LSRN and HSRN samples are shown in Figure 5.5 and Figure 

5.6, respectively. 
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Figure 5.5. FT-NIR spectra of LSRN with EMSC preprocess and narrowed range 

 

 

Figure 5.6. FT-NIR spectra of HSRN EMSC preprocess and narrowed range 

 

As shown in Figure 5.6 and 5.7, after EMSC normalization in order to remove 

baseline shifts from raw data. EMSC helps to perform better interpretability of the LSRN 

and HSRN spectra and making calibration models statistically more robust. 

 Before multivariate calibration studies, Principal component analysis was 

performed in order to detect outliers.  

 

5.2. Principal Component Analysis (PCA) 

 

Principal Component Analysis is described in detailed explanation section 3.3.3. At 

this stage, PCA was used for outlier detection. After preprocessing, as the last step before 
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starting regression, the NIR spectra of all samples were checked against any outliers in 

the data set with PCA analysis. Charts with scores on Latent Variable 1 (Principal 

Component 1) and scores on Latent Variable 2 (Principal Component 2) measured and 

predicted were used to identify any outlier. Figure 5.7 and 5.8 shows the score plot of 

principal component 1 vs principal component 2 for LSRN and HSRN. 

 

 

Figure 5.7 The scores plot of the first component (PC1) versus the second component 
(PC2) for LSRN using FT- NIR spectra 
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Figure 5.8. The scores plot of the first component (PC1) versus the second component 

(PC2) for HSRN using FT- NIR spectra 

 

As shown in Figure 5.7, PCA scores of LSRN were plotted using the first 2 PCs, 

where the first and second PCs contain 50.5%, 15.1% (cumulative 65.6%) of the total 

variance respectively. For LSRN samples, there are two different cluster groups within 

themselves. The reason for this may be the grouping resulting from oil processing in two 

different crude oil was given distillation unit at that time. In Figure 5.8 PCA scores of 

HSRN were plotted using the first 2 PCs, where the first and second PCs contain 59.0%, 

20.6% (cumulative 79.6%) of the total variance respectively, As shown in Figure 5.7 and 

Figure 5.8, LSRN and HSRN samples do not show any samples further away from their 

clusters center. 

 

5.3. Multivariate Analysis 

 

EMSC preprocessed spectra shown in Figure 5.5 and 5.6, two different 

calibrations approached were performed which are Genetic Inverse Least squares (GILS) 
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and Partial Least Squares (PLS) Regression. Multivariate calibration results for both 

methods are given in the following sections. 

For both multivariate calibrations, a total of 63 light straight run naphtha samples 

were assigned as a calibration set to construct the model while the rest of 32 samples were 

chosen as an independent validation set to observe the predictive ability of the model. 

Also for heavy straight run naphtha of 45 samples assigned as a calibration set and the 

rest of 22 samples were chosen as an independent validation set to observe the predictive 

ability of the model. At least 3 samples each at the upper and lower limits were left for 

the calibration data to make the resulting model cover boundary conditions and account 

for most of the variance and all remaining samples were randomly distributed. 

 

5.4. Partial Least Squares Regression 

 

The partial least squares (PLS), which is one of the most widely used multivariate 

calibration methods in spectroscopic methods as regression method, is defined as the 

analysis method that can associate independent variables (spectrum) with dependent 

variables (in this case, the concentration of PONA products). In this context, PLS was 

applied to the data set, where pre-treatments were applied. 

Prediction models both for LSRN and HSRN, models were created for 

Naphthenes, Paraffins, Olefins, Benzene, Aromatics, C7Plus (the sum of compounds with 

more than 7 carbons) and C6Minus (the sum of compounds with less than 6 carbons). A 

modeling study has not been done for the Olefins parameter in HSRN due to a lack of 

data. The prediction performances of the created models were evaluated by looking at the 

coefficient of determination (R2) of the calibration and validation data set, the root mean 

square error of calibration (SEC), and the root mean square of validation errors (SEP) 

data. Models with low SEC, SECV, and SEP values and high determination coefficients 

were preferred at the stage of selecting the basic component numbers of the established 

models. 
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5.4.1. Light Straight Run Naphtha Results 

 

For finding the best fitting number of LVs, Predicted residual error sum of squares 

(PRESS) values were calculated for the first 30 LVs and the results are given in Figure 

5.10. For following part, the results which are Paraffins, Olefins, Naphthenes and 

Aromatics are given after that remaining three models which are given Benzene, C7 plus, 

and C6 minus PLS model results will be given for a clear explanation. 

 

Figure 5.9. Number of PCs vs. PRESS plot for selecting the optimal number of LVs a) 

Paraffins b) Olefins c) Naphthenes d) Aromatics 

 

By using Figure 5.9, Paraffins, Olefins, Naphthenes, Aromatics and Paraffins 

PLSR models with 6 LVs, 9 LVs 6 LVs and 6 LVs selected respectively. It can be seen 

that they are modelled with the relatively low number of component. Reference values 

 

                                 (a) 

 

                                 (b) 

 

                                  (c)  

 

                                  (d) 
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obtained from Reference analysis vs PLS model predicted values of FT-NIR spectra for 

each parameter are given in Figure 5.11. The standard error of calibration (SECV) and 

standard error of validation (SEP) are calculated for each parameter. 

 

  

  

Figure 5.10. Actual concentrations vs. PLS predicted concentrations; Paraffins, Olefins, 
Naphthenes, Aromatics 

 

As seen in Figure 5.10, the model performance is quite close for calibration and 

validation set predictions with calibration performance being only slightly better 

indicating no significant overfitting. For Paraffins, SECV and SEP values are found to be 

0.774 (v/v %) and 0.876 (v/v %), respectively. The R2 value for calibration set predictions 

are calculated as 0.923, and the R2 value for the validation set is 0.751. The residuals for 

all samples are plotted in Figure 5.11 a. While most of the residuals are in the range of 

±1.5 (v/v %). For Olefins, SECV and SEP values are found to be 0.0984 (v/v %) and 

0.1074 (v/v %), respectively. The R2 value for calibration set predictions are calculated 

as 0.917, and the R2 value for the validation set is 0.926. The residuals for all samples are 

plotted in Figure 5.11 b. The residuals are in the range of ± 0.4 (v/v %). As seen in Figure 

5.11 b the narrower, the range makes the ability to predict more difficult, the more 
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samples will improve the ability to predict. The range of reference concentrations is very 

narrow which makes the ability to predict more difficult, the more samples may improve 

the ability to predict. For Naphthenes, SECV and SEP values are found to be 0.720 (v/v 

%) and 0.924 (v/v %), respectively. The R2 value for calibration set predictions are 

calculated as 0.912, and the R2 value for the validation set is 0.682. The residuals for all 

samples are plotted in Figure 5.11 c. The most residuals are in the range of ± 1.5 (v/v %). 

For Aromatics, SECV and SEP values are found to be 0.0186 (v/v %) and 0.0715 (v/v 

%), respectively. The R2 value for calibration set predictions are calculated as 0.998, and 

the R2 value for the validation set is 0.942. The residuals for all samples are plotted in 

Figure 5.11 d. Most residuals are in the range of ± 0.15 (v/v %). 

Figure 5.11. Reference concentrations vs. corresponding PLSR prediction residuals a) 

Paraffins b) Olefins c) Naphthenes d) Aromatics 

 

For the following part, 3 parameters Benzene, C7 plus, and C6 minus PLS model 

results are shown in Figure 5.12.  

 

                                (a) 

 

                                (b) 

 

                                (c)  

 

                                (d) 
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                                (a) 

 

                                (b) 

 

(c) 

Figure 5.12. Number of LVs vs. PRESS plot for selecting the optimal number of LVs a) 

Benzene b) C7 plus c) C6 minus. 

 

By using Figure 5.12, benzene, C7plus, and C6minus PLSR models with 9 LVs selected. 

Figure 5.13 present the reference values obtained from GC analysis versus predicted 

values obtained from PLS model. Standard error of calibration calculated and standard 

error of calculated for each parameter. 
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Figure 5.13. Actual concentrations vs. PLS predicted concentrations; Benzene, C7 plus, 
C6 minus 

 

As seen in Figure 5.13, the model performance is quite close for calibration and 

validation set predictions with calibration performance being only slightly better 

indicating no significant overfitting. For Benzene, SECV and SEP values are found to be 

0.0336 (v/v %) and 0.0464 (v/v %), respectively. The R2 value for calibration set 

predictions are calculated as 0.984, and the R2 value for the validation set is 0.930. The 

residuals for all samples are plotted in Figure 4.14 a. While most of the residuals are in 

the range of ±0.1 (v/v %). For C7 plus, SECV and SEP values are found to be 0.843 (v/v 

%) and 1.358 (v/v %), respectively. The R2 value for calibration set predictions are 

calculated as 0.955, and the R2 value for the validation set is 0.854. The residuals for all 

sample are plotted in Figure 4.14 b. The residuals are in the range of ± 2.0 (v/v %). For 

C6 minus, SECV and SEP values are found to be 0.843 (v/v %) and 1.358 (v/v %), 

respectively. The R2 value for calibration set predictions are calculated as 0.955, and the 

R2 value for the validation set is 0.855. The residuals for all sample are plotted in Figure 

4.14 c. The most residuals are in the range of ± 3 (v/v %). The residuals corresponding to 

each concentration can be drawn in residuals plot for additional comments on the model.  
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                                (a) 

 

                                (b) 

 

(c) 

Figure 5.14. Reference concentrations vs. corresponding PLSR prediction residuals a) 
Benzene b) C7 plus c) C6 minus 

 

 As seen in Figure 5.14. all validation data are very close to calibration data which 

shows model prediction efficiency. However, it is seen that residual differences are higher 

in a few validation samples than others. It has been observed that this does not follow any 

pattern. It is thought that the NIR spectra of these samples are due to the composition 

change in the sample due to evaporation. 

 

5.4.2. Heavy Straight Run Naphtha Results 

 

For finding the best fitting number of LVs, PRESS values were calculated for the 

first 30 LVs and the results are given in Figure 5.15.  
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                                (a)  

 

                                (b) 

 

                                (c)  

 

                               (d) 

 

                                (e) 

 

                                (f) 

Figure 5.15. Number of LVs vs. PRESS plot for selecting the optimal number of LVs a) 
Paraffins b) Naphthenes c) Aromatics d) Benzene e) C7 plus f) C6 minus 

 

By using Figure 5.15, Paraffins, Naphthenes, Aromatics, benzene, C7 plus and C6 

minus PLSR model with 6 LVs, 6 LVs,7 LVs, 9 LVs, 10 LVs and 10 LVs selected 

respectively. 
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Figure 5.16 present the reference values obtained from GC analysis versus 

predicted values obtained from PLS model. Standard error of calibration calculated and 

standard error of calculated for each parameter. 

 

  

  

  

Figure 5.16. Actual concentrations vs. PLS predicted concentrations Paraffins, 
Naphthenes, Aromatics, Benzene, C7 plus, C6 minus 

 

As seen in Figure 5.16, the model performance is quite close for calibration and 

validation set predictions with calibration performance being only slightly better 

indicating no significant overfitting. For Paraffins, SECV and SEP values are found to be 
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0.638 (v/v %) and 0.775 (v/v %), respectively. The R2 value for calibration set predictions 

are calculated as 0.980, and the R2 value for the validation set is 0.909. The residuals for 

all samples are plotted in Figure 5.17 a. While most of the residuals are in the range of 

±1.5 (v/v %). For Naphthenes, SECV and SEP values are found to be 0.625 (v/v %) and 

0.561 (v/v %), respectively. The R2 value for calibration set predictions are calculated as 

0.982, and the R2 value for the validation set is 0.969. The residuals for all samples are 

plotted in Figure 5.17 b. The residuals are in the range of ± 2.0 (v/v %). For Aromatics, 

SECV and SEP values are found to be 0.230 (v/v %) and 0.283 (v/v %), respectively. The 

R2 value for calibration set predictions are calculated as 0.963, and the R2 value for the 

validation set is 0.940. The residuals for all samples are plotted in Figure 5.17 c. Most 

residuals are in the range of ± 0.6 (v/v %). For Benzene, SECV and SEP values are found 

to be 0.0112 (v/v %) and 0.0169 (v/v %), respectively. The R2 value for calibration set 

predictions are calculated as 0.996, and the R2 value for the validation set is 0.982. The 

residuals for all samples are plotted in Figure 5.17 d. While most of the residuals are in 

the range of ±0.03 (v/v %). For C7 plus, SECV and SEP values are found to be 0.555 (v/v 

%) and 1.148 (v/v %), respectively. The R2 value for calibration set predictions are 

calculated as 0.980, and the R2 value for the validation set is 0.825. The residuals for all 

samples are plotted in Figure 5.18 e. The residuals are in the range of ± 2.0 (v/v %). For 

C6 minus, SECV and SEP values are found to be 0.439 (v/v %) and 1.246 (v/v %), 

respectively. The R2 value for calibration set predictions are calculated as 0.985, and the 

R2 value for the validation set is 0.752. The residuals for all sample are plotted in Figure 

5.17 e. The most residuals are in the range of ± 3 (v/v %). The residuals for the PLS model 

for HSRN samples are given in Figure 5.17. 
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                                (a)                                  (b) 

 

                                (c)  

 

                               (d) 

 

                                (e) 

 

                                (f) 

Figure 5.17. Reference concentrations vs. corresponding PLSR prediction residuals a) 
Paraffins b) Naphthenes c) Aromatics d) Benzene e) C7 plus f) C6 minus 

 

As Shown Figure 5.17 for both validation and calibration sets. All validation data are 

very close to calibration data which shows model prediction efficiency. 

 

 

5.5. Genetic Inverse Least Square (GILS) 

 

After pre-processing raw NIR spectra, Genetic Inverse Least Square (GILS) with 

30 genes, 50 iterations, and 100 runs where R2 threshold for selection of initial genes were 

0.5 and 1-fold CV was used for determination of fitness. was applied to establish 

prediction models both for LSRN and HSRN, models were created as Naphthenes, 

Paraffins, Olefins, Benzene, Aromatics, C7Plus (the sum of compounds with more than 
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7 carbons) and C6Minus (the sum of compounds with less than 6 carbons). A modeling 

study has not been done for the Olefins parameter in HSRN due to a lack of data. The 

prediction performances of the created models were evaluated by looking at the 

coefficient of determination (R2) of the calibration data set, the root mean square error of 

calibration (SEC), and the root mean square of validation errors (SEP) data. Models with 

low SEC, SECV, and SEP values and high determination coefficients were preferred at 

the stage of selecting the basic component numbers of the established models. 

 

5.5.1. Light Straight Run Naphtha Results 

 

Reference values obtained from GC analysis vs GILS model predicted values of 

FT-NIR spectra of LSRN samples treated by EMSC of each parameter are given in Figure 

5.18.  
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Figure 5.18. Actual concentrations vs. GILS predicted concentrations; Paraffins, 
Olefins, Naphthenes, Aromatics, Benzene, C7 plus, C6 minus 

 

As seen in Figure 5.18, the model performance is quite close for calibration and 

validation set predictions with calibration performance being only slightly better 

indicating no significant overfitting.  Therefore, ILS method can solves the overfitting 

problem with Genetic Algorithm. SECV and SEP values are given in Figure 5.18. 

Generally, PLS result better than GILS result but for C6 minus and C7 plus 

Parameters are lower SEP value compare to PLS result. 

In order to determine the error range and possible residual trends, the residue plot 

is given in Figure 5.19. 
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                                (a)  

 

                                (b) 

 

                                (c)  

 

                               (d) 

 

                                (e) 

 

                                (f) 



 

47 

 

 

(g) 

Figure 5.19. Reference concentrations vs. corresponding GILS prediction residuals a) 
Paraffins b) Olefins c) Naphthenes d) Aromatics e) Benzene f) C7 plus g) C6 minus 

 

 As Shown Figure 5.19 for both validation and calibration sets. All validation data 

are very close to calibration data which shows model prediction efficiency. 

 

5.5.2. Heavy Straight Run Naphtha Results 

 

Figure 5.20 present the reference values obtained from GC analysis versus 

predicted values obtained from PLS model. Standard error of calibration calculated and 

standard error of calculated for each parameter. 
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Figure 5.20. Actual concentrations vs. GILS predicted concentrations; Paraffins, 
Naphthenes, Aromatics, Benzene, C7 plus, C6 minus 

 

The overall predictive performance of HSRN samples is quite well compare to 

LSRN samples. Since LSRN samples are lighter and have a lower boiling point than 

HSRN samples, LSRN samples may have affected the prediction ability due to 

evaporation during analysis. It may be caused by evaporation of samples when 

performing FT-NIR analysis after reference analysis of samples. 
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                                (a)  

 

                                (b) 

 

                                (c)  

 

                               (d) 

 

                                (e) 

 

                                 (f) 

Figure 5.21. Reference concentrations vs. corresponding GILS prediction residuals a) 
Paraffins b) Naphthenes c) Aromatics d) Benzene e) C7 plus f) C6 minus 

 

No visible residual pattern was observed in Figure 5.21. In fact, validation residuals 

are relatively higher than calibration residuals. This is actually an expected situation and 

the validation estimate does not get better than the calibration model. 
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5.6. Summary and Comparison of the Calibration Models 

 

As a result of the predicted values, according to PLS and GILS calibration models 

with SECV (v/v %), SEP (v/v %), and R2 values given in Tables 1 and 2 for LSRN and 

HSRN samples. According to results show SECV and SEP values indicating no severe 

overfitting. Both the PLS and GIRLS results are promising for all parameters. In all cases, 

using one of the 2 models can give fast and effective results. However, choosing the best 

model for each parameter gives even better results. The prediction performances of the 

created models were evaluated by looking at the coefficient of determination (R2) of the 

calibration and validation data set, the root mean square error of calibration (SEC), and 

the root mean square of validation errors (SEP) data. Models with low SECV and SEP 

values and high determination coefficients were preferred at the stage of selecting the 

basic component numbers of the established models. For LSRN, The PLS model is better 

at predicting Paraffins, Olefins, Aromatics, and Benzene values than the GILS model. 

Also, in narrow range parameters, the PLS model gives a more successful result. GILS 

model is better at predicting Naphthenes, C7 plus, and C6 minus values than the PLS 

model.  

 

Table 5.1. Summary of Values for LSRN 

 

 

For HSRN, The PLS model is better predicting ability for Paraffins, Aromatics, 

Benzene, and C6 minus values. The GILS model can predict very good for Naphthenes 

and C7 plus. At the same time, the best model method chosen for the mentioned parameter 

is shown in bold. 

 

CDU

LSRN SECV (v/v %) SEP (v/v %) R
2

Number 

of LVs
SECV (v/v %) SEP (v/v %) R

2 Max Min Interval

Paraffin 0.774 0.876 0.923 6 0.536 0.885 0.963 94.52 82.35 12.17

Olefin 0.098 0.107 0.917 9 0.073 0.112 0.956 1.29 0 1.29

Naphthene 0.719 0.924 0.912 6 0.537 0.859 0.952 15.39 4.5 10.89

Aromatic 0.019 0.072 0.998 6 0.036 0.076 0.991 2.53 0.72 1.81

Benzene 0.034 0.046 0.984 9 0.033 0.058 0.991 1.68 0.42 1.26

C7 plus 0.843 1.358 0.955 9 0.613 1.277 0.976 17.97 0.79 17.18

C6 minus 0.843 1.358 0.955 9 0.587 1.231 0.979 99.21 82.03 17.18

GILS Calibration Model Results Data RangePLS Calibration Model Results
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Table 5.2 Summary of Values for HSRN 

 

 

A further study will help to see the usage information of the two (PLS and GILS) models, 

by increase the number of the calibration sample set, by changing the preprocessing 

methods, by utilizing a variable selection algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDU

HSRN SECV (v/v %) SEP (v/v %) R
2 Number 

of LVs
SECV (v/v %) SEP (v/v %) R

2 Max Min Interval

Paraffin 0.638 0.775 0.980 6 0.355 0.883 0.994 70.86 52.87 17.99

Naphthene 0.625 0.561 0.982 6 0.402 0.553 0.992 36.53 18.32 18.21

Aromatic 0.230 0.283 0.963 7 0.148 0.329 0.985 12.75 7.16 5.59

Benzene 0.011 0.017 0.996 9 0.009 0.021 0.998 1.01 0.01 1

C7 plus 0.439 1.246 0.985 10 0.416 1.135 0.987 99.42 81.17 18.25

C6 minus 0.555 1.148 0.980 10 0.502 1.160 0.984 18.83 0.58 18.25

GILS Calibration Model Results Data RangePLS Calibration Model Results
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6. CHAPTER 6 

 

7. CONCLUSION 

 

As a result of the studies, the results of the new analysis method developed by 

using near-infrared (NIR) spectroscopy and chemometrics models for the estimation of 

the physical properties of naphtha samples show that the laboratory can be used instead 

of classical methods. All naphtha samples were collected at Tupras Izmıt Refinery. The 

naphtha samples were analyzed at the Tupras Izmit Refinery Quality Control Laboratory 

by the reference test methods. NIR when empowered with chemometrics tools which are 

PLS or GILS, gives a fast and effortless way of quantitatively determining naphtha 

parameters. 

All of the modeling studies conducted have obtained very successful results. 

However, the most suitable model was chosen for each parameter. It was decided that the 

PLS model gave better estimation results for Paraffins, Olefins, Aromatics, and benzene 

parameters in LSRN samples. At the same time, despite the narrow data range of these 

parameters, PLS yielded very successful results. On the other hand, in GILS models, it is 

seen that Naphthenes, C7 plus, and c6 minus parameters have better prediction ability 

than PLS. It was concluded that the predictions of PLS models for the Paraffins, 

Aromatics, benzene, and c6 minus parameters in the heavier layer HSRN samples were 

more successful. On the other hand, GILS models offer better estimates in naphtha and 

c7 plus parameters than PLS. Naphthenic molecules, which are among the LSRN and 

HSRN parameters, have predicted the straight-chain 5 to 10 carbon structure better than 

the PLS algorithm quite successfully. 

The industrial applications of chemometrics modeling approaches, which are widely used 

in the chemical industries in the world, are not seen much in our country. Within the scope 

of this project, with the fact that chemometrics model development based on molecular 

spectroscopic data will be applied for Tupras, the capabilities in statistical experimental 

design, spectroscopy, and chemometrics multivariate analysis methods have been 

developed. By collecting more samples in the future, the models that will be obtained 

may become stronger and more reliable. In addition, it seems that these studies can be 

worked with different parameters or with a different crude oil layer. 
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