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ABSTRACT

BIOINFORMATIC ANALYSIS AND BIOSTATISTICAL MODELLING
OF GENETIC INTERACTIONS BETWEEN MICROBIOTA AND HOST

Advances in genome sequencing technology have revolutionized the study of mi-
croorganisms. Recent genome-wide association studies (GWAS) on gut microbiota re-
vealed fascinating discoveries about the effect of microbiota on our health.

In this thesis, Drosophila Melanogaster samples were used to investigate the
associations between the host’s genotype and microbiota. The meta-analysis of microbiota
data was performed using PhyloMAF, a novel, and comprehensive microbiome meta-
analysis framework. The resulting microbial abundance tables were analyzed using alpha
and phylogenetic beta bio-diversity metrics, which were used in the microbiome GWAS
study. Significant variant associations were further analyzed in the post-GWAS analysis.

The results of our study show that several genomic variants are significantly as-
sociated with bio-diversity estimates. Among identified variants, few were found to be
associated with more specific phenotypes. Particularly, the gene involved in folate trans-
port and linked to folate malabsorption was found to be associated with Proteobacteria.
The latter for its part was found to be one of the primary phyla containing the highest
number of genes responsible for de-novo folate synthesis. Similarly, the fly gene related to
immune function with the human homologous gene linked to the inflammatory gut disease
was found to be associated with the Acetobacter genus. This genus based on the literature
survey was found to be associated with an immune deficiency in a fruit fly.

In summary, this research revealed captivating findings of genetic factors associated
with fruit fly microbiota. The limitations and future directions were stated in order to
provide the basis for future prospective studies.
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ÖZET

MİKROBİYOTA-KONAK GENETİK ETKİLEŞİMLERİNİN
BİYOİNFORMATİK VE BİYOİSTATİSTİKSEL OLARAK

MODELLENMESİ

Genom dizileme teknolojisindeki gelişmeler, mikrobiyoloji çalışmalarında devrim
yarattı. Bağırsak mikrobiyotası üzerine yapılan son genom çapında ilişkilendirme çalış-
maları (GWAS), mikrobiyotanın sağlığımız üzerindeki etkisi hakkında etkileyici sonuçlar
ortaya koydu.

Bu tez çalışmasında, Drosophila Melanogaster örnekleri ile konağın genotipi ile
mikrobiyotası arasındaki ilişkiler biyoenformatik yöntemleriyle araştırıldı. Mikrobiyota
verilerinin meta analiz süreci, yeni ve kapsamlı bir mikrobiyom meta-analiz yazılımı
olarak programlanan PhyloMAF ile gerçekleştirildi. Elde edilen mikrobiyal bolluk tablo-
ları, mikrobiyom GWAS çalışmasında kullanılan alfa ve filogenetik beta biyo-çeşitlilik
ölçümleri kullanılarak analiz edildi. Önemli varyant ilişkileri, post-GWAS aşamasında
ayrıca analiz edildi.

Bu çalışmanın sonuçları, bazı genomik varyantın biyoçeşitlilik tahminleriyle önemli
ölçüde ilişkili olduğunu gösterdi. Tanımlanan varyantlar arasında, çok azının daha spesi-
fik fenotiplerle ilişkili olduğu bulundu. Özellikle folat taşınmasında rol oynayan ve folat
malabsorpsiyonuna bağlı genin Proteobacteria ile ilişkili olduğu bulundu. Proteobacte-
ria’nın;, folat sentezinden sorumlu en yüksek sayıda geni içeren birincil şubelerden biri
olduğu bulundu. Benzer şekilde, iltihaplı bağırsak hastalığına bağlı insan homolog geni
ile bağışıklık fonksiyonuyla ile ilgili sinek geninin Acetobacter cinsiyle ilişkili olduğu
tespit edildi. Literatür araştırmasına dayanan bu cinsin, meyve sineğindeki bağışıklık
yetersizliğiyle ilişkili olduğu bulundu.

Özetle, bu araştırma meyve sineği mikrobiyotası ile ilişkili genetik faktörlerin
ilginç bulgularını ortaya çıkardı. Ek olarak, ileriye dönük çalışmalara temel olması
açısından bazı kısıtlamalara ve önerilere yer verilmiştir.
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CHAPTER 1

INTRODUCTION

Advances in DNA sequencing technology have enabled powerful yet unconven-
tional means in microbial community research. Along with emerging field prospects, the
complexity of performing microbiome research has vastly increased. A growing number
of milestones in the research of microbiota have rendered it highly dependent on computer
science and bioinformatics. As a result of aforesaid incessant and consequential mod-
ernization, the microbiome research community has turned into a helter-skelter state.1

Nevertheless, since the beginning of the 21st century, the number of papers published
in the field of microbiome and microbiota has been increasing exponentially. Moreover,
advances in microbiome research have transformed our understanding of microbial com-
munities in favor of symbiosis rather than commensalism. Subsequent studies have proven
that microbes living within us have a substantial effect on our health and diseases.2

1.1 Microbiome Research

Advancements in the microbiota studies have led to research outbursts and changed
our understanding of human gutmicrobiota.3 Thanks to next generation sequencing (NGS),
microbes that were previously impossible to culture, now can be directly sequences and
analyzed both quantitatively and qualitatively.4 It was demonstrated that the genus of
Bifidobacterium living in our guts has a substantial effect on the glycan metabolism and
can indirectly affect our physiology and health.5 Furthermore, multiple studies on host-
microbiome interactions have found that gut microbiota has a conspicuous effect on our
diseases like obesity, diabetes, cancer, along with inflammatory, metabolic, and even
neurodegenerative disorders through the gut-brain axis.6,7 Moreover, another extensive
study on the gut-brain axis has established that the microbial profile of the gut can have a
causal role in the development or progression of major depressive disorder.8
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1.2 Unveiling Omics

Omics refers to a family of disciplines in biological sciences that end with the suffix
-omics. For instance, genomics, transcriptomics, proteomics and glycomics are some of the
omics disciplines that refer to studies of the single whole genome, total RNA, protein, or
glycome composition of the cell at some point in time, respectively. Similarly, the addition
of meta- prefix to the omics disciplines indicate the study of multiple organisms, cells,
or in other words sources of the data. For instance, metagenomics, metatranscriptomics,
metaproteomics, and metataxonomics are some of the many fields that are concerned with
the study of multiple genomes. Likewise, but also different example is metabolomics,
which refers to a study of metabolites from single or multiple organisms.9,10

In the scope of this thesis, wewill mainly focus onmetataxonomics, which is a term
that was proposedmuch later than the fieldwas established.11 Before the introduction of the
term, the scientific community often referred to the field as amplicon-basedmetagenomics,
targeted metagenomics, or microbiomics.12,13

1.3 Introduction to Metataxonomics

Metataxonomics is the study of qualitative and quantitative characterization of
microorganisms present in an environment. Metataxonomics is also known as amplicon-
based metagenomics because it focuses on sequencing and analysis of the relatively short
genomic region rather than the whole genome as used in whole-genome or Shotgun
metagenomics. However, the amplicon-based sequencing approach is not specific only
for the field of metataxonomics. Subsequently, there are a few basic requirements from
the target genomic region that must be amplified during the sequencing phase. Ideally,
in metataxonomics, the amplified genomic region provides evolutionarily preserved sub-
regions along with informative gist that can be used to later distinguish the sequences that
belong to independent microorganisms within the defined environment.4,14

1.3.1 Phylogenetic Marker Genes

Taxonomic or phylogenetic marker genes refer to regions on the genome that
incorporate sufficient informative power required to construct reliable phylogeny for the

2



organisms of interest. Phylogenetic marker genes are not universal for all organisms and
choosing one is the first critical decision made in a microbiome study.15 Every marker
gene usually has multiple sub-regions of which at least one is used as the sequencing target
and rarely the whole region is sequenced completely. Based on the microorganisms of
interest, marker genes can be roughly classified into three groups: prokaryotic, eukaryotic,
and viral. The last one is out of the thesis scope so it will not be described at all.16,17

1.3.2 Methodology in a Nutshell

Microbiome studies have a relatively well established methodology and best-
practices. Inherently, the whole process can be separated into roughly 7 stages, which may
or may not overlap depending on the preferred methodology. As in any scientific study
first step is to ask a question with subsequent construction of a hypothesis. Next are the
sample collection and its storage so let’s call this step “Sample Collection Stage”. The
third or “Sequencing Stage” is DNA/RNA extraction, library preparation, and sequencing
process. At this point, the wet-lab endeavor ends and the dry-lab phase begins. The
fourth stage primarily consists of processing raw NGS sequence reads through quality
filtering, trimming, chimera removal, demultiplexing, dereplication, etc. This step is
called the “Quality Control Stage”. Next, quality controlled sequences are processed by
either clustering or denoising the reads into so-called operational taxonomic units (OTUs)
or amplicon sequence variants (ASVs), respectively. In the literature, this step is called
“OTU-picking”. Sixth is the “Taxonomy Assignment Stage” where the taxonomy is as-
signed to the OTUs via classification techniques. The last and seventh stage involves using
a constructed OTU-table with the assigned taxonomy to perform a bio-diversity analysis,
so let’s simply call it the “Diversity Analysis Stage”. Finally, visualization and discussion
of the results with subsequent testing of the initial hypothesis takes place.1,17–20

1.3.3 Operational Taxonomic Units (OTU)

As described in the section above, OTUs are produced during the OTU-picking
stage, but because of their critical importance let’s contemplate the concept. First and
foremost, the concept of OTUs is only relevant when sequences are clustered and not
“denoised”, which produce ASVs. Essentially, OTU is a cluster or a group of sequences,
which are similar to each other at some level. Before OTU-picking step sequences are
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quality filtered and duplicates are removed so that non-redundant decisive sequences
are produced. During the OTU-picking process, clustering algorithm group or clusters
sequences based on a certain similarity threshold called identify threshold aka sequence
identity (ID). For instance, 97% ID results in clusters of sequences that are 97% similar or
3% different. In literature, no universally accepted ID can be used in microbiome studies;
rather multiple agreements are possible. For instance, there is a community consensus
OTUs at 97% ID can represent taxonomic resolution up to species level. Similarly, 99%
ID can identify microorganisms up to strain level.17 Recently, an alternative concept of
ASVs also known as exact sequence variant (ESV) has emerged. ASVs are produced
via a process known as denoising, which takes as input minimally quality filtered raw
NGS sequences. Usually, ASV’s provides higher taxonomic and phylogenetic resolution
compared to OTUs and can be considered as a better elementary unit that should be used
in microbiome studies. However, even though ASV-based methods will prevail in usage,
in the interim OTU-based methods are still considered as a gold standard.20,21

1.3.4 Reference Taxonomy

Taxonomic reference databases are also known as taxonomic classification databases
or simply taxonomies are critical components of the closed-reference OTU-picking meth-
ods as described in the previous section. One could think that taxonomy of the life is
established and well-defined but unfortunately this far not true. Before the introduction
of the DNA sequencing technology, the taxonomic classification of organisms was mainly
based on the morphology of organisms and not genomes. However, introduction of mi-
crobial genomics have not only transformed our understanding and changed biological
classification but also introduced countless new microorganisms, which were previously
completely unknown. Eventually, multiple papers were published that announced different
taxonomic classification databases of varying quality and biological correctness.22–25

1.4 Biodiversity Analysis

By definition “biodiversity is the variability among living organisms.”26 In other
words, biodiversity is a measure to describe the variability of microorganisms or their
marker genes within the community or between communities. In his paper, Whittaker
described three types of biodiversity types: alpha, beta and gamma diversity.27 Alpha
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diversity is essentially a measure of biodiversity within a single sample and beta diver-
sity is a measure of biodiversity between multiple samples. Gamma diversity describes
overall diversity in the ecosystem. Alpha and beta diversity are more frequently used in
microbiome studies compared to gamma diversity. There are many mathematical distance
functions or so-called metrics that can be used to calculate bio-diversity with each having
different applications. Moreover, there are beta-diversity metrics like UniFrac dissimilar-
ity measure which incorporates taxon branch distances from the phylogenetic tree into a
distance matrix. Such metrics are called phylogenetic diversity metrics and are typically
more robust than non-phylogenetic metrics.17,27,28

1.5 Genome-Wide Association Studies

Genome-wide Association Study (GWAS) is a very powerful method of studying
associations between a host’s genotype and phenotype. Though GWAS is not a new
approach, it only recently became feasible to perform. Genome-wide Association Studies
are the primary source of the most recent discoveries on genetic risk factors associated
with diseases. The main power of GWAS is that it performs association analysis over
the whole-genome and runs a significance test for every single nucleotide polymorphisms
(SNPs). GWAS requires two types of data, host’s genotype and phenotype. Latter, can be
many things like the disease status or the sex of the host. In addition, host’s microbiota
can also be a phenotype of interest, which can be represented in terms of alpha or beta
diversity. GWAS studies between host genotype and its microbiome are calledmicrobiome
genome-wide association study (mGWAS). mGWAS is relatively new and has immense
research potential. However, conducting an mGWAS study can be very costly because
it requires sequencing and data analysis of both the genome and the microbiome of the
host. Therefore, the usage of public databases and resources can be very useful for such
studies.2,7,8,29–32

1.6 Model Organism

TheDrosophila melanogaster is one of themost preferredmodel organisms used in
genetic studies. Moreover,D.melanogaster is one of themost cost-effective animalmodels
used in microbiome research and mGWAS.33 More than 40% of all Drosophila protein-
coding genes have homologs in the human genome; hence, many gene associations can

5



have direct implications in human studies.34 Besides, it is known that out of 287 human
genes associated with a diseases, 62% have homologs in the Drosophila genome.35 In
summary, Drosophila model organism can be ideal for cost-effective mGWAS studies.

1.7 Microbiome Meta-Analysis

Meta-analysis is a type of study that involves combiningmultiple independent stud-
ies into a survey studywith the aim of systematic reviewing and derivation of overall strong
conclusions. With a huge amount of generated microbiome data, meta-analysis studies are
gradually becoming very compelling. However, performing microbiome meta-analysis
requires very tedious data selection and evaluation before moving to data analysis. As
it was previously described, the microbiome field has been through frequent transforma-
tions, which essentially rendered such meta-analysis studies very challenging to perform
and derive trustworthy conclusions. Most of the recent meta-analysis papers, filter inde-
pendent studies used in the meta-analysis based on the presence of raw sequencing data
to achieve the highest overall statistical control and low bias per study. However, this
approach ends up eliminating most of the studies, which usually contain valuable data.
Moreover, using this approach directly prevents usage of OTU-tables for data merging and
rapid meta-analysis.36,37

To compensate for the aforesaid issues, the microbiome research community pro-
posed the concept of ASVs or ESVs, which were already described in previous sections.
However, these concepts are relatively new and most of the studies are still preferring the
usage of OTUs. Furthermore, most of the previously completed and published studies
would require re-analysis to transform OTUs into ASVs. To summarize, the overall prob-
lem of microbiome meta-analysis has motivated us to develop a new microbiome analysis
framework that would allow us to address most of the aforesaid issues.20

1.8 Motivation of Thesis

Our primary interest in this thesis study is to investigate SNPs and genes associated
with microbial profiles of the Drosophila melanogaster Genetic Reference Panel (DGRP)
lines. In other words, the purpose of this study is to investigate genetic interactions
between the microbiota and host, followed by the identification of host genetic factors that
influence the gut microbiota composition of the model organism. Our meta-analysis study
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involves the usage of publicly available DGRP host genotype data and OTU-tables derived
from independent 16S microbiota DGRP studies. Due to partially missing raw amplicon
sequencing data, we assume that analysis up to specie level will be impossible but higher
taxonomic levels such as family or phylum level will compensate for data merging issues.
Essentially, our hypothesis states that nucleotide variations in the host genome can affect
the microbial composition of the gut up to the higher taxonomic levels like phylum at
which statistical bias of inter-study heterogeneity can be effectively ignored.

Throughout our meta-analysis study, we use DGRP lines as our primary samples
and as the main data collection criteria. As it will be described in detail later, one of the
target phenotypes used in our mGWAS require a phylogenetic tree along with OTU-table
for calculation. Moreover, the OTU-tables used in this study are assembled by independent
studies that have utilized different sequencing platforms and library sizes to generate OTU
counts. Further by consideringmissing data, the data typical microbiommeta-analysis was
not possible in our study; hence, a novel platform for meta-analysis was developed during
this thesis research. This tool practically enabled exploitation of previously unusable data
based on common approach used in the literature. Our novel framework is written in
Python and is used to mine missing data from relevant taxonomic classification databases
and reconstruct phylogenetic trees required for beta diversity analysis. After obtaining
all data components required to perform mGWAS we use Plink, which is the commonly
used software for performing GWAS.38 Ultimately, the aim is to analyze identified gene
association results via mGWAS to derive conclusions for the initial hypothesis.

1.9 Organization of Thesis

This introductory chapter is only meant to provide a synopsis of primary concepts,
methods, mGWAS, and so forth. Also, the main issues of microbiome meta-analysis stud-
ieswere stated and briefly explained. The next chapter provides a deeper introduction to the
processing and analysis methodologies used in microbiome research like metataxonomics
and mGWAS so that the reader can better comprehend the rest of the thesis. The third
chapter portrays the design and implementation of our novel phylogenetic microbiome
meta-analysis framework in detail. In the fourth chapter, online resources, materials,
methods, and visualization techniques used in this thesis are clarified. In the fifth chapter,
results are discussed and the original hypothesis is justified. Finally, in the last chapter
overall synopsis is narrated and prospects are stated.
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CHAPTER 2

BACKGROUND

This chapter provides fundamental knowledge on how to perform microbiome
studies along with tools available in the literature. Then followed by explaining the basic
theory of GWAS and describing current literature approaches used for mGWAS.

2.1 Conducting Microbiome Study

In the section 1.3.2, the methodology of conducting a microbiome study was
described briefly to acquaint the reader and move on. This section provides a fundamental
but detailed knowledge of methodology used in the literature.

2.1.1 Sample Collection

Sample collection and storage are the initial steps in any microbiota study. The
D. melanogaster samples are processed differently for host DNA extraction and microbial
DNAextraction. The former is out of the scope of this thesis so it will not be described. The
latter is mainly used to extract the genetic material of microorganisms for amplicon-based
metagenomics study. The internal microbiota profile of laboratoryDrosophila is known to
contain relatively few observed taxa. Prior to DNA extraction, flies are typically sterilized
to remove the external microbes and contamination. Then followed by homogenization
and lysis to break the outer membrane of the cells. In some papers, DNA of Wolbachia
genus are eliminated prior to amplification, while most studies sequence the complete
microbial content. Lastly, the genetic material is isolated and amplified using polymerase
chain reaction (PCR).33,39
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2.1.2 Marker Genes and Primer Selection

Although there are many marker regions used to study different microorganism,
Bacteria and Fungi are mostly studied microbes with established marker genes.

2.1.2.1 Marker Genes for Archaea and Bacteria

For most prokaryotic microorganisms from domain Archaea and Bacteria com-
monly used marker gene is 16S ribosomal RNA (rRNA)subunit. The 16S small subunit
(SSU) rRNA gene is part of small 30S prokaryotic ribosome subunit, consist of nine hy-
pervariable regions (V1-V9) and has an approximate total length of 1600 base pairs. These
hypervariable regions have variable phylogenetic accuracy in differentiating microorgan-
isms from each other. Multiple studies have investigated which hypervariable region is
most informative from the phylogenetic and taxonomic perspectives. However, there is no
definite rule on which should be used as amplicon. Nevertheless, regions V2-V3, V3-V4,
and V4-V5 are among common preferences in literature.17,40,41

2.1.2.2 Marker Genes for Eukaryota

Compared to prokaryotes there is no established marker gene that can be used for
all eukaryotic microorganisms. However, 18S SSU rRNA is one of the most promising
marker geneswith a similar structure to 16S SSU rRNAwith hypervariable regions that can
be used as target differentiating for eukaryotes. Furthermore, 18S SSU rRNA is relatively
commonly used in the microbiome research community so it has somewhat established
protocols and bioinformatic means required for data analysis.42 Moreover, research on
fungal communities can also profit from an additional tantamount marker gene know as
an internal transcribed spacer (ITS). The ITS is a spacer sequence that is located between
SSU and large subunit (LSU) of rRNA and is highly informative in terms of taxonomic
resolution. However, ITS is not a phylogenetic marker because it is relatively unreliable
for differentiating distant taxa.17
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2.1.3 Library Preparation and Sequencing

With the selected target hypervariable region and its “universal” primer deoxyri-
bonucleic acid (DNA), the amplification is carried out. This is an important step required
to improve the subsequent sequencing signal. However, DNA amplification by PCR is
one of many factors that introduce an amplification error; hence, is an inevitable source
of bias. Besides, late PCR cycles cause the formation of chimeric amplicons, which must
be taken into account during quality filtering. Although decreasing the number of cycles
can reduce chimera formation, it is not always possible and primarily depends on the
requirements of sequencing equipment.

Traditionally, Roche’s 454 NGS platform was the leading choice for amplicon
sequencing studies. However, the introduction of novel NGS technologies like Illumina
MiSeq has rendered 454 noncompetitive and caused Roche to shut down production of the
platform. As the consequence, preference priority of the NGS platform for amplicon se-
quencing has changed. At the time of writing this thesis, multiple comparative studies with
aim of investigating the effect of sequencing platforms on microbial community profiles
have been performed. Without any definite consensus on what sequencing platform is the
best for amplicon sequencing, the most common preference seems to be Illumina MiSeq.
It is crucial to note that different sequencing platforms have a paramount effect on the
quantitative aspect of microbial community profiling. However, it was also demonstrated
that depending on taxonomic rank there can also be qualitative differences.1,43,44

2.1.4 Quality Control

Quality control of raw amplicon reads is the first computational step in a typical
microbiome study. Quality control must be approached with caution because it is a critical
step that affect the final OTU-table counts by introducing various types of error. For
multiple samples that were sequences at once, demultiplexing must precede OTU-picking
process. Similarly, sequences must be trimmed based on platform-specific adapters, and
preferably trimmed of primers oligomers. Split and trimmed sequences then must be
quality filtered according to study specific criteria such as lowest base quality scores,
continuous ambiguous polymers, and long homo-polymers. Based on provided criteria
filtered reads then must be checked for length thresholds and very short sequences must be
removed to normalize overall raw amplicon reads.1,17 Described quality controls can be
performed with a variety of available tools such as Trimmomatic45 or Cutadapt.46 Finally,
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quality-filtered reads must pass chimera checks to identify and remove chimeric reads.1

This can be done using tools like UCHIME47 or DECIPHER.48

2.1.5 OTU-Picking (OTU Clustering)

Processing raw amplicon NGS data and generating OTU-tables is not a straight-
forward process. The microbiota research field is evolving so rapidly that data processing
tools andmethods change very often. However, somemethods havemanaged to put upwith
the looming requirements of the research community and become a part of the standard
methodology. In short, there are three methodological approaches for OTU clustering:
de-novo, closed-reference, and open-reference. Reference-based clustering approaches
require a taxonomic reference database. The main motivation for using a reference-based
approach is to provide a clustering algorithm the ability to distinguish biologically mean-
ingful sequences from irrelevant sequences. The closed-reference clustering algorithm
compares each identified OTU cluster to the database of reference sequences with known
taxonomy and only select OTUs that are present in the database. However, using this
approach, sequences that are not present in the reference database will be ignored and lost.
Problems arise because none of the existing taxonomic reference databases is close to
completeness in terms of representing the natural diversity of life and probably will never
be. To compensate for this issue, the de-novo clustering approach can be used, which is
essentially OTU clustering without using a reference database. This approach provides
the ability to capture all the microbes and only restricted by the algorithm itself. However,
OTUs produced by the de-novo approach is only relevant within the sample or indepen-
dent research. In other words, the OTUs produced by the de-novo approach do not have
representative taxonomy and can not be compared or combined with the OTUs produced
by other researchers. As a solution to this problem, open-reference OTU clustering can
be used. Here open simply refers to the combination of closed and de-novo clustering
approaches. That is, the open-reference clustering method first, attempts to cluster OTUs
using the closed-reference approach and then perform de-novo clustering on the remain-
ing sequences that otherwise would be ignored. The process of ASV/ESV generation is
different from OTU clustering and is called denoising.17,19 Within the scope of this thesis
work, we focus on OTU based approaches. Moreover, unless the environmental sample is
collected from an exotic source the common way to analyze data in the literature is using
a closed-reference-based OTU-picking approach. Therefore, in this thesis work, only a
closed-reference OTU-picking approach is used.

The process of OTU generation primarily consists of two steps: dereplication
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and clustering of sequences. The dereplication refers to grouping or marking the same
sequences or replicas into a single sequence. The process of dereplication is followed
by the clustering of replicas into OTUs. The clusters produced by the OTU clustering
process are based on the %ID threshold. The clustering algorithm as illustrated in figure
2.1, attempts to form clusters of dereplicated sequences where centroids are the OTUs.
The %ID threshold decree the clustering algorithm to form clusters of replicas or groups
based on a certain level of percent similarity. In literature, OTUs clustered at 97 %ID
typically refer to taxa at the species level, while 99 %ID may refer to taxonomic resolution
up to strain level. However, interpretation of OTUs at certain %ID as taxonomic levels
is a rather putative approach. Resolution of the taxonomy associated with OTUs mainly
depends on the sequencing-depth or library-size, and the reference database used OTU-
picking and taxonomy assignment. Therefore, it is not uncommon to observe OTUs at 97
%ID with incomplete taxonomy without identified species level.

Figure 2.1: Illustration of OTU clusters. OTUs are cluster centroids with a radius of
%ID. Depending on the algorithm clusters may or may not overlap.

The clustering algorithm minimizes the number of overlaps each cluster can have
with each other. The radius of the clusters represents %ID and centroids are sequences that
represent an OTU. Depending on the algorithm sequence with a certain quality(usually
the longest) is selected as a centroid that represents all encompassed similar sequences.
The sequence comparison approach used by clustering algorithms can be different. For
instance, UCLUST49 use k-mers to compare sequence similarity, while CD-HIT50 uses
pairwise sequence alignment.

Among available tools for clustering reads into OTUs, VSEARCH51 and its
predecessor USEARCH/UCLUST49 are among the most commonly used. In practice,
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VSEARCH is integrated into quantitative insights into microbial ecology (QIIME),52

which is the most commonly used tool for amplicon-based microbiome data processing
and analysis. Similarly, mothur53 is another popular tool used in the microbiome analy-
sis with “batteries-included”.The mothur is a powerful alternative to QIIME, which lost
its popularity with the introduction of QIIME2.54 QIIME2 package also includes novel
denoising tools such as DADA255 and Deblur56 that generate ASVs or ESVs.

2.1.6 Taxonomy Assignment

In a typical microbiome data analysis pipeline, OTU-picking is followed by the
taxonomy assignment process. Representative sequences of identified OTUs are classified
using a taxonomic reference database. The classification is a process of predicting the
category of input data based on the reference dataset model. There are many classifica-
tion algorithms available in the literature with different computational approaches used for
model building and prediction. Within the scope of this thesis, the classification model can
be described by its accuracy and prediction time. The trade-off between two model char-
acteristics is complicated and involves many parameters that may be important depending
on the input datasets. The OTU representative sequence classification methods can be
categorized into three types: similarity-based, model-based, and phylogeny-based.57

Ideally, similarity-based methods involve any classification algorithm that uses
pairwise sequence alignment for prediction assessment. A popular sequence search tool
called basic local alignment search tool (BLAST),49 is based on a similarity-based se-
quence classification algorithm. Such algorithms are very efficient and rapid for querying
huge databases. However, they produce a high number of false positives when querying
sequences that are not present in the reference database.57

Due to rapid prediction and longer model building time the most commonly used
classifiers for taxonomy assignment are model-based. The Naive-Bayes classifier (NBC)
is the most popular classifier used in OTU taxonomy classification because of its rela-
tively rapid prediction and acceptable accuracy.58 There are many variations of the NBCs
implemented in the different taxonomy classification tools. However, probably the most
popular and widely accepted implementation of NBC is the RDP classifier.59 Despite the
introduction of similar and sometimes improved versions of this classifier, the traditional
RDP-classifier is still commonly used in the literature.

Lastly, phylogeny-based classification approaches utilize multiple-sequence align-
ment and reference phylogenetic trees. Phylogenetic classifiers assign taxonomy by fitting
the query OTU sequence into the reference tree. Although such classifiers are consid-
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ered highly accurate, they have a relatively high computational load compared to other
approaches.57

2.1.7 Reference Taxonomy Databases

The reference database is a critical part of closed-reference OTU-picking and the
taxonomy classifiers. It can significantly affect the results of the taxonomy assignment.
The reference database is a basis for the classification of taxonomyusing defined sequences,
alignments, phylogenetic trees, and so forth. In a way, NCBI is a taxonomic classification
database with integrated taxonomy classifier BLAST. However, the National Center for
Biotechnology Information (NCBI) contains immense genomic data of whole genomes
and much more. Therefore, for the sake of narrowing down context to the scope of
this thesis, a reference database refers to marker-gene based databases. Essentially, a
taxonomic reference database is a type of relational database, where each feature has
associated taxonomy, sequence, alignment, accession number, or a tip in the phylogenetic
tree. Here, feature refers to any defined reference taxon or the OTU. In practice, reference
databases are provided in text-based file formats, where for instance taxonomy is stored as
comma-separated values (CSV)/tab-separated values (TSV) file while reference sequences
are FASTA files. In fact, despite the versatility of the NCBI database, maintainers also
provide a microbial subset database. In the literature, many taxonomic classification
databases differ by biological “correctness”, target marker-gene, usage application, and so
forth.

2.1.7.1 Greengenes - 16S rRNA Gene Database

One of the oldest and most commonly used taxonomic classifications for prokary-
otes is the Greengenes database.60 Greengenes is a redundant database of about 90000 16S
SSU rRNA sequences associated with approximately 3000 unique Bacteria and Archaea
species. NCBI is the main source of both taxonomy and sequences that were used to
create the Greengenes database. The internal public release structure of the database and
its taxonomy notation has become a common standard for marker-gene databases. The
taxonomy notation is known as Greengenes or QIIME notation.22,60 An improved version
of the Greengenes database was introduced later with “corrected” taxonomy, alignments,
and phylogenetic trees.61 The QIIME package uses Greengenes as the default database
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and provides the last public release (version 13_8) for the database. However, though the
Greengenes database is still commonly used, it was not updated since the year 2013.

2.1.7.2 SILVA - rRNA Gene Database Project

Initially released in 2007, the SILVAdatabase is a vast collection of prokaryotic 16S
SSU and 23S LSU, and eukaryotic 18S SSU rRNA sequences. Similar to the Greengenes
database, the SILVA releases contain sequence alignments, phylogenetic “guide” trees, and
other complementary data such as accession numbers.62 The SILVA database is frequently
updated and provide different release versions like redundant and non-redundant datasets,
high-quality subset datasets, and QIIME-formatted version. Public release versions con-
tain separate datasets for prokaryotic and eukaryotic taxonomies, with each containing the
same internal data structure. Compared to the Greengenes database, the SILVA does not
provide taxonomic resolution lower than the genus level but contains more taxa in general.
Notably, the taxonomy of the SILVA database is a well-curated collection of approximately
12000 unique genera. In practice, both NCBI and SILVA databases share data; hence,
have relatively common microbial taxonomies.22,62

2.1.7.3 UNITE - ITS Database for Fungal Species

Due to the complexity of eukaryotic organisms, marker genes such as 18S are
not a standard target region for microbiota analysis like 16S is for Bacteria and Archaea.
Since the research on fungal communities represents a special interest in microbial studies,
several marker genes were proposed in the literature. Due to its discriminatory power,
the most preferred marker-region for fungal studies is ITS located between SSU and LSU
of rRNA genes.17 Similarly, the most commonly used ITS-based reference database is
UNITE.63 However, due to the high variability of the ITS-region, it is not well alignable.
Therefore, phylogenetic studies based on this region are not recommended.64 The UNITE
database does not provide sequence alignments and phylogenetic trees in its public releases.
However, the authors do provide various versions of the database including the QIIME-
formatted release.
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2.1.7.4 RDP - The Ribosomal Database Project

Ribosomal Database Project (RDP) database is the oldest comprehensive marker-
gene database used in the analysis of microbial species. The primary source of reference
sequences used in the RDP database is the International Nucleotide Sequence Database
Collaboration (INSDC). The total number of unique taxa available in the RDP is greater
than 6000 and its marker-gene database is frequently updated. The RDP provides a dataset
of 16S SSU rRNA for Bacteria and Archae, and more recently included 23S LSU rRNA
Fungi sequences. The RDP is more than a microbial dataset and it provides several
web-services including online taxonomy classifiers. However, RDP only provides a single
release and does not provide a QIIME-formatted version.22,65

2.1.7.5 OTT - Open Tree of life Taxonomy

The Open Tree of life Taxonomy (OTT) project is a synthetic combination of
taxonomic classifications associated with phylogenetic trees available in the literature.66

Essentially OTT is a framework that automates the synthesis of a comprehensive phyloge-
netic tree of all living organisms. The OTT utilizes available reference taxonomies such as
SILVA, NCBI, and many more. Besides, OTT uses custom phylogenies found in literature
or manually provided by researchers. With over 2.5 million taxa, OTT provides the most
comprehensive phylogeny and taxonomy database available in the literature. However,
OTT does not provide any sequences or alignments, instead, it provides taxon-associated
accession numbers to the source database.22,66

2.1.7.6 GTDB - Genome Taxonomy Database

TheGenomeTaxonomyDatabase (GTDB) is a relatively new and unique taxonomy
reference database. Currently, it is the only reference database used in microbiota studies
that provide both marker-gene sequences and whole genomes. For more than 30000
Archaea and Bacteria species, GTDB provides curated taxonomic classification based on
the highly reliable phylogenetic tree. The GTDB releases contain two separate datasets
for Bacteria and Archaea in QIIME-formatted style, with both marker-gene sequences and
additional files for whole-genome data.67,68
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2.1.8 Construction of Phylogenetic Tree

Typical output dataset post-OTU-picking process comprises representative se-
quences of OTUs and associated abundance tables with taxonomy column. However,
phylogeny-based beta-diversity analysis requires a phylogenetic tree of the identified
OTUs. A common approach to get a representative phylogenetic tree is to construct
de-novo maximum-likelihood (ML) trees using various tools available in the literature
such as FastTree69 or RAxML.70 Although this approach is the most common choice
in the literature, its reliability strongly depends on the quality of the multiple sequence
alignment. Another approach to get a phylogenetic tree is to use a pruned reference tree or
guide-tree with fixed topology and estimate its length values for the branches using tools
like FastTree 271 or ERaBLE.72 In general, the tree based on the second approach is more
reliable as its reference topology is based on multiple sequence alignment of all database
sequences.19

2.1.9 Bio-Diversity Analysis

2.1.9.1 Alpha Diversity Metrics

Alpha diversity metrics describe the variation of microorganisms within the indi-
vidual sample. The alpha-diversity can be described via species richness, evenness, or
both. Specie richness quantitatively describes the number of different species within a
sample. The simplest example of richness estimation is the total number of observed taxa
within the sample. In contrast, the Chao1 richness metric uses the specie counts and es-
timates “true specie diversity”.19 Bio-diversity metrics for evenness take into account the
relative abundances of species within the sample, hence provide more information about
the community. Common examples of such metrics, are Simpson and Shannon-Weiner
(aka Shannon index) indices. The Simpson index (�) is the measure of evenness based
on species dominance within the community.

� =

∑B
8=1 =8 (=8 − 1)
# (# − 1) (2.1)
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where:

� = Simpson Index
B = number of observed taxa
=8 = number of microorganisms for a specific taxon
# = total number of microorganisms for all taxa

Therefore, the value of the� is higher when diversity is low and species dominance
is high. In the literature, the most common usage of Simpson diversity is 1 − �, which
produces higher value when the community is more even. Similarly, the Shannon-Weiner
index (�), or shortly Shannon index, is the measure of evenness based on the randomness
of the distribution.

� =

B∑
8=1

=8

#
ln
=8

#
(2.2)

where:

� = Shannon-Weiner Index
B = number of observed taxa
=8 = number of microorganisms for specific a taxon
# = total number of microorganisms for all taxa

Shannon index is the direct measure of diversity and its value is higher when
the community is more even.27 Lastly, the effect of sequencing errors on alpha-diversity
metrics can be significant and must be taken into consideration.19

2.1.9.2 Beta Diversity Metrics

Beta-diversity metrics describe the variation of microbial communities between
samples. Compared to alpha-diversity measures beta-diversity measures are less prone
to be affected by sequencing and PCR errors. The beta-diversity metrics are distance
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matrices that measure the difference between sample pairs. There are a variety of beta-
diversity metrics described in the literature, which can be classified as phylogenetic and
non-phylogenetic. Similarly, beta-diversity metrics can be qualitative and quantitative.
Commonly used phylogenetic and non-phylogenetic qualitative beta-diversity metrics, are
unweighted UniFrac and Jaccard index, respectively. Similar to richness estimation based
on observed species, qualitative metrics only consider the presence and absence of taxa.
On the other hand, quantitative beta-diversity metrics take into account the abundances of
taxa between samples. Non-phylogenetic Bray-Curtis dissimilarity metric measures the
compositional difference between sample pairs based only on taxa counts. In contrast,
the weighted UniFrac metric also takes into account the phylogenetic distances between
taxa. In general, phylogeny-based beta-diversity metrics are considered to be better at
differentiating communities.17,19,28,73

2.1.9.3 Analysis Techniques

Analysis of community alpha-diversity involves relatively straightforward tech-
niques. Richness and evenness estimates can be visualized and using simple bar-plots
or box-plots. However, beta-diversity metrics produce dissimilarity matrices of pair-
wise distance values that cannot be analyzed straightforwardly. Therefore, ordination
methods are commonly used as dimensionality reduction techniques in the analysis of
beta-diversity dissimilarity matrices. Depending on the beta-diversity metric, ordination
methods such as principal coordinates analysis (PCoA) aka. multidimensional scaling
(MDS) or non-metric multidimensional scaling (NMDS) can be used. The sparsity of
the initial abundance table can produce significantly different ordination results. The
most frequently used ordination method is PCoA. The PCoA works by calculating linear
combinations between sample pairs with maximum preserved variance and producing
principal component (PC). The PCs are then visualized on a Cartesian coordinate system
for visual inspection. However, PCoA works only with Euclidean distance matrices so are
not recommended in the analysis of sparse abundance tables. On the other hand, PCoA
or MDS techniques work with any dissimilarity matrices produced by any beta-diversity
metrics. Compared to PCoA, PCoA does not produce linear PC and instead calculate
non-linear combinations. Finally, NMDS is another ordination technique, which works by
a different principle than PCoA orMDS. NMDS does not calculate the linear or non-linear
combination of original variables to preserve maximum variance and instead use the it-
erative approach of ordination. In general, NMDS is considered to be better at reducing
dimensions while preserving relationships among variables, than MDS. However, NMDS
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is also computationally more intensive than MDS.17,74

2.2 Conducting Genome-Wide Association Study

GWAS is an approach to study genetic associations that involves the mapping of
phenotypic traits to the sample genotypes. Here genotype refers to a complete genetic
profile of nucleotide variants among genomes from the target sample population. Phe-
notype refers to any observable trait associated with samples like the host’s eye color or
gut microbiota. Compared to traditional genetic association studies, which are based on
limited candidate-gene variants as a starting point, GWAS is a relatively old but only re-
cently accessible novel approach that does not have such restrictions.75 The basic process
diagram for GWAS is shown in figure 2.2. In other words, GWAS is a non-candidate-
based phenotype-genotype association approach that involves applying regression models
on “almost” all SNPs. Here “almost” is emphasized because GWAS does not evaluate
independent regressions for all allele frequencies but instead takes into account the link-
age disequilibrium (LD).76 The LD is defined as “the non-random association of alleles at
different loci”. In other words, LD happens when a marker genotype “travel” along with
a set of other alleles at different loci. Then again, the LD render some allele frequencies
to be dependent on each other, which is used by GWAS to derive associations.32,77

Figure 2.2: The process for GWAS analysis
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2.2.0.1 Types of GWAS

Similar to any genetic associations study, GWAS can have different experimen-
tal setup strategies. The most common approaches are case-control, family-based, and
quantitative trait locus (QTL) In human disease studies, the most common approach is the
case-control association study, where the genotype of the healthy and diseased population
is predefined. In case-control based GWAS, genomic allele frequencies are mapped to the
disease status, which is a phenotype. Another approach is a family-based GWAS. Here,
no controls are provided initially and instead kin relationship knowledge of the samples
is used to address the effect of population stratification. Essentially, the family-based
GWAS approach uses family kinship as a control population. Finally, the last approach is
quantitative trait (QT) association analysis.75,76 Here the objective is not to differentiate
genotypes of the control and case populations but rather to identify QTLs associated with
the target phenotype. The QTL refers to any genomic region that can be a single nucleotide
or continuous sequence of any length that is associated with the target phenotype.32,78 The
most common tool used for GWAS analysis, is “Plink”.38 While QTL is the most suitable
approach for mGWAS with only a few known specialized tools that have been developed
and implemented in the literature.7 TheGWAS tool Plink and its file formats/types and data
representation approaches have become the gold standards in the computational GWAS
field. Therefore, most of the other GWAS tools are compatible with Plink data types and
work similarly.

2.2.0.2 Models in GWAS

GWAS can be represented via the equation below.

%ℎ4=>CH?4 = �4=>CH?4 + �=E8A>=<4=C (2.3)

Typical, GWAS focuses only on finding significant associations of Phenotype
against Genotype. It is not uncommon to assume the Environment to be constant when
sample data is produced in controlled conditions. This is common when samples are
model organisms but is more complicated when human GWAS studies are performed.
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A common method to find associations in GWAS is regression analysis. Linear
and logistic regressions are the most common techniques used in GWAS tools like Plink.
However, literature is full of different models with pros and cons depending on the data and
computational power. The primary GWAS tool used in this thesis is factored spectrally
transformed linear mixed models or FastLMM,79 Main motivation for using this tool is
due to rapid regression analysis based on mixed models. Moreover, regressions based on
linear mixed models can handle non-normal data distribution, while plain linear or logistic
regressions require normally distributed data.

2.2.0.3 Data in GWAS

Minimal data required to perform GWAS analysis is a vector of values used as
phenotype data and genotype matrix with dimensions of sample size by variant number.
While phenotype data can be stored in simple CSV or TSV file formats, genotype data can
be extremely large and require more efficient data storage formats. However, raw variant
genotype data is usually stored in variant call format (VCF) files which are simple text-
based file formats that can be easily examined by humans. However, tools like Plink do not
use VCF files directly in GWAS and instead first transform VCF files to text pedigree and
genotype table (PED) format or binary biallelic genotype table (BED) file. In the actual
analysis, it is common to use a binary BED file instead of its text-based PED version.
Moreover, along with BED files Plink also requires at least two companion files: sample
information file (FAM) and extended MAP file (BIM). These two file types, respectively,
contain text-based sample data with pedigree data and variant metadata like position,
chromosome, minor and major alleles, etc. In addition to phenotype and genotype data,
covariate data can also be required for GWAS. The covariate data is stored in the basically
the same way as phenotype data but used in a regression model as an independent variable
similar to the sample genotypes.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter, the design and technical implementation of a novel phylogenetic
microbiome meta-analysis package described in detail.

3.1 Aim and Motivation

Although issues of microbiome meta-analysis were described in section 1.8 let’s
overview our motivation and aim of developing a novel analysis framework. During our
study on this thesis, we have noticed many shortcomings that a researcher may encounter
while conducting a microbiome meta-analysis study. The primary shortcoming is the
absence of a single framework where the researcher could perform data analysis and
answer questions rapidly. Instead, researchers are required to use multiple software,
which demands from user knowledge of different working environments, programming
languages, and much more. Moreover, various taxonomic reference databases must be
parsed by using either publicly available scripts, which mostly are outdated and do not
work, or researcher must write own parsing code to make use of databases, which is time-
consuming and usually intimidating for someonewith little or no programming experience.
Also, most of the microbiome data analysis packages are only available in R programming
language (R), which is a programming language strictly developed by statisticians and for
statistical analysis. Therefore, in many ways, R lacks the typical requirements of a generic
programming language such as Python. Important advantage of Python over R is the
gentle learning curve. To conclude, in order to address the described shortcomings and to
contribute to microbiome research community we present Next Generation Phylogenetic
Microbiome Analysis Framework (PhyloMAF).

In short, PhyloMAF is a novel comprehensive microbiome data analysis tool
based on Python programming language. With memory efficient and extensible design,
PhyloMAF has a wide range of applications including but not limited to: post OTU
picking microbiome data analysis, microbiome meta-analysis, taxonomy-based reference
phylogenetic tree pruning, and reconstruction, cross-database data validation, taxonomy-
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based primer design, heterogeneous data retrieval from multiple databases including local
taxonomic reference databases such as Greengenes, SILVA, GTDB and remote mega-
databases like NCBI or Ensembl.

3.2 Design Strategy

PhyloMAF is designed to be flexible and extensible. Because there is no solid
methodology that can be used in microbiome studies but rather relatively standard ap-
proaches of data processing and analysis. On the other hand, a meta-analysis of mi-
crobiome studies essentially has no standards in literature. Therefore, making this meta-
analysis package highly flexible is very important. Similarly, as it was previously described
microbiome field is constantly transforming with the introduction of novel methods to the
research community. Therefore, PhyloMAF is also designed to be extensible so that new
methods or tools can be rapidly integrated into the framework. It is probably the most
important reason for choosing Python as the main programming language to implement
our framework. Python is a very powerful programming language that supports object-
oriented programming (OOP) including metaclasses. Appropriate usage of these concepts
makes PhyloMAF very flexible and extensible.

Figure 3.1: Relationship among metaclasses, classes and objects

OOP is a programming model based on objects. Object is an encapsulated abstract
data type with internal attributes(variable) and methods(functions). In OOP, objects are
instances of classes. In other words, an object is created from a class, which describes
its internal structure and functionality. Classes simply dictate how an object should work
and without an instance in form of an object has no practical use. Any class can be
instantiated an unlimited number of times and each instance will produce an independent
object. Similar to how class instantiates the object, a metaclass instantiates the class. In
other words, as shown in figure 3.1, metaclasses are what define classes, and instances of
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them are classes. In general, a metaclass is a part of a family of programming techniques
known asmetaprogramming. Metaprogramming refers to the ways of providing a program
with knowledge of its code and functionality to manipulate itself. However, in Python
metaclasses do not modify the code in any way instead it simply refers to ways of defining
the rules of how classes should be structured. In other words, it is a way to dictate to
a developer how to develop. Put differently, metaclasses provide an abstract interface
through which independent modules of PhyloMAF can interact with each other in a
standardized way.

During the development, PhyloMAFwas optimized extensively andmanymodules
were rewrittenmultiple times until it achieved its current state. Internally, some PhyloMAF
modules use external Python packages, which were selected mainly based on the strength
and reliability of the community that backs up the packages. Similar to most data analysis
software based on Python, PhyloMAF heavily relies on packages such as Numpy and
Pandas. Such fundamental data analysis packages are extremely fast because internally
most of them rely on a C-based back-end. In the following sections, each module is
described in detail.

3.3 Overview of PhyloMAF

First and foremost PhyloMAF is not a platform but a framework. A framework
is simply a set of functionality that limits the degree of freedom practiced by users in
a flexible and concordant way. PhyloMAF is written in Python and distributed as a
package of modules that make up the whole framework. Essentially PhyloMAF can be
segregated into twelve modules: “biome”, “phylo”, “classifier”, “externals”, “analysis”,
”report”, “plot”, “database”, “remote”, “pipe”, “sequence”, “alignment”. Each module
has a different responsibility but can interact with each other in coherent ways. Modules
can be grouped into four logical categories with some level of overlap as shown in figure
3.2.

Modules responsible for data handling are “database”, “sequence”,“biome”, “phylo”
and “externals”. These modules usually can import and transform some data into more ef-
ficient data types, which can later be utilized via other modules. Modules like “database”,
“pipe” and “remote” are responsible for data mining tasks like batch data fetching and
pipeline design. Modules, “externals”, “biome”, “phylo”, “classifier”, “analysis” and
“alignment” can be used for data transformation and statistical analysis. Lastly, modules
like “plot” and “report” are responsible for the visualization and reporting of the results.
Modules “classifier”, “analysis” and “report” are not essential for this thesis and currently
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are under development. Therefore, these modules will not be described in the following
sections.

Figure 3.2: PhyloMAF structure in a nutshell

Due to many various taxonomic reference databases with different internal tax-
onomy representation, PhyloMAF was designed to understand only 7 levels: domain,
kingdom, phylum, class, order, family, and genus. Although specie level resolution is
highly desired in microbiome studies, OTU based methods can significantly vary between
different taxonomic reference classifications. Therefore, for now, PhyloMAFwas designed
in a way to either automatically merges species into respective genus levels or provide user
options to do so.

Modules for data handling are completely or partially responsible for reading, pars-
ing, transforming, handling, and storing different kinds of data. In this category, modules
such as “biome”, “database” and “classifier” have properties like size and dimensions.
Because OTU-tables have two dimensions, features and samples, and are the main type of
data used in post-processing analysis, aforesaid modules have at least one such dimension.
Features can typify any kind of concepts like OTUs, ASVs or ESVs. Therefore, features
are directly related to representative taxonomy, sequence, or tips in the phylogenetic tree.
In contrast to features, the sample axis only present in the “biome” module.
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3.4 Module “biome”

This is the main module that works with raw microbiome data and is ideally the
most used module by the researcher. Internally “biome” module can be divided into
three interdependent sub-modules: “essentials”, “assembly”, and “survey”. “essentials”
contain essential classes that are used to import rawmicrobiome data that will be analyzed.
Although each essential class can be exploited separately, “assembly” classes can combine
each essential into one single body of microbiome data that ideally intend to represent an
independent microbiome study. The “survey” refers to classes responsible to merge such
assemblies into a single study based on user-defined logic. Essentially survey is another
merged assembly of many independent assemblies.

Figure 3.3: Overall structure of module “biome”. Dashed lines represent directories and
solid lines represent classes.
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3.4.1 Essentials

Sub-module “essential” is a collection of classes responsible for reading and pars-
ing OTU-tables provided as file formats like CSV, TSV, or biological observation matrix
(BIOM). Because OTU-tables sometimes contain taxonomy data along with OTU counts,
the modules provide classes to parse both separately. Similarly, module functionality
to parse OTU representative sequence data in FASTA/Q file format, a phylogenetic tree
associated with OTUs in Newick file format, and sample metadata in CSV or TSV file
formats.

To provide the maximum level of flexibility, sub-module “essentials” provide
classes for all essential kinds of microbiome data. As demonstrated in figure 3.3 there
are three types of classes based on the axes they handle. Classes placed in directory
“feature” work with data that can be accessed via feature or OTU axis. For instance,
each feature in RepSequence class represents a representative sequence associated with
the feature while in the RepPhylogeny features represent tips of the phylogenetic tree. The
class SampleMetadata consist of single sample axis that represent the metadata variables
(e.g. Age, Sex, Disease Status, etc.). The “composite” refers to the set of classes that have
both axes such as OTU-table or FrequencyTable.

Each class has its own set of methods and attributes associated with the class or the
data it handles. For instance, RepTaxonomy has methods like merge_duplicated_features
ormerge_features_by_rank, which are self-explaining and used to merge taxonomy. How-
ever, usually there is no point in merging taxonomy solely within an instance of RepTax-
onomy class. A more reasonable action would be to merge based on taxonomy and reflect
the action of merging to FrequencyTable where OTU counts are stored. For this purpose,
BiomeAssembly comes into action.

3.4.1.1 Usage Example

To demonstrate usage of the essentials module let’s consider following OTU-table
3.1 as raw data input.
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Table 3.1: An OTU-table example. Consider example OTU-table CSV file
“biome/otu_table_demo.csv”.

OTU s105 s109 s908 s921 s997 s913 Taxonomy

otu1 10 0 0 0 0 0 k__Bacteria; p__Actinobacteria; ...
otu2 1 10 0 0 0 0 k__Bacteria; p__Actinobacteria; ...
otu3 0 2 10 0 0 0 k__Bacteria; p__Bacteroidetes; ...
otu4 0 0 3 10 0 0 k__Bacteria; p__Proteobacteria; ...
otu5 0 0 0 4 10 0 k__Bacteria; p__Proteobacteria; ...

To use the OTU-table in the framework it is necessary to first load the CSV file
using the following code.

# Import classes RepTaxonomy and FrequencyTable into current namespace.

from pmaf.biome.essentials import RepTaxonomy ,FrequencyTable

# Path to OTU-table CSV file.

demo_otu_table_fp = "data/biome/otu_table_demo.csv"

# Parse taxonomy from CSV file using RepTaxonomy class.

otu_tax = \

RepTaxonomy(demo_otu_table_fp , index_col=0,taxonomy_columns=-1)

print(otu_tax) # Output: <RepTaxonomy:[N/A], Features:[5]>

# Parse OTU counts from CSV file using FrequencyTable class.

otu_freq = \

FrequencyTable(demo_otu_table_fp , index_col=0, skipcols=-1)

print(otu_freq) # Output: <FrequencyTable:[N/A], Features:[5], Samples:[6]>

Since demo OTU-table 3.1 contains both OTU read counts and associated taxon-
omy as the last column, two types of data must be parsed separately. In the code above,
parameter index_col is equal to 0 in both cases because the first column of our demo
OTU-table represents identifiers of the OTUs. Parameter taxonomy_columns of the class
RepTaxonomy is equal to -1 because the last column of the OTU-table contains taxonomy
data and the rest must be ignored. Internally, RepTaxonomy will attempt to automatically
detect the taxonomy notation of the OTU-table, which is in our case is a common Green-
genes style notation with semicolons separating taxa and double underscores separating
taxonomic rank and name of the taxon at that level. The parameter skipcols of the class
FrequencyTable is equal to -1 because the last column does not contain sample counts
and must be ignored. In the summary, the code above will produce two objects of type
“essentials”, one is the instance of RepTaxonomy with name otu_tax and the other is the
instance of FrequencyTable with name otu_freq.
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3.4.2 Assembly

The main objective of the class BiomeAssembly is to act like a bridge that inter-
connects classes of type “essentials”. BiomeAssembly, as shown in figure 3.4, acts like
a controller that ratifies and reflects the action of one “essentials” class to another. For
instance, if there are two instances of “essentials” like RepTaxonomy and FrequencyTable
within BiomeAssembly, then any taxonomy based merging action performed via RepTax-
onomywill be reflected in theFrequencyTablewith feature counts based on the aggregation
rules specified by the user such as summation or taking the mean across features axis.
Each instance of BiomeAssembly may contain multiple instances of different “essentials”
types and it can not contain “essentials” of the same type.

Figure 3.4: BiomeAssembly interconnecting instances of type “essentials”

3.4.2.1 Usage Example

Once essentials are loaded they can be either used separately or assembled using
BiomeAssembly. Consider the following piece of code example, which is the sequel for
previous code.

from pmaf.biome.assembly import BiomeAssembly

# Merge essentials into single assembly.

otu_table_asm = BiomeAssembly(otu_tax,otu_freq)

print(otu_table_asm)

# Output: <BiomeAssembly:[N/A], Features:[5], Samples:[6], Essentials:[2]>

Essentially, a small piece of code above has produced otu_table_asm object that
represents the original OTU-table in a way that framework can understand it. More-
over, instances of class BiomeAssembly dynamically add methods with names of classes
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of type “essentials” that internally constitute the assemblage. For instance, both “es-
sentials” can now be accessed via shortcuts such as otu_table_asm.RepTaxonomy or
otu_table_asm.FrequencyTable. If any instance of type “essentials” had mismatching
axes with each other, then the assembly would have failed and produced an error. How-
ever, because “essentials” were assembled successfully, it is now possible to perform
various operations like filtering, merging, and so forth. For instance, let’s merge all OTUs
with the same taxonomy at the phylum level using the method of RepTaxonomy called
merge_features_by_rank.

otu_table_asm.RepTaxonomy.merge_features_by_rank(’p’)

print(otu_table_asm)

# Output: <BiomeAssembly:[N/A], Features:[3], Samples:[6], Essentials:[2]>

As is evident from the output of otu_table_asm number of features is now reduced
from 5 to 3. If we quickly observe original OTU-table 3.1 we can see that there are only
present 3 unique taxa at the phylum level. The main useful property of BiomeAssembly is
that applying any change to one of the “essentials” will reflect its action on the same axes
as other “essentials”. Finally, let’s first write the merged OTU-table to the CSV file and
then see what it looks like.

# Write OTU-table to file.

otu_table_asm.write_otu_table(’data/biome/otu_table_demo_merged.csv’)

Table 3.2: Merged OTU-table. Representation of merged OTU-table file
“biome/otu_table_demo_merged.csv”.

s105 s109 s908 s913 s921 s997 Taxonomy

0 11 10 0 0 0 0 k__Bacteria; p__Actinobacteria
1 0 2 10 0 0 0 k__Bacteria; p__Bacteroidetes
2 0 0 3 0 14 10 k__Bacteria; p__Proteobacteria

As shown in the OTU-table above (3.2) total, OTU counts are summed across the
feature axis (rows) and original identifiers are lost and replaced with new ones.
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3.4.3 Survey

The “survey” refers to any kind of meta-analysis study that requires merging
multiple studies into one single assembly. This is exactly what a “survey” type class
does as shown in figure 3.5 It simply, merges multiple instances of classes with type
“assembly” into one instance of type “survey”, which by itself is very similar to structure
of “assembly”. The primary objective of BiomeSurvey is to execute the merging logic
specified by the user during its construction. After that, it is essentially an analogue of
BiomeAssembly and can be directly converted to an actual BiomeAssembly instance.

Figure 3.5: Merging operation using BiomeSurvey. Each input of type BiomeAssembly
represents different study and output is a merged survey.

3.4.3.1 Usage Example

To demonstrate usage of BiomeSurvey, at least two assemblies are required. There-
fore, let’s consider another dummy OTU-table 3.3.
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Table 3.3: A dummy OTU-table. Second dummy OTU-table file
“biome/otu_table_demo2.csv”.

OTU s105 s109 s908 s921 s555 s913 Taxonomy

otu1 10 0 1 0 1 0 k__Bacteria; p__Actinobacteria
otu2 0 10 0 0 1 0 k__Bacteria; p__Bacteroidetes
otu3 0 0 10 0 10 0 k__Bacteria; p__Firmicutes

Similar to the previous OTU-table loading process let’s load our second data.

from pmaf.biome.survey import BiomeSurvey

# Path to second OTU-table CSV file.

demo2_otu_table_fp = ’data/biome/otu_table_demo2.csv’

otu_tax2 = \

RepTaxonomy(demo2_otu_table_fp , index_col=0,taxonomy_columns=-1)

print(otu_tax2) # Output: <RepTaxonomy:[N/A], Features:[3]>

otu_freq2 = \

FrequencyTable(demo2_otu_table_fp , index_col=0, skipcols=-1)

print(otu_freq2) # Output: <FrequencyTable:[N/A], Features:[3], Samples:[6]>

otu_table_asm2 = BiomeAssembly(otu_tax2 ,otu_freq2)

print(otu_table_asm2)

# Output: <BiomeAssembly:[N/A], Features:[3], Samples:[6], Essentials:[2]>

Now let’s merge two different OTU-tables into a single survey and write the results
to a CSV file.

assemblies = otu_table_asm ,otu_table_asm2

survey_study = \

BiomeSurvey(assemblies , aggfunc=’mean’, groupby=(’taxonomy’,’label’))

# Output: <BiomeSurvey:[N/A], Features:[4], Samples:[7]>

# Convert BiomeSurvey to BiomeAssembly

survey_study_asm = survey_study.to_assembly()

# Output: <BiomeAssembly:[N/A], Features:[4], Samples:[7], Essentials:[2]>

# Write OTU-table to file.

survey_study_asm.write_otu_table(’data/biome/otu_table_survey.csv’)

In the code above, aggfunc is the method of aggregation across both axes. Al-
though, currently it is set to “mean” it can be customized and applied differently for each
axis. Similarly, groupby is the parameter that dictates how to group data across different
axes. Here, groupby=(’taxonomy’,’label’) is a Python tuple with two elements for each
axis. First element represent grouping across feature axis by taxonomy and the second
grouping across sample axis by sample names. Finally, the survey produces the following
aggregated OTU-table 3.4.
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Table 3.4: Combined OTU-tables into single survey. Representation of survey
OTU-table file “biome/otu_table_survey.csv”.

s105 s109 s555 s908 s913 s921 s997 Taxonomy

0 10.5 5.0 1.0 0.5 0.0 0.0 0.0 k__Bacteria; p__Actinobacteria
1 0.0 6.0 1.0 5.0 0.0 0.0 0.0 k__Bacteria; p__Bacteroidetes
2 0.0 0.0 3.0 0.0 14.0 10.0 k__Bacteria; p__Proteobacteria
3 0.0 0.0 10.0 10.0 0.0 0.0 k__Bacteria; p__Firmicutes

As it can be seen from the OTU-table 3.4 some values are empty because two
OTU-tables have missing samples like “s997” and “s555”, and differences in taxonomy.
Such empty values can be either corrected later or considered as zeros. All other samples
and taxa which had overlaps have been merged according to the logic provided by the code
above. BiomeAssembly is a powerful class with a flexible design that allows it to integrate
different aggregation logics as separate functions. Therefore, even if the current state has
primitive aggregation methods like “mean” and “sum”, different methods can be rapidly
integrated in the future.

3.5 Module “database”

Module “database” is one of the most fundamental parts of PhyloMAF. It is
mainly responsible for transforming taxonomic classification database such as Greengenes,
SILVA,GTDB,RDP, and others, intomuchmore efficient data storage format. This storage
format then enables PhyloMAF to retrieve large amounts of data in a very short time
and without overloading user’s random-access memory (RAM). Essentially, the module
“database” is responsible for the process commonly known as extract, transform and load
(ETL) with final data storage product in hierarchical data format version 5 (HDF5) file
format.
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Figure 3.6: Database transformation in ETL fashion. Flow of data in “database” module.

3.5.1 Overview

Module “database” is responsible for multiple essential tasks such as the recon-
struction of original reference taxonomy, transforming, analyzing, and reorganizing data
like representative sequences or phylogenetic trees into the internal storage structure.
Module “database” then produce the compressed HDF580 storage file that is used in fur-
ther analysis. As it was noted in the previous section, PhyloMAF can work with seven
taxonomic ranks starting from domain level and ending with genera. However, most taxo-
nomic classification databases do not fit into this representation except for SILVA, instead,
most have species level as terminal taxonomic rank. Therefore, it is vital to standard-
ize reference taxonomies to incorporate them into PhyloMAF. For instance, if reference
taxonomy (i.e. Greengenes) has species as terminal rank in its original taxonomy, then
module “database” will transform it and represent this taxonomy in such a way that its
terminal rank will become genera. To clarify, this transformation does not change the
taxonomy in any way but rather it agglomerates species into the respective genera accord-
ing to the taxonomy of the database. Although it would be interesting to perform similar
transformations based on internal phylogeny instead of using taxonomy, many databases
lack the phylogenetic tree in their repositories. Moreover, internal taxonomy ideally repre-
sents the phylogeny of the reference taxonomic classification so the primary anchor of the
meta-analysis approach used in PhyloMAF is the taxonomy not directly phylogeny. Using
phylogeny as a transformation method is reserved for future research.
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Figure 3.7: Overall structure of module “database”. Directory “_parsers” and “_shared”
contain no classes and only independent functions required by the module itself.

The internal code structure of the module “database” is shown in figure 3.7. The
code in the module can be split into two parts, “builders” and “utilizers”. The “builders”
is the part of code with the burden of transforming the reference database and building
the HDF5 storage file, while “utilizers” is the part responsible for using the storage file
and providing access to the stored data. Core classes in the directory “_core’ provide
primary functionality that gives access to the data after the storage was built. Directory
“_shared” contains some code that is used by both “builders” and core classes but is not
portrayed in figure 3.7. Similarly,DatabaseStorageManager is a vital class shared by both
“utilizers” and “builders”, which manages the storage file by providing a low-level abstract
data access interface for every other class. The remaining code and partial classes in the
“manifest” are responsible for solely the transformation and storage building process. A
special case is the classes in the “manifest” directory, which are the main classes that can
be directly used by the user. In other words, these classes are actual manifestations of
the module functionality required by the specific type of classification database. Manifest
classes at the same time inherit mixin classes in “_core’ to provide necessary functionality
from “utilizers” and contain a set of “builders” instructions or in other words a recipe
to build the storage file required for the target reference database. For instance, raw
reference database Greengenes provide taxonomy, phylogeny, representative sequences,
and accessions therefore respective mixin classes are inherited by DatabaseGreengenes.
The actual process of raw database transformation is performed by “builders” functions
within the manifest class, to produce proper storage file for the Greengenes database. In
contrast, fungal ITS database UNITE does not provide a phylogenetic tree so Database-
UNITE does not inherit DatabasePhylogenyMixin class and lacks associated “builders”
instructions. Manifest classes provide access to its “utilizers” functionality via common
instance methods while the process of transformation and building that uses the “builders”

36



are only provided via a class method named build_database_storage. As a rule of thumb,
method build_database_storage is only used once, when the database is constructed. This
approach makes it easy to integrate new databases in the future so that the user is only
required to provide a proper recipe within a custom manifest class and the rest will simply
fit in.

3.5.2 Reconstruction of Taxonomy

The first step in database transformation is a reconstruction of taxonomy by reorga-
nizing taxa into seven ranks used in PhyloMAF by producing a transformed representation
of the original taxonomy as shown in figure 3.8. Primary products of reconstruction
are the transformed taxonomy with novel identifiers for each taxon and the table that
maps original identifiers to new ones. Since the data from the original database is also
kept within the final storage, this map provides a link between old and new identifiers.
Within PhyloMAF identifiers that belong to original taxonomy are called reference or
“refs” and identifiers associated with transformed taxonomy are called representative or
“reps”. Within the internal naming convention, “refs” are known as “rid”(or “rids”) and
“reps” are known as “tid”(“tids”). It is important to note that, though “rids” are associated
with original identifiers of reference databases they are not necessarily identical. In fact
during, transformation original identifiers are reindexed or renamed into integers because
some reference databases have very long character-based identifiers, which are inefficient
in terms of memory load. However, these identifiers are never lost and preserved within
the storage files as accession numbers.

Figure 3.8: Simplified portrayal of taxonomic reconstruction

During agglomeration of original taxa into new one’s algorithm ensures that no
taxon is repeated; hence, producing a non-redundant version of the original database. This
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is crucial for the functionality of the other module that make-up PhyloMAF. It is important
to note that most of the taxonomic classification databases are redundant and many taxa
have multiple duplicates with very similar but slightly different representative sequences
within the reference database. Similarly, duplicated taxa can be represented multiple times
in the phylogenetic tree provided by the reference database. This is compensated not by
modifying the tree during ETL but rather by a different approach, which will be explained
in the upcoming sections.

3.5.3 Storage Technicalities

Transformed database produces storage file in HDF5 format, which is essentially
an isolated file system that can be efficiently scaled and used in the compressed state.80 The
HDF5 can be very complicated in usage and multiple Python packages can use this storage
format in its full or almost-full capacity. However, for PhyloMAF scaling of the storage file
is not necessary and once the database is transformed it can be considered immutable or
fixed. To make things simpler, most of the delicate configuration complexity of an HDF5
storage format can be managed by a Python package known as PyTables.81 Compared to
pure HDF5, PyTables does not support n-dimensional arrays but instead provides out-of-
the-box label based indexing functionality. Furthermore, Pandas, which is a core package
for the framework, provides a solid and relatively mature interface to HDF5 through
PyTables package. In summary, the previously mentioned classDatabaseStorageManager
is the main abstraction layer where the actual data input/output (I/O) takes place and the
rest of this module is built upon it.

3.5.4 Structure of Storage File

Authors of the taxonomic classification databases provide a similar type of data
in their online repositories though sometimes data can be represented in different ways.
Similarly, not every reference database provides every piece of data that might be required
in the microbiome study. To make PhyloMAF flexible and compatible with most of the
reference databases that provide taxonomy, aforesaid “assemblers” process the original
data in a certain predefined way so that DatabaseStorageManager can be more adaptive.
The manager by designed provide maximum flexibility for the core base and mixin classes,
which are used by “manifest” classes. In the same way, manager is designed to be most
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restricting for the “builders”. As a consequence, to support at least most of the taxonomic
classification databases, the storage structure shown in figure 3.9 was thought-out in a way
that frequent or ideally any modifications would not be required.

Figure 3.9: Internal structure of HDF5 storage file

As shown in figure 3.9 storage file is divided into six sections or roots. Each
section is self-describing and only contains the related data. Taxonomy data is stored in
“root-taxonomy” and contains two tables “taxonomy-prior” where the original unchanged
reference taxonomy is stored and “taxonomy-sheet”, which is the transformed taxonomy.
Similarly, sequence data are stored in “root-sequence” and contain all original represen-
tative sequences and if present alignments and accession numbers. Phylogeny data are
stored in “root-tree”, which consists of three flat (not table) cells. The original unchanged
phylogenetic tree in text-based Newick format is stored in “tree-prior” while the parsed
tree is stored in “tree-parsed”. The parsed tree is required because some reference database
provides tree files that contain invalid characters and does not follow the required format
specification by Newick format. Such files cannot be correctly read by 3rd party Python
packages that work with phylogenetic trees and hence, it is the responsibility of manifest
classes and “assemblers” to parse the tree and rebuild its content into a valid file format.
Moreover, because original “rids” are not used for reasons described in section 3.5.2, it
is the responsibility of “assemblers” to reindex tips of the phylogenetic tree and produce
the final parsed version. Last but not least, “tree-object” is the binary cell that contains a
pickled or serialized image of the Python object with memory loaded tree. In other words,
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it is a copy of an instance of the 3rd party Python package class responsible for working
with phylogenetic trees. This approach of storing the tree speeds up the framework by
providing rapid loading of the pickled tree object into memory instead of re-reading “tree-
parsed” whenever a phylogeny operation is requested by the user. The “root-stat” contains
data that is generated by “builders”. It consists of two tables “stat-reps” and “stat-taxs”,
which contain statistical analysis results that describe “refs” and “reps”, respectively. For
example, “stat-reps” describes representative sequences by pre-counted number of to-
tal non-ambiguous and ambiguous bases, number of continuous degenerate bases, and so
forth. While “stat-taxs” provide information such aswhich taxa are singletons or howmany
“refs” are directly associated with the given “rep” and have a representative sequence. Two
special sections are “root-map” and “root-metadata” so both will be described below.

The, “root-metadata” is simply the vital metadata of the storage file. It includes
four sections serving a different purpose within the storage. All the recap of the database
is stored in “metadata-db-summary”, which contains details such as how many “refs”
and “reps” are present in the storage, which of the main seven taxonomic ranks are
available for usage, length of the shortest and longest representative sequence and so forth.
Similarly, “metadata-db-stamp” contains information about the author who created the
storage file, date of creation, and similar. Two special sections are “metadata-db-history”
and “metadata-db-info”. Former contains the record of the taxonomic reconstruction
process in detail. Later or “metadata-db-info” is a basic Pandas series with boolean values
for every section of in every root in the figure 3.9. Each section name is a key and its
boolean state describes if it was incorporated into the storage file during creation; hence,
provides the state of available data in the DatabaseStorageManager.

The unique section is “root-map” which comprises four different tables that are
frequently accessed by the “utilizers”. Two tables “map-interx-taxon” and “map-interx-
repseq” are used by solely DatabaseStorageManager and are incorporated into storage
at the final stage of the building process. These tables contain not many useful data
and their purpose is only to assist PyTables during indexing operations. Both tables are
made of rows, which are either “rids” or “tids” and columns that represent any sections
within storage that use “rids” or “tids” as indices. The name of the section is called
“interx”, which stands for intermediate-index. The reason for using intermediate tables
is that PyTables, although have indexing support with internal hash maps, was found to
lag without the usage of these tables. Next and one of the most important sections in the
storage database is “map-rep2tid”, which is the only table that maps “tids” to “rids”. This
table is constructed during taxonomic reconstruction and is the most frequently accessed
piece of data by “utilizers”; hence, DatabaseStorageManager caches or loads this table
into memory by default. The fragment of this table is shown in table 3.5. The last
table or “map-tree” is a key-value Pandas series and represents a complete map of the
parsed phylogenetic tree. After the aforesaid “tree-parsed” is formed, ideally it is passed
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by manifest classes to make_tree_map function that can be found in “assemblers”, to
make a flat map of the tree. This function traverses the tree and produces a parent-child
relation map, which is called “map-tree”. This map is later used by “utilizers” to infer
phylogenetic tree topology, which is used in other modules across PhyloMAF. Although
it does not provide branch lengths, inferring is preferred over the common tree pruning
process because it is much faster. The actual inferring algorithm is not described in this
thesis as it goes beyond its scope.

Table 3.5: Fragment of real “map-rep2tid” table. First column represent “rids”. Last
column represent associated “tid”. Columns in the middle represent taxonomic ranks
with “tids” associated with “rid”.

d k p c o f g tid

1 0 10 310 2296 593 52 1 1
425 0 10 310 2296 593 52 1 1
556 0 10 310 2296 593 52 1 1
891 0 10 310 2296 593 52 1 1
1494 0 10 310 2296 593 52 1 1
1721 0 10 310 2296 593 52 1 1
1954 0 10 310 2296 593 52 1 1

3.5.5 The “builders”

As was described above, the aim of the “builders” is to transform and build the
database storage HDF5 file from plain text-based files of a reference taxonomic database.
The term “builders” is only used in the scope of this article and merely denotes a set of
independent Python functions that are used in the process of transformation and building.
The process of the building refers to a set of “builders” instructions or recipes in the
manifest class expressed via build_database_storage class method that constructs the
internal structure of the database and commits transformed data into an HDF5 file via
compositional class DatabaseStorageManager

The process of database building engraved into manifest classes in form of recipes
and depends on the reference database. Manifest classes can contain custom functions
required to produce the final valid internal database structure. Although, such custom func-
tions can also be considered as “builders”, the primary function types used in the building
process can be divided into three categories: “parsers”, “assemblers”, and “summarizers”.
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3.5.5.1 The “parsers” - Reading and Parsing

The “parsers” are functions that read or parse original data provided by the reference
database. In the case of parsing incoming taxonomy data, there is an informal convention
to represent taxonomy associated with a single feature or OTU/ASV/ESV. For instance,
the taxonomy representation used within the Greengenes database is a default type of
convention used by the QIIME package. Therefore, it would not be incorrect to name
this type of convention a Greengenes/QIIME convention. Different taxonomy naming
conventions are shown in table 3.6. Each convention is an essentially continuous string
of taxonomic ranks with an associated taxon name. This description is true for most
except the SILVA convention where taxa for each rank are provided in a separate line.
However, because the Greengenes/QIIME convention has become very popular, even
SILVA database by default provides the separate distribution of its database in QIIME-
friendly format.

Table 3.6: Taxonomy naming conventions

Convention Type Representation

Greengenes/QIIME [#ID] k__Bacteria; p__Firmicutes; c__Bacilli; ...
SINTAX [#ID]; tax=k:Bacteria,p:Firmicutes,c:Bacilli, ...
RDP [#ID] Lineage=Root;rootrank;Bacteria;domain;Firmicutes;phylum;Bacilli;class; ...
SILVA Bacteria;Firmicutes;Bacilli; [#ID] class

However, “parsers” does not only parse taxonomy and can also parse sequence
data, external accession numbers, phylogenetic trees in different file formats, etc. The
main objective in keeping parsers as separate functions is to provide an additional level
of flexibility for the database construction process. This way a custom parser can be
implemented if necessary. An example of this case is parsing phylogenetic tree in Newick
format from the Greengenes database. Reference tree file does not contain quotations
around certain node names in the phylogenetic tree; hence, does not comply with Newick
file format grammar and cannot be understood by most Python packages that work with
different kinds of trees and dendrograms. Custom “parsers” can be implemented to fix this
issue or original parsers can be extended via either prior or posterior data transformation.
Finally, the output provided by “parsers” is passed to “assemblers”, which perform actual
data transformations required to properly store data.
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3.5.5.2 The “assemblers” - Data Transformations

After the data is parsed or read it must be transformed using either existing or
custom “assemblers” to produce final data structures that will be written into a storage
file. Similar to custom “parsers”, but more often “assemblers” are required to be extended
or customized depending on a taxonomic classification database. Data can be either pre-
transformed before passing to “assemblers” or post-transformed to compensate for any data
issues that might occur during the transformation process due to differences in reference
databases. For instance, the GTDB database provides data of two prokaryotic domains
Archaea and Bacteria in separate files. Therefore, in case if the whole database must be
implemented then it is necessary to join two datasets into a single either before or after
transformation since in both cases it will be necessary to implement custom adjustments.

3.5.5.3 The “summarizers” - Logs and Recap

Finally, right before data is written into storage via DatabaseStorageManager all
the data transformations are logged and final datasets are analyzed to produce an overall
summary. The “overall summary” is a final recap of all stored data for easy and rapid
access by “utilizers”. Its final storage destination is “root-metadata” and different from data
statistics, which is a part of “assemblers” with a storage destination of “root-stats”. Overall
summary, comprise the total number of taxa, number of unique taxa and duplicates, shortest
and longest representative sequence, list of available taxonomic ranks in the taxonomy,
and so forth. The “summarizers” generate recaps along with “assemblers” as the database
is constructed but committed at the last step.

3.6 Module “pipe”

The module “pipe” is an extensive and well-thought-out module that provides
the main functionality required to easily construct “pipes” to allow data mining. In
PhyloMAF the “pipe” module is the same as a data pipeline. Its main objective is to use
one type of data to mine for other types. The type of data can be anything like taxonomy,
sequence, phylogeny, accession numbers, and identifiers. The last one is the special kind
of intermediate data type. Since every database, whether it is a local database such as
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Greengenes or SILVA, or a remote database like NCBI, there are always internal identifiers
used to identify any piece of data. So basically “identifier” type of data represents an
identifier used by some database. Following diagram 3.10 demonstrate a simple example
of how the “pipe” module can mine for data.

Figure 3.10: Basic flow of data in “pipe” module

For simplicity, the intermediate “identifier” data types are not shown. However,
during the real data mining process identifiers for each data type is first retrieved and
only then used to get subsequent data type. The “pipe” module has many classes each
has a different objective and work independently. However, internally each some classes
“know” how to work with other classes via the meta-class concept that was previously
described. The figure 3.11 demonstrates the overall structure of the module and internal
classes. In this figure, the data types used by the “pipe” module are called “dockers”.
The DockerTaxonomyMedium is a class responsible for storing taxonomy type of data.
The “mediators” are classes responsible to work with databases, both remote or local.
Essentially, the mediator is the primary kind of classes that provide access to the database.
In contrast, “miners” comprise a single class type Miner that utilize the “mediators”. In
other words, “mediators”, mediate between the database and the Miner class.

All aforesaid classes are wrapped into a directory called “agents” since they are
indeed serve as agents of the “pipe” module. The “specs” are predefined classes that
constitute the pipeline functionality. The “specs” are specifications of pipelines that
describe the input data and the output data. The “factors” are simple classes that constrain
the pipeline to type of the database. For example, usage of Factor16S makes sure that
data flowing in the pipelines are only based on 16S rRNA. Finally, the “marker” classes
provide complementary functionality that can be used to track or log the intermediate data
types.
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Figure 3.11: Overall structure of module “pipe”. Dashed lines represent directories and
solid lines represent classes.

3.6.1 Module “dockers”

The “dockers” are building blocks of the “pipe” module. They are used and
produced throughout the pipelines and are understood by all other classes in the “pipe”
module. The instances of the “docker” class can store one or more data of the concerned
type. In other words, “docker” like DockerTaxonomyMedium can contain both single taxa
associated with a single identifier or multiple taxa associated with multiple identifiers.
However, each “docker” class can also contain multiple “docker” classes of the same type.
When the “docker” class does not contain elements of the same type and instead only
contains the data it is associated with, then it is called a singleton of the “docker” type.
This functionality is useful because most of the databases are usually redundant. In other
words, a single taxon can be represented by multiple sequences or accession numbers with
different identifiers. Similarly, the single sequence can match multiple identifiers that are
associated with ideally closely related but different taxa.
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3.6.2 Module “mediators”

The “mediators” are the main type of classes that are responsible for communicat-
ing databases and retrieve data. The input and output data types of “mediators” are always
“docker” instances. During the initialization of “mediators” proper configuration must be
carried out. Both remote and local “mediators” have similar methods that can be used by
theMiner class. However, “mediators” do not necessarily have to be used viaMiner class
and can be used as-is. The “mediator” classes provide following several methods for data
retrieval from connected database. To retrieve accession by identifier and search for iden-
tifier by accession there are get_accession_by_identifier and get_identifier_by_accession
methods. Similarly, for sequences there are get_sequence_by_identifier method for re-
trieval and get_identifier_by_sequence method for search. Based on the same analogy,
for phylogeny there are get_phylogeny_by_identifier and get_phylogeny_by_identifier, and
lastly for taxonomy there are get_taxonomy_by_identifier and get_identifier_by_taxonomy
methods. Each of these methods require one singleton “docker” instance and a valid
“factor” instance.

Although it was stated that the “factor” is necessary to validate compatibility with
databases, in some cases they can be used by “mediators” to mine the correct type of data.
For example, Factor16Swill make sure that NCBIMediatormines only 16S data, since the
NCBI database contain heterogeneous data. However, in the case of using LocalMediator,
the Factor16S will check if the reference database that is being mediated is compatible
with the “factor” type.

Despite similar methods provided by two “mediator” types, local and remote,
there are clear differences in their internal organization. Firstly, the remote “mediators”
are unique to the classes provided by the “remote” module and cannot mediate unrec-
ognized databases. Therefore, to use the “remote” class that provides access to any
remote database, the corresponding remote “mediator” must be present. Currently, only
NCBIMediator is present. This rigid class compatibility organization is compulsory be-
cause every remote database has a very unique internal structure, internal data types,
and application programming interfaces (APIs). However, local mediators are different
and much more flexible in usage. Since PhyloMAF requires every local database to
be pre-processed before usage into an HDF5 file format, they can be used in a much
more simple way. The LocalMediator is not a class but a function that makes the class
on the fly. Thanks to Python’s special type function, it is possible to generate classes
during runtime. The LocalMediator function takes only a single mandatory parameter
database, which corresponds to any database instance that inherits the basic meta-type
of the “database” module DatabaseBackboneMetabase. Then the function checks which
kind of data the database contains, and builds a local “mediator” class using mixin classes
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like MediatorLocalAccessionMixin, MediatorLocalPhylogenyMixin, MediatorLocalTax-
onomyMixin and MediatorLocalSequenceMixin. For example, if the target database is
Greengenes, then all mixin classes will be used. However, if the target database is UNITE
then MediatorLocalPhylogenyMixin mixin class will be skipped.

3.6.3 Module “miners”

The module “miners” is essentially made of a single class Miner that requires
both a valid “mediator” instance and a compatible “factor” instance to be initialized. If
a “factor” is not compatible with the mediator then it will produce an error and will
not initialize. The Miner provide methods such as yield_accession_by_identifier or
yield_sequence_by_identifier to retrieve a docker by identifier. Similarly, it provides a
single method yield_identifier_by_docker to retrieve identifiers by any docker. Moreover,
compared to “mediators” the Miner allows mining for data using any “docker” instance
and not just singletons.

3.6.4 Module “specs”

The “specs” are not essential parts of the “pipe” module but they make the usage
much more comfortable. The “specs” stands for specifications and are self-explanatory
in the way that they specify the collection of actions. Instead of using “dockers” with
“miners” or even “mediators”, it is possible to work with “specs” in a much simpler
way. Specification classes essentially describe the pipe by enforcing its inlet and outlets.
Following figure 3.12 demonstrates the taxonomy to sequence pipeline specification using
both primitive and composite “specs”.

Figure 3.12: Taxonomy-to-sequence pipeline specification
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The primitive “specs” are self-explanatory, while composites are usually the com-
bination of the primitive “specs”. In cases when there is no predefined composite “spec”
then it is possible to use the ForgeSpec function to forge or compose a new specification
from primitives. However, when a more complicated specification is desired then the
function ForgeSpec might not be enough. For example, SpecTSBP and SpecTSPBP are
examples of more complex specifications. Former, SpecTSBP specification uses taxon-
omy to retrieve sequence alignments and then constructs a de-novo phylogenetic tree using
specified, tree builder like FastTree.71 However, the second specification SpecTSPBP first
uses taxonomy to retrieves the phylogenetic tree topology inferred from the reference tree
in a database along with sequence alignments. Then it optimizes branch lengths of the
tree using branch estimators like FastTree71 or ERaBLE.72

3.7 Wrapper Modules

Modules “sequence”, “phylo”, and “alignment” are essentially wrapper modules.
These modules use other Python packages to provide the required functionality. The
“sequence” module wraps “scikit-bio” package and provides three classes Nucleotide,
MultiSequence and MultiSequenceStream. Each of these classes is recognized by other
PhyloMAFmodules and provides the basic functionality required to work with sequences.
The Nucleotide class represents any single DNA or RNA sequence, can parse or write
FASTAfiles, andmore. TheMultiSequence andMultiSequenceStream are similarmodules
that are used to work with multiple sequences. These classes can store both unaligned
or aligned sequences. The former class essentially stores multiple Nucleotide classes to
represent multiple sequences of the same kind. Latter orMultiSequenceStream, is similar
to the former but can work with a larger number of sequences and do not store data in the
RAM and instead use PyTables81 with a simple HDF5 file structure to store sequences in
the hard drive.

The “phylo” module primarily wraps Python package ETE382 that works with
phylogenomic data. The main class that provides functionality to work with phylogenetic
trees is PhyloTree. However, the module also provides two other types of wrapper classes
called “branch estimators” and “tree builders”. The “branch estimators” are classes that
wrap external tools like FastTree271 or ERaBLE.72 These tools take as input Newick
formatted tree topology and either sequence alignment or its Hamming distance matrix
and produce branched phylogenetic tree on fixed topology. Tree builders are tools like
FastTree2,71 which are used to construct a de-novo tree from sequence alignment. Both
type of classes simply takes required input data, and if necessary transform it, write to the
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files, execute the tools, read the output, and returns the results. The “alignment” module is
another wrapper module that currently only provides single class MultiSequenceAligner.
This class provides an alignmethod that is used to align sequences. Although any type of
sequence aligner can be configured, there is only one predefined aligner currently present,
ClustalW283

Module “remote” is a wrapper module responsible for working with different
remote databases via API interface. For instance, NCBI provides a programmatic web in-
terface called Entrez Global Query Cross-Database Search System (Entrez). Similarly, the
European Bioinformatics Institute (EBI) provides a web-based representational state trans-
fer (REST) API service that can be to programmatically access the Ensembl database. The
“remote” module is basically, the wrapper classes that provide the minimum functionality
required to access these databases. Currently, only the Entrez wrapper class is available
Entrez which wraps the popular “BioPython” Python package’s Entrez functionality.84
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CHAPTER 4

MATERIALS AND METHODS

To recap data requirements for our mGWAS research we need D. melanogaster’s
genotype data andmicrobial profiles as our phenotype. In our analysis, we usemicrobiome
datasets of DGRP lines from credible research papers as sources for mGWAS phenotype
data. Similarly, we use publicly available DGRP host-variant datasets as target genotypes
for mGWAS.

4.1 Sample Collection

As it was described in section 1.6 the Drosophila animal model has many benefits
in microbiota studies as a model organism. Particularly for mGWAS studies, there is a very
useful and unique library of approximately 200 inbred D. melanogaster lines collected
from a single population in Raleigh, North Carolina, USA. The benefits of using inbred
fruit fly lines are hidden in its genome. Repeated full-sibling inbreeding over at least 20
generations produces a highly homozygous genotype.85 From the research perspective,
such homozygosity results in the fixation of SNPs and sets a common ground for many
independent studies that use the same samples. For D. Melanogaster there is a publicly
available library known as DGRP. The online public repository contains all the genotype
data required for performing mGWAS like annotated variant calls files, per lineWolbachia
infection states, and much more.85

Our target samples used in this thesis are DGRP lines without any particular
selection criteria except the presence of the microbiota data. Based on the literature
review for microbiota studies on DGRP lines with available supplementary data, it was
possible to find two research papers, which are shown in the following table 4.1.
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Table 4.1: Sources for 16S microbiota data

Dataset Label
Unique

DGRP Lines
Library Size

Raw/QC
Reads

OTU-Table Reference

Chaston 79 669 705 No Yes (30)
Jehrke 4 2 263 280 Yes No (39)

Available DGRP lines with corresponding data source are shown in the following
table 4.1. Among 79 and 4 DGRP lines from Chaston and Jehrke data source, no shared
lines were detected.

Table 4.2: DGRP lines by source

DGRP Source DGRP Source DGRP Source DGRP Source
26 Chaston 319 Chaston 441 Chaston 808 Chaston
28 Chaston 321 Chaston 443 Chaston 810 Chaston
45 Chaston 332 Chaston 486 Chaston 819 Chaston
59 Chaston 340 Chaston 492 Chaston 837 Chaston
73 Chaston 350 Chaston 513 Chaston 843 Chaston
83 Chaston 352 Chaston 514 Chaston 849 Chaston
85 Chaston 358 Chaston 554 Chaston 850 Chaston
105 Chaston 360 Chaston 563 Chaston 852 Chaston
109 Chaston 367 Chaston 584 Chaston 855 Chaston
149 Chaston 371 Chaston 642 Chaston 857 Chaston
161 Chaston 374 Chaston 712 Chaston 859 Jehrke
176 Chaston 377 Chaston 737 Chaston 861 Chaston
181 Chaston 380 Chaston 738 Chaston 879 Chaston
195 Chaston 385 Chaston 750 Chaston 882 Chaston
235 Chaston 393 Chaston 771 Chaston 884 Chaston
237 Chaston 398 Chaston 776 Chaston 897 Chaston
272 Chaston 399 Chaston 783 Chaston 900 Chaston
301 Jehrke 409 Chaston 787 Chaston 907 Chaston
303 Jehrke 426 Chaston 796 Chaston 908 Chaston
304 Chaston 427 Chaston 801 Chaston 913 Chaston
315 Jehrke 440 Chaston 805 Chaston
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4.2 Overall Strategy

The principal objective of this study is finding and describing genetic associations
that can affect the microbiota composition. Considering the types of available source data,
missing components, target phenotypes, GWAS approach, and more, the total analysis
workflow is relatively complicated but can be represented in several overall work steps.
The overall strategy for data analysis is shown in figure 4.1 and can be split into six stages.

Figure 4.1: Overall data workflow

To perform GWAS two types of data are necessary: phenotype and genotype data.
WithD. melanogaster as a model organism and DGRP lines as samples, the genotype data
is obtained from an online DGRP repository. Target phenotype data used in this thesis are
alpha and beta bio-diversity estimates. To calculate sample alpha-diversity metrics only
an OTU-table is required, while for UniFrac based beta-diversity calculations additional
phylogenetic tree is necessary. In either case, it is impossible to directly perform bio-
diversity analysis due to the missing OTU-table from Jehrke data source. Therefore, the
obtained raw microbiome data for the Jehrke dataset is first processed via the QIIME2
pipeline to produce the OTU-table. Then, two OTU-tables from two independent studies
are merged using PhyloMAF and preprocessed for quality control (QC). The GWAS is
then performed using ready phenotype-genotype data with subsequent association analysis
that produces annotated most significant SNPs. Finally, these SNPs are further analyzed
using regression models for selected specific phenotypes. Lastly, the literature review is
performed for identified candidate genes and conclusions are stated.

52



4.3 Data Acquisition

There are two types of data required to acquire. First is primarily microbiota data
from table 4.2, which is used to derive phenotypes. The other is genotype along with
additional data required in GWAS analysis.

4.3.1 Microbiota Data

Authors of the Chaston dataset provide a raw OTU-table produced using micro-
biome analysis pipeline QIIME 1 against 97 %ID Greengenes reference database. The
OTU-table was obtained from supplementary files of the paper.30 However, Jehrke et al.39

used an online microbiome analysis pipeline MG-RAST,86 which does not provide the
final OTU-table. Instead, MG-RAST provides partially quality-controlled reads available
on the public repository. Moreover, MG-RAST provides an API for batch fetching of the
available data. Therefore, a collection of Bash scripts were used to fetch 16S rRNA reads
of 4 DGRP lines from the Jehrke dataset.

4.3.1.1 Batch Data Fetching from MG-RAST

To batch fetch the QC reads using theMG-RASTAPI, it is necessary to retrieve full
sample metadata manually from MG-RAST online https://www.mg-rast.org. Keywords
used in the search were “Heinrich Heine University Duesseldorf” with initial filtering
for “Mathias Beller”. Secondary filters were “project_name”=’Basal_Microbiome’ and
“env_package_name” NOT LIKE ’%axenic%’ AND "env_package_name" NOT LIKE
’%L3%’. Obtained metadata was manually adjusted by removing unnecessary data
columns and the final table is shown on A.10. Then using the following Bash script
all the FASTQ reads of DGRP lines from the Jehrke dataset were batch downloaded from
MG-RAST servers.

sample_fp="../Step 1 - Sample Selection/SampleMetadata.csv"

i=1

while IFS=, read -r sample_name DGRP_Line sample_id metagenome_id

library_name other_cols

do
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test $i -eq 1 && ((i=i+1)) && continue

mkdir $sample_id

wget -O $sample_id/$library_name.fastq http://api.mg-rast.org/

download/$metagenome_id?file=050.1

done < "$sample_fp"

4.3.2 Genotype Data

As previously described, the gold standard tool for GWAS analysis is Plink.38

Therefore, the required genotype data is in Plink compatible file formats. All the necessary
files for GWAS analysis are shown in the following table 4.3

Table 4.3: Genotype and other host genomic data required for GWAS

Data Type Variables/Columns File Type Reference

Genotype

Raw Variant Data 4 438 427 VCF

85,87

Plink Genotype Data 4 438 427 BED
Plink Sample Metadata 6 FAM
Plink Variant Metadata 6 BIM

Annotations Variant Annotations 4 438 427 CSV
Covariates Inversion Status 16 CSV

Wolbachia Status 1 CSV

All the data were manually downloaded from DGRP web-page http://dgrp2.gnets.
ncsu.edu

4.4 Data Preparation

This section consists of data analysis steps required to generate OTU-table for
Jehrke dataset. Overall pipeline is shown in flowing diagram 4.2.
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Figure 4.2: Overall QIIME2 pipeline for processing of Jehrke dataset

The 16S rRNA sequence data processing pipeline used is QIIME2 with the Green-
genes database. Following Bash script was used to download the Greengenes database
and create QIIME 2 classifier.

# Download

wget -O ./gg_13_8_otus.tar.gz "ftp://greengenes.microbio.me/

greengenes_release/gg_13_5/gg_13_8_otus.tar.gz"

# Extract Archive

tar -xzvf gg_13_8_otus.tar.gz gg_13_8_otus/taxonomy/97_otu_taxonomy.txt

gg_13_8_otus/rep_set/97_otus.fasta gg_13_8_otus/trees/97

_otus_unannotated.tree

# Create QIIME2 Greengenes classifier

source ~/miniconda3/etc/profile.d/conda.sh

conda activate qiime2

gg_root="../Step 3 - Download Greengenes/gg_13_8_otus"

forward_primer="CCTACGGGNGGCWGCAG"

reverse_primer="GACTACHVGGGTATCTAATCC"

qiime tools import --type ’FeatureData[Sequence]’ --input-path "

$gg_root/rep_set/97_otus.fasta" --output-path ref-seq-97.qza

qiime tools import --type ’FeatureData[Taxonomy]’ --input-format

HeaderlessTSVTaxonomyFormat --input-path "$gg_root/taxonomy/97

_otu_taxonomy.txt" --output-path ref-tax-97.qza

qiime feature-classifier extract-reads --i-sequences ref-seq-97.qza --p

-f-primer $forward_primer --p-r-primer $reverse_primer --o-reads

ref-seq-97-pf.qza
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qiime feature-classifier fit-classifier -naive-bayes --i-reference -reads

ref-seq-97-pf.qza --i-reference -taxonomy ref-tax-97.qza --o-

classifier gg-97-pf-classifier.qza

Primers used for amplification of 16S rRNA reads in the Jehrke et al. study are
for V3 and V4 regions. Forward and reverse primers were CCTACGGGNGGCWGCAG
and GACTACHVGGGTATCTAATCC, respectively. Although retrieved sequences were
partially quality controlled, primer oligomers were present in downloaded sequences.
Hence, the following Bash script was used to trim leading 5’ forward primer sequences
and low-quality scores. The reverse 3’ primer sequences were not found in the sample
reads after checking using “fuzznuc” tool from EMBOSS suite.88

sample_fp="../Step 1 - Sample Selection/SampleMetadata.csv"

samples_root="../Step 2 - Download Raw Data"

i=1

while IFS=, read -r sample_name DGRP_Line sample_id metagenome_id

library_name other_cols

do

test $i -eq 1 && ((i=i+1)) && continue

echo $"sample_name\n"

if [[ "$sample_id" =~ ^(mgs623312|mgs623315|mgs623321|mgs623351)$ ]];

then

croplen=22

else

croplen=18

fi

mkdir "$sample_id"

trimmomatic SE -phred33 -trimlog "$sample_id/trimming_results.txt" "

$samples_root/$sample_id/$library_name.fastq" "$sample_id/

$library_name.qf.fastq" HEADCROP:$croplen LEADING:30 TRAILING:30

SLIDINGWINDOW:4:15 MINLEN:36

done < "$sample_fp"

Next quality controlled raw sequences were imported into single QIIME 2 artifact
file.

#!/bin/bash

eval "$(conda shell.bash hook)"

conda activate qiime2

study_name="jehkre_basal"

sample_fp="../Step 1 - Sample Selection/SampleMetadata.csv"

samples_root="../Step 5 - Trim Primers from Raw Data"

i=1

echo "sample-id,absolute -filepath ,direction" > "$study_name -manifest.

txt"
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echo "sample-id,absolute -filepath ,direction" > "$study_name -manifest.

txt"

echo -e "sample-id\tSample-Name" > "$study_name -metadata.tsv"

echo -e "sample-id\tSample-Name" > "$study_name -metadata.tsv"

while IFS=, read -r sample_name DGRP_Line sample_id metagenome_id

library_name other_cols

do

test $i -eq 1 && ((i=i+1)) && continue

realsample_fp=$(readlink -e "$samples_root/$sample_id/$library_name.

qf.fastq")

echo "$sample_id ,$realsample_fp ,forward" >> "$study_name -manifest.txt

"

echo -e "$sample_id\t$sample_name" >> "$study_name -metadata.tsv"

done < "$sample_fp"

qiime tools import --type ’SampleData[JoinedSequencesWithQuality]’ --

input-path "$study_name -manifest.txt" --output-path "$study_name -

seqs.qza" --input-format SingleEndFastqManifestPhred33

Next produced QIIME2 artifact files were passed into OTU-picking process using
integrated VSEARCH51 tool. Prior to closed-reference OTU-picking against Greengenes
database, reads were dereplicated.

study_name="jehkre_basal"

gg_cls_root="../Step 4 - Make Greengenes Classifier"

qiime vsearch dereplicate -sequences --i-sequences "$study_name -seqs.qza

" --o-dereplicated -table "$study_name -table.qza" --o-dereplicated -

sequences "$study_name -repseq.qza"

qiime vsearch cluster-features-closed-reference --p-strand ’both’ --p-

threads 20 --i-table "$study_name -table.qza" --i-sequences "

$study_name -repseq.qza" --i-reference -sequences "$gg_cls_root/ref-

seq-97.qza" --p-perc-identity 0.97 --o-clustered -table "$study_name

-table-clustered.qza" --o-clustered -sequences "$study_name -repseq-

clustered.qza" --o-unmatched -sequences "$study_name -nomatch.qza"

After OTU-picking process, taxonomic classification of OTUs is performed.

study_name="jehkre_basal"

qiime_import_root="../Step 6 - Import Data to QIIME2"

gg_cls_root="../Step 4 - Make Greengenes Classifier"

qiime feature-classifier classify-sklearn --i-classifier "$gg_cls_root/

gg-97-pf-classifier.qza" --i-reads "$qiime_import_root/$study_name

-repseq-clustered.qza" --o-classification "$study_name -repseq-

clustered -taxonomy.qza"
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Finally, the OTU-table is produced from QIIME2 artifacts generated by taxonomy
assignment and OTU-picking processes. Initially, artifacts are converted into BIOM file
and then into CSV file. Then, taxonomy column is added to OTU count table and final
OTU-table for Jehrke dataset is produced (tables A.7 and A.8).

study_name="jehkre_basal"

sample_fp="../Step 1 - Sample Selection/SampleMetadata.csv"

qiime_import_root="../Step 6 - Import Data to QIIME2"

qiime_classified_root="../Step 7 - Classification"

qiime tools export --input-path "$qiime_import_root/$study_name -table-

clustered.qza" --output-path .

qiime tools export --input-path "$qiime_classified_root/$study_name -

repseq-clustered -taxonomy.qza" --output-path .

biom add-metadata -i feature-table.biom -o feature-table.tax.biom --

observation -metadata-fp taxonomy.tsv --sc-separated Taxon --

observation -header "Feature ID,Taxon,Confidence"

biom convert -i feature-table.tax.biom -o otu-table.tsv --header-key

Taxon --to-tsv

4.5 Data Processing

Data processing can be split into two primary stages. First is sample rearrangement,
where OTU-tables are split into four separate datasets. This step is followed by the
processing of OTU-tables using PhyloMAF for QC, merging, and more.

4.5.1 Sample Rearrangement

The main motivation behind rearranging samples into four datasets is to test the
performance of the merging operations done by using PhyloMAF. Sample rearrangement
essentially consists of randomly splitting the Chaston dataset into two separate datasets
(Dataset1 and Dataset2) and one whole dataset (Dataset3) as shown in the following table
4.4. The last dataset (Dataset4) consists of both Chaston and Jehrke samples. Both
Dataset3 and Dataset4 are produced using PhyloMAF by merging partial datasets.
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Table 4.4: Final rearranged sample datasets

New Dataset Label Secondary
Source Label Source Dataset Label Number of Sampes

Dataset1 Chaston1 Chaston 40
Dataset2 Chaston2 Chaston 39
Dataset3 Chaston_Asm Chaston 79
Dataset4 CJ_Survey Chaston + Jehrke 83

4.5.2 Merging OTU-Tables and Quality Control

With two partial Chaston datasets and Jehrke OTU-table, PhyloMAF is used to
merge and quality filter datasets to produce the final state as shown in the table 4.4. The
first part of the flow diagram for data processing is shown in figure 4.3.

Figure 4.3: Overall process of OTU-table merging and quality control

The following sections describe this data flow in more detail.
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4.5.2.1 Creating Greengenes HDF5 storage file

First and foremost, it is necessary to create a reference database compatible with
PhyloMAF. Therefore, raw text-based Greengenes database is transformed into an HDF5
file using class method DatabaseGreengenes.build_database_storage as shown in the
following piece of code.

from pmaf.database import DatabaseGreengenes

ROOT = ’MasterThesisData/’

ROOT_GG = ROOT + ’Greengenes/gg_13_8_otus/’

greengenes_hdf5_fp = ROOT + ’greengenes_138_97.hdf5’

DatabaseGreengenes.build_database_storage(storage_hdf5_fp =

greengenes_hdf5_fp ,

taxonomy_map_csv_fp = ROOT_GG + ’/taxonomy/97_otu_taxonomy.txt’,

tree_newick_fp = ROOT_GG + ’/trees/97_otus_unannotated.tree’,

sequence_fasta_fp = ROOT_GG + ’/rep_set/97_otus.fasta’,

sequence_alignment_fasta_fp = ROOT_GG + ’/rep_set_aligned/97_otus.fasta

’,

stamp_dict={’author’:’Farid MUSA’},

force = True,

compress=True)

database_gg = DatabaseGreengenes(greengenes_hdf5_fp)

While the creation of the HDF5 based database file can take some time it is a is
one-time task that can be indefinitely used later.

4.5.2.2 Reading OTU-tables into PhyloMAF

Next as shown in figure 4.3 the CSV-based OTU-tables must be read using the
“biome.essentials” module’s FrequencyTable and RepTaxonomy classes. Because OTU-
tables contain both OTU counts and OTU taxonomy columns, two types of data are parsed
separately using the corresponding class.
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from pmaf.biome import essentials

chaston1_otus_fp = ROOT + "OTU_Tables/Chaston/chaston_set1.csv"

chaston2_otus_fp = ROOT + "OTU_Tables/Chaston/chaston_set2.csv"

jehrke_otus_fp = ROOT + "OTU_Tables/Jehrke/jehrke-otu-table.tsv"

jehrke_metadata_fp = ROOT + "OTU_Tables/Jehrke/jehrke-sample-metadata.

csv"

chaston1_tax_inc = essentials.RepTaxonomy(chaston1_otus_fp , index_col

=0,taxonomy_columns=-1)

chaston1_freq = essentials.FrequencyTable(chaston1_otus_fp , index_col

=0, skipcols=-1)

chaston2_tax_inc = essentials.RepTaxonomy(chaston2_otus_fp , index_col

=0,taxonomy_columns=-1)

chaston2_freq = essentials.FrequencyTable(chaston2_otus_fp , index_col

=0, skipcols=-1)

jehrke_tax = essentials.RepTaxonomy(jehrke_otus_fp , index_col=0,

taxonomy_columns=-1,sep=’\t’)

jehrke_freq = essentials.FrequencyTable(jehrke_otus_fp , index_col=0,

skipcols=-1,sep=’\t’)

jehrke_meta = essentials.SampleMetadata(jehrke_metadata_fp , axis=0,

index_col=’sample_id’)

In the above, the first line imports the “essentials” sub-module from the “biome”
module of the PhyloMAF package. As it was previously described, “essentials” are the
basic blocks of data that can be assembled into an “assembly”. Each starting OTU-
table(Dataset1, Dataset2, and Jehrke) is processed using similar commands to parse OTU
counts and taxonomies. In each read command line, index_col=0 indicates that the first
column of the table is an index column. The class RepTaxonomy, requires only taxonomy
data so parameter taxonomy_columns=-1 sets the last column of the CSV/TSV file as the
target column to be read. Likewise, for FrequencyTable, parameter skipcols=-1 sets the
last column to be ignored because it does not contain count data. In the Jehrke dataset,
SampleMetadata is also defined because OTU-table produced via QIIME2 contains more
than one sample per the DGRP line. Therefore, sample metadata from table A.10 is later
used to aggregate duplicated samples like male and female flies of the same DGRP line.

61



4.5.2.3 Complement Incomplete Taxonomy

Datasets derived from Chaston data sources have incomplete taxonomy provided
in the supplementary files. Consequently, Dataset1 and Dataset2 do not contain taxonomy
information about levels above class level. Therefore, it is necessary to “complement”
the missing taxonomy up to the highest level available in the database(kingdom in the
Greengenes database). The “pipe”module of the PhyloMAFpackage contains a predefined
mediator configuration that can be used to complement the taxonomy against the reference
database.

from pmaf.pipe.specs import SpecTI,SpecIT,ForgeSpec

from pmaf.pipe.agents.mediators.local import LocalMediator

from pmaf.pipe.factors import Factor16S

mediator_gg_comp = LocalMediator(database_gg ,tax_fuzzy_mode=True,

tax_corr_method=’complement’)

f16s = Factor16S()

SpecTIT = ForgeSpec(’SpecTIT’, SpecTI,SpecIT)

stit = SpecTIT(mediator_gg_comp , f16s)

chaston1_tax = essentials.RepTaxonomy(stit.fetch(chaston1_tax_inc.data)

.to_dataframe())

chaston2_tax = essentials.RepTaxonomy(stit.fetch(chaston2_tax_inc.data)

.to_dataframe())

First 3 lines of code imports the required classes from PhyloMAF, such as basic
pipes(specification), mediators, and factors. Two specifications, SpecTI and SpecIT, are
predefined “pipes” that do exactly the reverse of each other. The pipe SpecTI takes as input
a taxonomy and produces the reference database identifiers. Similarly, SpecIT takes as an
input a reference database identifier and produces the associated reference taxonomy. The
combination of two pipes is used as a special pipe to “complement” or reassign taxonomy.
This special pipe specification takes and produces a taxonomy. The function ForgeSpec is
used to join the pipes and forge a new pipe, which is the taxonomy complementing pipe.
The Factor16S is the simple class that is required by default for any piping operations. The
class does not have any operational effect except that it is used to validate compatibility
between interconnected modules. For instance, Factor16S restricts the overall usage of
the 16S type databases like Greengenes and not like UNITE.

In PhyloMAF, “pipes” always require themediators to communicatewith databases.
Mediators can have different configurations and in the above code, LocalMediator is con-
figured to match the target taxonomy to the reference taxonomy with a fuzzy approach.
The reason for fuzzy matching instead of exact matching is the possible difference be-
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tween target and reference taxonomies caused by manual author fixes or database version
variations. Moreover, the LocalMediator is not an actual mediator class, instead, it is
a function that automatically builds a valid mediator based “database” class inheritances
patterns. Lastly, themediator’s parameter tax_corr_method=’complement’ is not amanda-
tory setting and instead is a predefined “smart” matching algorithm that is simply better
at “complementing” the taxonomy compared to default mode.

4.5.2.4 Group Essentials into Assembly

Prior to final merging of OTU-tables, there are few additional steps required to do.

from pmaf.biome import assembly

chaston1_asm = assembly.BiomeAssembly(chaston1_tax , chaston1_freq)

chaston2_asm = assembly.BiomeAssembly(chaston2_tax , chaston2_freq)

jehrke_asm = assembly.BiomeAssembly(jehrke_tax , jehrke_freq ,

jehrke_meta ,curb=jehrke_meta)

jehrke_asm.SampleMetadata.merge_samples_by_variable(’DGRP_Line’)

The code above first imports the “assembly” sub-module from the “biome” mod-
ule. Following, two lines build an assembly from FrequencyTable and RepTaxonomy
instances. In other words, chaston1_asm and chaston2_asm are BiomeAssembly instances
that represent a PhyloMAF version of an original OTU-table with a taxonomy column.
Similarly, but with an additional component the Jehrke dataset also includes SampleMeta-
data within “assembly”. Finally, as it was previously noted, DGRP samples that belong to
the same line are aggregated by taking the mean of counts across samples. To elaborate,
first BiomeAssembly builds an OTU-table plus SampleMetadata configuration, where in
addition to the feature axis also sample axis is interconnected. Then, an instance method
merge_samples_by_variable aggregates sample counts based on the “DGRP_Line” col-
umn of table A.10.

4.5.2.5 Quality Control

Finally, after the assemblies are ready, quality control with the subsequent merging
of OTU-tables is performed. In the code bellow, QC is done before actual merging to
produce Dataset3 and Dataset4. However, to clarify an important point, the order does
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not have any particular importance and data can also be first merged and then quality
controlled. Nevertheless, final datasets must pass the same QC processes as it is done in
the following code.

chaston1_asm.RepTaxonomy.drop_features_without_taxa()

chaston2_asm.RepTaxonomy.drop_features_without_taxa()

jehrke_asm.RepTaxonomy.drop_features_without_taxa()

chaston1_asm.RepTaxonomy.merge_duplicated_features()

chaston2_asm.RepTaxonomy.merge_duplicated_features()

jehrke_asm.RepTaxonomy.merge_duplicated_features()

chaston1_asm.RepTaxonomy.drop_features_without_ranks([’g’])

chaston2_asm.RepTaxonomy.drop_features_without_ranks([’g’])

jehrke_asm.RepTaxonomy.drop_features_without_ranks([’g’])

chaston1_asm.RepTaxonomy.merge_features_by_rank(’g’)

chaston2_asm.RepTaxonomy.merge_features_by_rank(’g’)

jehrke_asm.RepTaxonomy.merge_features_by_rank(’g’)

chaston1_asm_wolbachia_id = chaston1_asm.RepTaxonomy.

find_features_by_pattern(’Wolbachia’)

chaston1_asm.RepTaxonomy.drop_feature_by_id(chaston1_asm_wolbachia_id)

chaston2_asm_wolbachia_id = chaston2_asm.RepTaxonomy.

find_features_by_pattern(’Wolbachia’)

chaston2_asm.RepTaxonomy.drop_feature_by_id(chaston2_asm_wolbachia_id)

jehrke_asm_wolbachia_id = jehrke_asm.RepTaxonomy.

find_features_by_pattern(’Wolbachia’)

jehrke_asm.RepTaxonomy.drop_feature_by_id(jehrke_asm_wolbachia_id)

First, datasets are stripped off the OTUs that do not have any representative tax-
onomies. Then duplicate OTUs are aggregated using the default sum approach that simply
adds together counts across features. Next, any OTU that does not have genus taxa like
OTUs that were classified only up-to family or class level are removed. Finally, any OTUs
with Wolbachia taxon are removed from the analysis. The primary cause for removing
Wolbachia is because this microorganism is an endosymbiont and is not a part of natural
flymicrobiota. Moreover,Wolbachia counts are not negligible and can significantly distort
the final alpha and beta diversity estimates.

4.5.2.6 Merging OTU-Tables

Finally, after QC, OTU-tables can be merged to produce Dataset3 and Dataset4.
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from pmaf.biome import survey

chaston_asm = survey.BiomeSurvey(chaston1_asm ,

chaston2_asm ,groupby=(’taxonomy’,’label’),

aggfunc=(’sum’,’mean’)).to_assembly()

cj_survey = survey.BiomeSurvey(chaston_asm ,

jehrke_asm ,groupby=(’taxonomy’,’label’),

aggfunc=(’sum’,’mean’)).to_assembly()

First merging operation, BiomeSurvey produces Dataset3, while second generates
Dataset4. Both use grouping setup groupby=(’taxonomy’,’label’), which configure merg-
ing to group the OTU or feature axis based on taxonomy, while sample labels group
the sample axis. Similarly, aggfunc=(’sum’,’mean’) configures merger to aggregate the
feature axis by adding across feature counts and take count means across the sample axis.
As it is shown in table A.9, no DGRP line is shared among datasets so aggregation across
the sample axis is simply not performed. Finally, both of the BiomeSurvey instances are
promptly converted into BiomeAssembly using the to_assembly. The overall change in the
number of features during QC and after merging is shown in table 4.5.

Table 4.5: Change in the number of OTUs during and after quality control

Dataset Label
# OTUs

Prior Quality Control
# OTUs

Post-Aggregations
# OTUs

Post-Removals

Dataset1 177 72 48
Dataset2 177 72 48
Dataset3 177 72 48
Dataset4 870 242 151

Lastly, in the above table 4.5, it is clear that Dataset4 has a significantly higher
number of OTUs compared to the other three datasets. This is caused due to the dramatic
difference in the library sizes of Jehrke and Chaston datasets, with 2,263,280 and 669,705
reads, respectively. Therefore, the OTU-table of Dataset4 is a sparse matrix, which will
have a dramatic effect on bio-diversity estimates that give more weight to rare taxa.
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4.5.2.7 Reconstructing Phylogenetic Trees

After all the datasets from table 4.4 are prepared, the last missing component,
which is required for bio-diversity analysis is the phylogenetic trees. The whole process
of reconstruction of phylogenetic trees is shown in flow diagram 4.4.

Figure 4.4: Process of phylogenetic tree reconstruction. Whole process is repeated for
every dataset.

Following piece of PhyloMAF code is the implementation of the above dia-
gram(4.4) that generates branched phylogenetic trees based on tree topology of reference
database.

from pmaf.pipe.specs import SpecTSPBP

from pmaf.phylo.branchest import BranchestFastTree2

mediator_gg_map = LocalMediator(database_gg ,

tax_fuzzy_mode = True,

tax_fuzzy_cutoff = 95,

seq_method = ’consensus’,

seq_filter_method = ’random’,

seq_filter_value=5,

seq_subs = True)

tspbp_fasttree2 = SpecTSPBP(mediator_gg_map ,
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f16s,

branch_estimator = BranchestFastTree2())

datasets = {’chaston1’: chaston1_asm ,

’chaston2’: chaston2_asm ,

"chaston_asm": chaston_asm ,

"cj_survey": cj_survey}

rank = ’g’

for biome_asm_name , biome_asm in datasets.items():

tmp_biome_asm = biome_asm.copy()

tmp_biome_asm.RepTaxonomy.merge_features_by_rank(rank, aggfunc=’sum’)

tmp_tree_docker = tspbp_fasttree2.fetch(tmp_biome_asm.RepTaxonomy.

data)

tmp_phylo = essentials.RepPhylogeny(tmp_tree_docker.get_tree(),

annotation = tmp_biome_asm.RepTaxonomy.get_lineage_by_id())

tmp_biome_asm = assembly.BiomeAssembly(tmp_biome_asm.essentials + [

tmp_phylo], curb=’intersect’, copy=True)

tmp_biome_asm.RepPhylogeny.write(ROOT + ’OutputFinal/noWolbachia

/{}-{}.{}.tre’.format(biome_asm_name ,rank,"fasttree2_adj"),rooted=

True)

tmp_biome_asm.write_otu_table(ROOT + ’OutputFinal/noWolbachia

/{}-{}.{}.csv’.format(biome_asm_name ,rank,"fasttree2_adj"))

The above code once more begins with imports of the required classes from
PhyloMAF. Then followed by instantiation of LocalMediator that will be used to map
target and reference taxonomies with subsequent extraction of phylogenetic tree topology
and representative sequences. Parameters tax_fuzzy_mode = True and tax_fuzzy_cutoff
= 95, configure the fuzzy matching algorithm to active mode and limits the matching
ratio to 95 %. Since PhyloMAF clusters feature of reference database and produce a
non-redundant version of the original taxonomy database, each unique reference taxon
is represented with more than one reference sequence. For example, there is always a
good chance that any genus within the reference database has many (i.e. thousands)
reference/representative sequences. Nevertheless, the branch estimators require only a
single representative sequence for each feature. Therefore, the mediator is configured
with parameter seq_method = ’consensus’, which produces a consensus sequence out of
multiple sequence alignment of representative sequences for each feature. Moreover, since
the Greengenes database has also alignments along with representative sequences, this
process is relatively fast. However, due to numerous representative sequences that emerge
due to parameter seq_subs = True, the time to evaluate the consensus sequence increases
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substantially. To address this problem we set two additional parameters seq_filter_method
= ’random’ and seq_filter_value=5. These parameters configure the mediator to randomly
select 5 representative sequences out of all available, instead of retrieving the whole set. In
other words, for each target taxon that will be mapped to the reference taxon, get 5 random
sequences from potentially thousands available, retrieve reference alignment, evaluate the
consensus sequence, and produce the output.

The actual “pipe” specification that is used for phylogenetic tree reconstruction
is SpecTSPBP, which stands for Taxonomy-Sequence-Phylogeny-BranchedPhylogeny. It
is a predefined specification that maps taxa, retrieves representative sequence(consensus
of random reference alignments) along with reference phylogenetic tree topology, and
estimates the length of branches for the tree topology. The branch estimator used in
the above code is BranchestFastTree2. This simple PhyloMAF wrapper class utilizes
the external FastTree2 tool with default branch estimation configuration based on the
likelihood approach. Generated phylogenetic trees are shown in Appendix C

4.6 Bio-Diversity Analysis

Bio-diversity analysis consists of investigating within sample alpha-diversity met-
rics and between sample phylogenetic beta-diversity estimates. Simultaneously, basic and
specified OTU abundance of analysis of the samples and datasets are visualized for further
discussions. Following figure 4.5 recaps the whole diversity analysis process.

Figure 4.5: Bio-diversity analysis workflow. Bio-diversity analysis is performed in R
using mainly the microbiome analysis package “phyloseq”.
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4.6.1 Alpha-Diversity

Alpha-diversity analysis is performed using the most commonly used microbiome
analysis package in R called “phyloseq”.89 Estimated alpha-diversity measures are the total
number of observed OTUs (presence/absence), Shannon, and Simpson evenness indices.
As shown in figure 4.5, the last two evenness indices are used as target phenotypes for mG-
WAS analysis. Two R functions provided by the “phyloseq” package, estimate_richness
and plot_richness, are used for calculating and plotting the alpha-diversity metrics. More-
over, the alpha-diversity estimates are also visualized using the “ggplot2” package90 to
produce box plots.

4.6.2 Beta-Diversity

As it was previously stated, phylogenetic beta-diversity metrics outperform other
between sample community analysis methods. Therefore, for beta-diversity analysis, the
UniFrac distance metric was used. Although there is a weighted and unweighted version
of the UniFrac distance metric, only weighted is used in the analysis. The primary reason
for not using the unweighted version is due to the large difference in library sizes in
the two studies. Unweighted UniFrac is sensitive to rare taxa and can contribute to the
artificial distance between samples from two independent studies as shown in figure C.15.
Furthermore, investigation of the effect of rare taxa on mGWAS is outside the scope
of our interest. Therefore, with the main focus on the weighted version of the UniFrac
metric, the actual analysis was performed using theUniFrac function from the “phyloseq”
package89 in R. However, the resulting beta-diversity distance matrix can not be directly
interpreted and require the usage of ordination methods to analyze. Although principal
component analysis (PCA) is a common ordination method, it can only be used for analysis
of Euclidean distance matrices. The UniFrac distance metric produces a non-Euclidean
dissimilarity matrix from a sparse OTU-table and requires ordination techniques such as
MDS(PCoA) or NMDS. In this thesis, MDS is chosen as the main ordination method
using the built-in R function cmdscale. Out of three dimensions calculated by MDS,
the first two are used to produce Cartesian MDS plots using “ggplot2” R package.90 The
MDS plots can be found in Appendix C. Finally, the first dimension that captures the most
variance is used as the third phenotype in mGWAS analysis.
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4.6.3 Abundance Analysis

Abundance analysis was performed for every dataset sample wise and as whole
datasets. Relative abundance plots were generated for both phylum and genus levels. To
visualize and compare relative abundance values per dataset, sample abundances within
datasets were aggregated by taking the mean of the counts. Relative abundance plots
for every dataset can be found in appendix C. Relative abundance analysis dataset-wise
was performed for both phylum and genus levels. Next, total genus-level abundance plots
were produced for the most abundant phyla with removed singletons and any taxa with
total abundance less than 3 across at least 20% of the samples. Community analysis was
performed using the “phyloseq” package in R.89 Visualizations were produced using the
R package “ggplot2”.90

4.6.4 Secondary Analysis

In addition to the primary analysis described in the previous sections, additional
analysis and supplementary visualizations were produced. First, as shown in figure 4.5,
correlation plots were generated for alpha and beta diversity estimates that were selected as
phenotype. Pairwise correlation visualization between estimated alpha-diversity metrics
and first dimension of MDS, was performed using the “GGally” package in R. Correlation
analysis was performed to explain the MDS1 produced by MDS analysis. Unlike PCA,
the MDS does not generate any loadings that can give a descriptive hint on the PCs.

Besides, circular phylogenetic treeswere visualized using theRpackage “ggtree”.91

All the visualized trees can be found in Appendix C. Finally, for future directions, the effect
of Wolbachia status on the total abundance of the most dominant phyla was investigated
and visualized using the same tools used in the previous section.

4.7 Microbiome GWAS

Initially, GWAS was performed using a public online DGRP service available at
http://dgrp2.gnets.ncsu.edu. The results of this initial GWAS was then used as a basis to
configure and optimizemanual GWAS. The authors of the DGRP service87 use the Python-
based GWAS tool FastLMM79 instead of traditional Plink38 software. Furthermore, due
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to the non-normal distribution of the alpha-diversity and beta-diversity estimates, linear
and logistic regression models provided by Plink would not be appropriate in our analysis.
Consequently, FastLMMwas used to perform GWAS because it is based on mixed models
and can handle non-normal data, used by DGRP authors, compatible with initial basis
GWAS analysis, and has rapid execution time compared to other similar available tools
in the literature. Lastly, as it was previously explained, Plink is a gold standard tool for
GWAS and many other similar tools use or at least compatible with Plink style file types.
FastLMM is not an exception so data preparation steps described in the following sections
primarily consist of transforming data into Plink file types.

4.7.1 Phenotype Data

As shown in figure 4.5 the phenotypes used in GWAS are Shannon, Simpson, and
the first dimension of MDS analysis. The primary motivation for using Shannon and
Simpson indices as the phenotype is because the former can detect the evenness of the
sample abundance profiles while the latter is sensitive to dominant taxa and may provide
a hint on further analysis. The last phenotype is the first dimension of MDS which is
used to detect the possible effect of phylogeny on significant associations. The phenotype
data produced in section 4.6 is generated as a CSV file type and has the per-line format
“DGRP-Line, Phenotype-Value” without a header. To transform the phenotype data into
Plink style, the Bash script RunDatasetGwas (table H.2) is executed for every dataset. All
the phenotype data can be found in appendix B.

4.7.2 Covariate Data

The covariates are independent variables similar to genotype data and may have
a significant contribution to the regression model. Therefore, it is important to include
covariates into the GWAS process by supplying covariates to FastLMM as it is done
in the primary script that runs GWAS, RunFastLMM (table H.2). However, as can be
seen from table 4.3, DGRP provides multiple potentially covariate datasets. To reconcile
with the basis GWAS results produced via DGRP online service, it was decided to use
the same covariates as DGRP authors. Therefore, the following variables were used as
covariates in GWAS: theWolbachia infection status and fivemajor chromosome inversions
In(2L)t, In(2R)NS, In(3R)K, In(3R)P, and In(3R)Mo. However, the six selected covariates
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shown in table H.1 are represented as categorical variables and can not be used directly
by FastLMM, so it is necessary to transform categorical variables into binary format.
To satisfy this requirement Plink provides –dummy-coding feature to dummy encodes
categorical variables into binary format.

4.7.3 Genotype Data

The genotype data from table 4.3 is directly downloaded in Plink format from the
DGRP web-page. Therefore, additional processing of the variant data was not performed
on BED, BIM and FAM files. Although the VCF file is not required by FastLMM, which
uses directly BED file, it was nevertheless downloaded since it will be necessary for
post-GWAS analysis.

4.7.4 Analysis of Associations

The overall process for analysis of associations identified by GWAS is shown in
the following figure 4.6

Figure 4.6: Overall workflow of GWAS analysis
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The cutoff shown in the above figure 4.6 is essentially the significance cutoff applied
to theManhattan plots shown in Appendix D. The cutoff is performed viaParseGwasAssoc
script from table H.2. After the cutoff operation the most significant associations or top
associations, which can be found in appendix E, are concatenated using the full outer
join approach. These tables are produced by ParseGwasAll script from table H.2 that
produces a table with rows as SNPs of from top associations of all datasets and columns
are phenotypes per dataset. The overlap association tables can be found in Appendix F.
Moreover, the overlap table was also annotated using an annotation file from table 4.3,
which is based on Flybase92 release version 5.49. Any SNPwith no known gene annotation
wasmarked as “Undefined”. Finally, the annotated overlap table was gene-wise aggregated
to produce per gene table of top associations. During aggregations, the lowest p-value
was selected out of SNPs that were represented by the same gene annotation. Finally,
both SNP and gene-based overlap tables were visualized using Venn diagrams produced
by R package called “ggVennDiagram” and an UpSet diagram produced by “UpSetR” R
package.93 The R script that produced diagrams is MakeVennDiagrams from table H.2.
These diagrams are also shown in appendix F.

4.8 Post-GWAS Analysis

After GWAS is completed and top variant associations are identified for all datasets
and phenotypes, it is now necessary to investigate the effect of specific phenotypes such as
total taxon abundance values. The primary motivation here is to investigate the secondary
associations by regressing the top preliminary GWAS variants against the most abundant
taxa. Following diagram 4.7 summarize the whole post-GWAS process.
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Figure 4.7: Overall workflow of post-GWAS analysis

4.8.1 Explanatory Variables

Compared to GWAS analysis using FastLMM it is aimless to analyze all genotype
data in the post-GWAS analysis. Therefore, the top SNPs associations that have passed the
significance cutoff for all datasets and phenotypes can be found in Appendix B. In total 103
SNPs (henceforth “candidate SNPs”) were used in the regression model as independent
variables. The subset of the original VCF file of DGRP genotype data was extracted using
“VCFtools”.94 Similarly, to covariate encoding described previously, the VCF file also
contains categorical values that require to be encoded. To do this dummy coding was
manually designed and automatically performed in the script RunGlmAnalysis from table
H.2.

4.8.2 Covariates

Covariates are similar to explanatory or independent variables andmust be included
in the regression model if significant correlation with response variables are detected. The
script RunGlmAnalysis from table H.2 was designed as shown in figure 4.7 to test and
select covariates with the most significant associations. The process first performs a
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standard linear regression of dependent variables against potential covariate variables
(table H.1) and then checks the significance values for each variable. Those variables that
are significantly associated (? < 0.05) are selected as covariates (table G.1) and used in
further analysis.

4.8.3 Response Variables

By examining the results of abundance analysis performed in section 4.6, it was
found that the most abundant phyla are Firmicutes and Proteobacteria, while the most
abundant genera are Lactobacillus and Acetobacter. These taxa with different taxonomic
ranks were selected as target phenotype or response variables to be investigated in the
post-GWAS regression analysis. Besides, Comamonas was the second most abundant
genus in Proteobacteria phylum so it was also included in the analysis. Moreover, to
double-check the GWAS and post-GWAS associations, previous phenotypes, Simpson
and Shannon estimates, were re-analyzed. Lastly, the beta-diversity phenotype was not
investigated in the post-GWAS analysis due to its significant correlation with alpha-
diversity estimates. In other words, MDS1 fromMDSofweightedUniFrac distancematrix
essentially captured all the variance associated with mainly alpha-diversity estimates
and not the actual phylogeny, which was the primary interest. To sum up, two most
abundant phyla Firmicutes and Proteobacteria with two corresponding most abundant
genera Lactobacillus and Acetobacter, one second most abundant genus Comamonas and
two original alpha-diversity Simpson and Shannon estimates were selected as dependent
variables (phenotype) in the post-GWAS regression model.

4.8.3.1 Normalization

Total abundance counts for taxa selected as dependent variables have a Poisson
distribution, which can not be directly used in linear regression analysis. Therefore, it
was decided to first normalize the distributions using “bestNormalize” R package, which
automatically tests several normalization techniques and selects the best method. The
normalization results of all datasets for every response variable are shown in figure G.1
in form of histograms. Moreover, the automatically selected normalization methods by
the “bestNormalize” package are shown in table G.2. The Shapiro-Wilk test results of
normalized response variables are shown in the following table 4.6, while results for
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original non-normal variables are shown in table G.3. From the table below it is clear
that most variables were successfully normalized except a few that have ? < 0.05, which
means that some variables were significantly different from Gaussian distribution.

Table 4.6: Significance p-values of Shapiro–Wilk test for normalized response variables
used in post-GWAS anaylsis

Dataset3(79) Dataset4(83) Dataset1(40) Dataset2(39)
Shannon 0.0911 0.032 0.8281 0.221
Simpson 0.0405 0.0596 0.1043 1

Lactobacillus 0.9998 0.9998 0.9984 0.9984
Acetobacter 0.9265 0.9188 0.0179 0.7467
Comamonas 1 0 0.3067 0.0031
Firmicutes 0.9999 0.9999 0.2294 0.1151

Proteobacteria 0.6362 0.2807 0.007 0.2895

4.8.4 Regression Model

The R provides several techniques to perform regression analysis but the most
common method is simple linear regression or lm function. However, as it was previously
stated the linear regression on non-normally distributed data can produce unreliable results.
Hence, based on a few values from table 4.6 it was decided not to use linear regressions
and instead use a regression-based on the generalized linear model (GLM) for the post-
GWAS. The GLM is a flexible version of the linear regression model that allows usage
of distribution models other than normal Gaussian. The script RunGlmAnalysis from
table H.2 performs GLM regression analysis for every dataset and response variable
per 103 SNPs in a triple loop, where it attempts to normalize the responsive variable
using the “bestNormalize” package, tests the potential covariates, and selects the most
significantly associated ones. Also, the RunGlmAnalysis script produces several outputs
that are processed separately later.
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4.8.5 Analysis of Associations (GLM)

After the post-GWAS analysis is complete, the results are processed using The
Python script MakeGwasGlmTables from table H.2 parses both overlap tables from prior
mGWAS and outputs of post-GWAS analysis by producing single Excel tables where
products of two GWAS analysis were concatenated across an axis that represent candidate
SNPs.

4.8.6 Candidate Gene Analysis

Among all candidate SNPs associated with gene annotations, few genes were
selected based on Venn or UpSet93 diagrams and were further investigated by reviewing
the literature for related studies. These selected genes henceforth are called “candidate
genes”. Significance results for these candidate genes from post-GWAS analysis and prior
mGWAS analysis are visualized in Appendix G on table G.4. Finally, table G.5 sets out
significance levels of the former p-value table in G.4. The significance levels are defined
separately for results of mGWAS and post-GWAS analysis. Particularly, the significance
levels for former mGWAS analysis using FastLMM are defined as ∗ ∗ ∗ < 5G10−7 <

∗∗ < 5G10−6 < ∗ < 5G10−5, while levels for the latter analysis using GLM are defined as
∗ ∗ ∗ < 5G10−4 < ∗∗ < 5G10−3 < ∗ < 5G10−2.

77



CHAPTER 5

RESULTS AND DISCUSSION

The microbiota of the Drosophila is known to be dominated by Firmicutes and
Proteobacteria phyla.33 According to figure 5.1 datasets analyzed in this study also demon-
strated the expected profile with the two most dominant phyla Firmicutes and Proteobac-
teria.

Figure 5.1: Relative phylum abundance per datasets.. Low abundant taxa were removed
to improve visibility. See section 4.6 for details.

Similarly, based on relative abundance values per dataset in figure 5.2, the twomost
abundant genus are Lactobacillus and Acetobacter, while the second most abundant taxon
is Comamonas. For the total abundance, see the plot on figure C.9 from Appendix C. Due
to difference in library sizes, four samples from the Jehrke data source have significantly
contributed to the Dataset4 OTU counts.
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Figure 5.2: Relative genus abundance per datasets. Low abundant taxa were removed to
improve visibility. See section 4.6 for details.

By further inspecting the total dataset abundance plot for the most dominant phyla
in figure 5.3, genera contribution per phylum can be observed. From both figures 5.2
and 5.3, it is clear that overall Acetobacter is the most abundant genus across all datasets.
However, compared to Lactobacillus theAcetobacter is not the only dominant genuswithin
the associated phylum. Whereas, within Firmicutes the genus Lactobacillus seems to be
the only dominant taxon essentially being almost the only contributor to the phylum.

Figure 5.3: Overall total abundance plot per datasets by most abundant phylum. Low
abundant taxa were removed to improve visibility. See section 4.6 for details.
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The alpha-diversity estimates shown in figure 5.4, indicate very similar evenness
values. Without a statistically significant(? > 0.05) difference between datasets, it is
not possible to have confidence in differentiating datasets based on evenness metrics.
However, the slight variations are is still present among datasets shown in figures 5.4 and
C.16 (appendix C). This difference in alpha-diversity is detected by mGWAS analysis
and further investigated in post-GWAS to identify statistically significant differences in
abundance values.

Figure 5.4: Richness box plots per datasets. Alpha-diversity richness box plot per
dataset. (Diamonds indicate mean values.)

It is also important to state that Dataset2 has the lowest Shannon and Simpson
estimates according to figure 5.4. Simultaneously, based on figure 5.4 it can be seen
that Acetobacter is the most dominant genus in Dataset2, while Lactobacillus is the
second most dominant genus. Moreover, based on figure 5.2 it is clear that Dataset1 and
Dataset2 have very similar total abundances of Acetobacter genus and slightly different
Comamonas from Proteobacteria phylum. However, based on the same figure 5.3, the
genus Lactobacillus has a difference in abundances between Dataset1 and Dataset2. Then
again, referring back to alpha-diversity estimates in figure 5.4, it is clear that Dataset1
and Dataset2 have differences in Simpson estimates. Because alpha-diversity estimates
were calculated on genera abundance values, there should be causal genus counts for
this variation. The difference is unlikely to be caused by Comamonas, and not caused
by Acetobacter. Therefore, it is safe to say that Simpson phenotype related associations
that might be identified by mGWAS could be associated with Lactobacillus abundance.
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Notably, it seems that the decrease in total abundance of Lactobacillus genus confides the
overall within sample dominance to the Acetobacter genus from Proteobacteria phylum.
This indirectly causes the Simpson dominance index to increase and decrease the actual
Simpson evenness estimate as shown on figure 5.4.

As it was previously described, the beta-diversity analysis produces MDS ordina-
tion plots as shown in figure 5.5 for Dataset4 and all remaining in appendix C.

Figure 5.5: Ordination plot for Dataset4(83). Multidimensional scaling of weighted
UniFrac distance matrix based on OTU-table of Dataset4(83).

According to the two-dimensional ordination plot (5.5), the first dimension of
MDS captures more than 60% of the original variance of OTU counts. It is important to
stress that when using weighted UniFrac distance metric the samples from two Jehrke data
sources concordantly coalesce with samples from the Chaston source, which has a much
smaller library size. This is not the case when using the unweighted UniFrac as shown in
figure C.15 in appendix C. Therefore, weighted UniFrac is more suitable as a beta-diversity
phenotype. To explain the MDS1 of the MDS analysis the correlation plot was produced
to inspect linear correlations with alpha-diversity estimates. Following figure 5.6 is a
correlation plot for Dataset4. The remaining figures can be found in appendix C.
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Figure 5.6: Interdependence between bio-diversity measures for Dataset4(83).

According to figure 5.6 the MDS1 has a significant linear dependence on both
Shannon and Simpson estimates. This indicates that approximately 60% variance captured
by MDS is mainly associated with alpha-diversity rather than phylogeny.

Following figure 5.7 demonstrates intersects among candidate genes for each
dataset and its phenotype. The analogous UpSet plot for candidate SNPs along with
separate Venn diagrams for every phenotype can be found in Appendix F. The UpSet and
Venn diagrams were generated based on table F.1, which for its part is based on table F.2
from Appendix F.
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Figure 5.7: An UpSet plot of overlapping candidate genes.. Genes intersections of top
candidate genes. First column is “Undefined” gene.

From above figure 5.7, it is clear that candidate genes are not always conserved
with increasing sample size number. However, clear patterns can be observed for Simp-
son phenotype datasets, which is sensitive to the species dominance. For instance, the
sixth and tenth columns on figure 5.7 show that the Simpson phenotype is conserved.
The sixth column indicates the conserved genes in Dataset1, Dataset3, and Dataset4.
While the tenth column indicates the shared genes in Dataset3 and Dataset4. Since the
Simpson index is sensitive to the dominance of OTUs within the community, then based
on figure 5.2 As it was previously stressed, clear patterns that might be associated with
Lactobacillus abundance emerge due to missing Dataset2 among the candidate gene set
intersections. By inspecting table F.2 in appendix F, the sixth and tenth columns are
associated with FBgn0039817 and FBgn0051805, respectively. Using a similar approach,
several candidate genes of interest were selected and shown in following table 5.1.
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Table 5.1: Candidate genes with prospect of further analysis

Column Gene SNPs Phenotype D1 D2 D3 D4

6 FBgn0039817 3R_26926653_SNP Simpson y n y y
10 FBgn0051805 2L_16898786_SNP Simpson n n y y
9 FBgn0259241 X_10902990_SNP Shannon n n y y
9 FBgn0029939 X_7038830_SNP Shannon n n y y
11 FBgn0259173 3L_7145588_SNP wUF-MDS1 n n y y

2 FBgn0011746 2R_4961519_DEL
Shannon n n y y
Simpson n n y y

From above table 5.1, the gene FBgn0259173, which is associated with weighted
UniFrac based MDS1, was excluded for future analysis. The reason for exclusion is due to
the necessity of a different post-GWAS analysis approach for this gene that will be stated
in the final concluding section. Nevertheless, the post-GWAS analysis includes all the
candidate SNPs, and the exclusion merely indicates “not focusing” in further investigation.
Similarly, but for different reasons, gene FBgn0029939 was excluded from further analysis
because the GLM regression model discarded the genotype profile of the related SNP in
the post-GWAS analysis. The SNP with label X_7038830_SNP happened to have has
solely homogeneous sample genotypes within any of the four datasets. In other words,
for each dataset, this SNP has either a set of solely missing and homologous genotypes
or missing and heterozygous genotypes. Therefore, the regression model discarded the
estimatorwhere all independent variables consist of are eithermissing values or categorical
variables with a single level. Lastly, the variant 2R_4961519_DEL, which is associated
with gene FBgn0011746, was excluded from further analysis due to missing gene ontology
and supporting papers in the literature. Therefore, further analysis is only focused on genes:
FBgn0039817, FBgn0259241, and FBgn0051805. Following table 5.2 summarizes the
literature review of selected candidate genes of interest.
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Table 5.2: Summary for candidate genes of interest. Source of annotations is FlyBase
version FB2020_06

Gene FBgn0039817 FBgn0259241 FBgn0051805

Number of SNPs 1 1 1

GO
Annotations

Molecular
Function

-
scavenger receptor

activity and
polysaccharide binding

-

Biological
Process

Transmembrane
transport

immune response
response to
stimulus

Cellular
Component

Integral component
of membrane

- -

Associated Function Folate transport Immune response
Involved in

wound healing
Homologous
Human Gene

SLC46A1 SBSPON -

Associated Diseases
Folate (Vitamin B9)

malabsorption
Inflammatory
Bowel Disease

-

Suspected
Phenotype

Lactobacillus,
Proteobacteria,
Firmicutes

Proteobacteria -

Justification
Suspected phyla are
linked to de-novo
folate production

Associated with
enteric infections
and gut disease

-

Supporting Papers (95–99) (100–102) -

From the above table 5.2, based on the FlyBase92 database, the gene FBgn0039817
has the human homologous gene SLC46A1, both of which are associated with folate trans-
port. Accordingly, the mutations in this gene are found to be associated with folate malab-
sorption. A folate is a natural form of vitamin B9, an essential vitamin for all animals with
an important role in cell growth and metabolism. In humans, folate deficiency is linked
to many health problems ranging from pregnancy-associated birth defects to neurological
brain diseases.97 In D. melanogaster, folate deficiency was found to be associated with
slower development and worse fitness.95 The primary cause for stressing the importance
of folate is because it is not produced by the human body or D. melanogaster, and instead
it is naturally synthesized by microorganisms associated with gut microbiota. Moreover,
both Firmicutes and Proteobacteria are primary phyla known to be linked to de-novo fo-
late production.96 Besides, the genus Lactobacillus is a probiotic bacteria associated with
vitamin production including folate.98 Therefore, all things considered, it would not be
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absurd to presume that the aforementioned taxa are associated with folate malabsorption
or deficiency. To support the conjecture following table 5.3 summarizes the phenotype
significance levels from both FastLMM/GWAS and GLM/post-GWAS analysis results.

Table 5.3: Overall GWAS and post-GWAS analysis results for candidate gene
FBgn0039817. For complete table of candidate genes see table G.5 and G.4

Dataset1(40) Dataset2(39) Dataset3(79) Dataset4(83)

FastLMM
Shannon *
Simpson ** ** *

GLM

Shannon *** *** ***
Simpson *** *** ***

Lactobacillus *
Acetobacter * *
Comamonas
Firmicutes * *

Proteobacteria *** * *** **

According to the results from above table 5.3, it is clear that Proteobacteria is signif-
icantly associated with the variant 3R_26926653_SNP of gene FBgn0259241 in Dataset1,
Dataset2, and Dataset4. In other words, statistically, the Null hypothesis is rejected, which
is stating that the sample genotype profile and abundance values of Proteobacteria within
the datasets are from the same population. Namely, based on defined significance levels,
there is high confidence that the samples with genotype 3R_26926653_SNP of the gene
FBgn0259241 are significantly associated with abundance profiles of Proteobacteria phy-
lum in aforesaid datasets. This finding supports the hypothesis of this thesis. To cover
every aspect, neither genus Lactobacillus nor phylum Firmicutes were not significantly
associated with high confidence like Proteobacteria does. Based on the previous exegesis
over the alpha-diversity and abundance results, the lower total abundance of Lactobacil-
lus could be the main cause of low confidence associated with the Lactobacillus and
Firmicutes phenotype in Dataset2 and high confidence association with Proteobacteria
phenotype in the remaining datasets in table 5.3. However, to investigate the issue further,
it is necessary to have more significance confidence, which is not possible with the current
overall sample size. Therefore, with current data, it is not unreasonable to conclude that
the phylum Proteobacteria could be linked to folate malabsorption.

In the same manner, from table 5.2 gene FBgn0259241 was found to be associated
with the gut disease. Particularly, the human homologous gene SBSPON or somatomedin
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B and thrombospondin type 1 domain-containing was found to be associated with Crohn’s
Disease (CD) in theAshkenazi Jewish population.101 Further, the literature review revealed
that phylum Proteobacteria and particularly Comamonas genus was associated with col-
orectal cancer (CRC) and inflammatory bowel disease (IBD) such as CD.100 However,
the post-GWAS analysis did not find any significant associations with the Comamonas
genus as is shown in below table 5.4. Instead, a highly confident significant association
with genus Acetobacter was found. Although, no human studies associated with Aceto-
bacter genus and gut disease was found, studies on D. melanogaster disclosed interesting
findings. It was found that both Lactobacillus and Acetobacter are linked to immune
deficiency (IMD), which is interesting since based on table 5.2 the gene of interest is
associated with an immune response function.

Table 5.4: Overall GWAS and post-GWAS analysis results for candidate gene
FBgn0259241. For complete table of candidate genes see table G.5 and G.4

Dataset1(40) Dataset2(39) Dataset3(79) Dataset4(83)

FastLMM
Shannon ** **
Simpson

GLM

Shannon * * *** ***
Simpson * * ** ***

Lactobacillus * * *
Acetobacter * ** ** **
Comamonas
Firmicutes * *

Proteobacteria * ** ***

Finally, the literature review for gene FBgn0051805 did not reveal any microbiota
studies. The overall significance results for this gene can be found in table G.5 in appendix
G. Lastly, it is important to note that, though endosymbiontWolbachiawere excluded from
analysis, it was found to have a profound effect on remaining microbiota composition as it
is shown in the figure below 5.8.
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Figure 5.8: The effect of endosymbiontWolbachia on microbiota

Moreover, the status of Wolbachia as a covariate in the post-GWAS analysis was
found to have a highly negative regression coefficient and not infrequently had a significant
association with the phenotype. In a few words, it is interesting to note that endosymbiotic
bacteria including Wolbachia could have a direct or indirect role in folate synthesis.95
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, host-microbiome interactions of D. melanogaster model organisms
were investigated. The literature was surveyed for microbiota studies with DGRP sam-
ples based on the 16S rRNA marker gene region. The problems of the meta-analysis
were addressed to use the sample data produced by independent studies, using different
sequencing technology and computational data analysis methods. Merging and data pro-
cessing was performed using the novel microbiome meta-analysis framework PhyloMAF
that was developed to address shortcomings of the microbiome meta-analysis. Merging
and rearrangement of source datasets were followed by quality control and phylogenetic
tree reconstruction. The OTU-tables of four target datasets along with phylogenetic trees
were analyzed using alpha-diversity and beta-diversity metrics. Two Shannon and Simp-
son alpha diversity indices and the first dimension of MDS based on weighted UniFrac
beta-diversity distance metric were used as target phenotypes in mGWAS analysis using
the FastLMM tool. The mGWAS identified multiple SNPs per dataset and per phenotype,
which were filtered, annotated, and further analyzed. Top variant associations called
candidate SNPs were used as the explanatory variables and further investigated in post-
GWAS analysis using GLM regression models. Several specific phenotypes like genus
and phylum abundance values were used as response variables in regression analysis.
Among genes related to candidate SNPs, few candidate genes were selected for in-depth
analysis. The gene FBgn0039817, which is associated with folate transport, was found to
be significantly associated with the Simpson index in mGWAS analysis and the abundance
of phylum Proteobacteria. Besides, based on the literature review the latter was found
to be associated with de-novo folate synthesis. Similarly, the gene FBgn0259241 was
found to be involved with an immune response in D. melanogaster, and its human homol-
ogous gene was found to be associated with IBD. The post-GWAS analysis for this gene
found a significant association with Proteobacteria and Acetobacter. The latter was also
found to be associated with IBD in the fruit fly. In conclusion, two genes FBgn0039817
and FBgn0259241 of D. melanogaster were found associated with microbiota and linked
to folate malabsorption and gut disease, respectively. Further, the meticulous analysis
was performed to rationalize the phenotype associations and provide the basis for further
studies.

The primary limiting factor of this research is the low sample size. Therefore, in
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the future, using more samples from different independent studies will be useful to validate
the results. Moreover, endosymbiontWolbachiawas found to have significant associations
with candidate SNPs and has a substantial effect on microbiota profiles. Moreover, the
possibility that endosymbiont bacteria could play a role in folate synthesis makes it a
very interesting subject to investigate. Therefore, further GWAS research with a focus
on Wolbachia could reveal interesting discoveries. Lastly, due to the difference in library
sizes of data sources, the effect of rare taxa was not investigated in this study. Integration
of OTU-table normalization methods in PhyloMAF could address this issue.
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Table A.1: OTU-table for Dataset1.

ID R
A
L_

10
9

R
A
L_

16
1

R
A
L_

18
1

R
A
L_

23
7

R
A
L_

28

R
A
L_

30
4

R
A
L_

32
1

R
A
L_

36
7

R
A
L_

37
1

R
A
L_

37
4

R
A
L_

38
0

R
A
L_

39
8

R
A
L_

39
9

R
A
L_

40
9

R
A
L_

42
6

R
A
L_

42
7

R
A
L_

44
0

R
A
L_

44
1

R
A
L_

44
3

R
A
L_

45

R
A
L_

49
2

R
A
L_

56
3

R
A
L_

58
4

R
A
L_

64
2

R
A
L_

73

R
A
L_

73
7

R
A
L_

75
0

R
A
L_

78
3

R
A
L_

78
7

R
A
L_

80
1

R
A
L_

80
5

R
A
L_

80
8

R
A
L_

81
0

R
A
L_

83

R
A
L_

84
3

R
A
L_

85
2

R
A
L_

88
2

R
A
L_

88
4

R
A
L_

89
7

R
A
L_

90
8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 0 0 1 5 0 0 1 0 0 0 0 1 0 2 1 0 1 2 3 4 3 1 9 0 2 2 0 0 1 1 0 3 4 0 2 0 0 0 4
2 7 3 1 2 11 1 3 1 0 0 1 1 0 2 1 3 0 4 1 9 9 2 4 20 0 4 2 0 3 3 1 0 9 10 1 2 0 2 0 7
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 3 1 0 2 0 0 0 0 1 2 0 1 0 0 0 1 1 0 0 7 0 0 9 0 1 2 0 3 1 0 0 1 2 0 1 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
8 1 0 0 2 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 2 2 0 1 4 0 3 1 0 1 0 0 0 3 1 0 0 2 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 6 2 4 3 10 1 0 1 1 5 0 1 1 0 0 5 1 1 0 12 7 2 1 9 0 12 5 0 1 3 0 1 1 5 0 2 0 1 0 6
12 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 3 5 1 0 2 4 0 0 7 0 0 0 0 0 0 5
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 2806 18 19 0 0 0 0 0 0 0 1 0 15 0 0 0 0 1 0 2 0 0 0 476 0 0 46 123 0 0 0 1 32 6 0 0 40 5 0 0
15 570 6 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 104 0 0 0 27 0 0 0 0 3 0 0 0 5 6 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
19 1 252 1620 192 2570 122 162 2607 2887 1 3 620 2664 1771 2429 21 281 2 1330 3511 967 1768 1217 351 438 26 580 596 133 242 681 1405 3093 6533 931 582 520 2 914 2301
20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
21 1 0 1 1 2 0 0 0 0 2 0 0 0 0 0 1 0 1 0 7 9 0 0 12 0 3 0 0 1 2 0 0 6 1 0 1 0 0 0 4
22 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
23 38 6 2 62 51 8 12 5 4 50 7 11 20 6 6 12 0 10 8 92 111 12 39 152 1 74 12 1 29 30 2 3 69 59 14 24 5 10 2 68
24 5 1 2 0 0 0 0 4 0 3 2 0 0 2 1 1 5 1 0 0 2 1 0 5 0 1 4 1 0 0 4 2 0 3 0 0 0 2 0 6
25 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 12 0 0 0 0 0 2 0 0 0 0 0 0 0
26 3 1 0 0 3 1 0 1 1 4 2 0 2 0 0 1 1 1 0 3 13 0 1 7 0 2 1 0 1 1 0 0 5 3 0 0 0 0 0 1
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 488 558 2138 133 679 4900 3852 2045 2922 18 146 232 1104 1874 3864 1640 588 159 11625 2098 3001 5163 2139 1207 2348 16 499 2159 195 1022 5659 15525 2051 5380 2271 199 2878 316 1541 1510
29 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 1 0 0 0 187 2150 1 0 0 0 0 0 0 0 0 1718 267 0 0 1 631 0 0 2756 0 0 1598 565 1 0 0 0 2440 1066 0 0 0 0
31 0 1716 0 0 0 0 0 0 0 0 0 419 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1003 0 0 0 0
32 24 0 11 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 7 0 0 59 1 0 0 0 1 0 0 0 0 0 0 0 1
33 0 0 0 0 2 0 0 0 4 0 0 0 1 0 0 0 0 0 0 3 0 1 3 4 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 1
34 65 15 4 50 158 15 7 17 14 40 17 13 29 8 4 23 17 23 16 121 147 20 34 257 2 69 23 4 43 32 0 2 153 79 8 22 11 14 24 107
35 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
36 1 0 0 0 1 1 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 2 0 0 1 0 2 0 0 0 7 1 0 0 0 1 0 0
37 214 90 35 345 539 96 41 99 23 181 91 37 127 71 57 179 44 73 44 700 758 124 170 988 18 428 131 22 177 140 19 41 492 423 86 149 36 63 70 504
38 17 6 4 25 38 4 1 7 1 16 12 2 17 6 1 20 2 5 6 68 66 7 16 80 2 46 19 1 10 12 1 8 38 33 8 14 3 3 5 49
39 1 0 1 1 2 1 0 0 2 0 0 0 0 0 0 1 1 1 0 2 3 1 2 4 0 2 2 0 0 2 0 0 0 0 0 3 0 0 0 6
41 138 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 19 0 0 0 7 0 0 0 0 0 0 0 0 2 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 92 5 10 1 15 3 1 2 3 9 3 1 7 3 0 8 3 2 1 36 26 4 7 46 1 17 16 6 9 12 0 3 25 9 3 10 3 1 4 27
44 0 0 0 0 3 1 0 1 0 1 1 0 0 0 0 1 0 0 2 2 5 2 1 3 0 7 1 0 0 1 0 0 1 3 0 1 0 0 1 2
45 2 1 2 1 13 2 0 3 0 2 5 0 5 5 3 5 2 1 0 21 3 5 0 26 0 10 3 0 0 2 0 1 12 14 0 0 1 0 1 14
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.2: OTU-table for Dataset2.
ID R
A
L_

10
5

R
A
L_

14
9

R
A
L_

17
6

R
A
L_

19
5

R
A
L_

23
5

R
A
L_

26

R
A
L_

27
2

R
A
L_

31
9

R
A
L_

33
2

R
A
L_

34
0

R
A
L_

35
0

R
A
L_

35
2

R
A
L_

35
8

R
A
L_

36
0

R
A
L_

37
7

R
A
L_

38
5

R
A
L_

39
3

R
A
L_

48
6

R
A
L_

51
3

R
A
L_

51
4

R
A
L_

55
4

R
A
L_

59

R
A
L_

71
2

R
A
L_

73
8

R
A
L_

77
1

R
A
L_

77
6

R
A
L_

79
6

R
A
L_

81
9

R
A
L_

83
7

R
A
L_

84
9

R
A
L_

85

R
A
L_

85
0

R
A
L_

85
5

R
A
L_

85
7

R
A
L_

86
1

R
A
L_

87
9

R
A
L_

90
0

R
A
L_

90
7

R
A
L_

91
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1 6 1 1 1 0 1 0 0 2 2 2 1 1 7 0 0 1 0 0 1 0 2 0 0 0 2 0 0 0 0 2 1 0 0 1 0 0 0 3
2 11 4 1 0 1 4 0 1 4 3 4 1 4 15 0 1 1 1 0 10 1 10 0 2 3 2 1 3 0 2 6 0 4 5 4 0 3 21 7
3 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
5 6 4 0 0 1 0 0 0 6 1 1 1 2 6 0 0 0 0 0 3 0 13 1 0 1 1 0 0 1 0 2 0 0 0 0 0 3 5 1
6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 0 0 0 0 1 0 1 2 0 5 0 2 8 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 2 2 2 1 1 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 13 1 3 2 4 11 0 0 13 3 10 0 2 12 0 1 1 5 0 4 0 6 0 0 2 0 0 0 0 3 12 0 5 0 1 0 3 0 7
12 0 0 12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 1 80 0 10 5 0 1 0 3 3 0 82 4 1 0 0 0 0 0 0 13 11 0 1 0 789 0 20 0 0 0 13 0 0 0 0 0 56 0
15 0 18 0 0 2 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 1 5 0 0 0 273 0 3 0 0 0 8 0 0 0 0 0 15 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
19 25 1464 1841 267 42 109 2287 642 16 305 5 384 82 1582 1305 549 4 0 1561 2073 461 2016 313 116 1356 1558 1739 1798 321 743 464 70 754 195 0 432 138 377 570
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 4 0 0 0 1 1 0 0 2 1 1 0 2 3 0 0 0 0 1 4 0 3 0 0 0 0 0 0 0 0 6 0 0 1 0 0 1 6 2
22 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 73 13 17 4 16 27 3 0 42 28 94 15 19 232 2 5 21 32 6 34 9 60 2 11 2 21 3 15 10 4 38 12 54 6 10 0 13 77 89
24 5 0 0 1 2 3 0 0 5 0 1 1 6 6 0 0 3 0 0 1 0 7 0 0 6 5 0 1 0 2 7 0 0 1 0 0 3 5 1
25 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 1 0 0 0 0 2 2 3 0 5 0 1 5 0 0 0 2 0 1 0 0 0 0 0 2 1 1 0 2 2 1 1 0 0 0 2 2 3
27 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
28 409 6520 10327 6452 125 2456 4450 1359 5679 677 64 383 4694 1866 3631 2082 4 2254 9372 1628 1031 2690 820 294 934 977 2065 3832 1222 7971 3612 244 372 398 476 1460 1220 4193 935
29 0 0 0 0 1 3 0 0 2 0 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 0 1 2 0 1 0 0 0 0 0 0 1 2 0
30 2 0 970 1049 0 0 0 1083 0 0 4192 0 1 2 0 0 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 0 5252 0 0 0 1
31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
32 1 0 1 2 1 0 0 0 0 0 0 0 11 1 0 0 1 0 1 1 0 2 0 0 0 13 0 1 0 1 0 0 0 2 0 0 0 5 1
33 6 0 0 0 0 0 0 0 2 0 1 0 0 3 0 1 0 2 0 1 0 1 0 2 0 0 0 0 0 0 6 0 0 0 1 0 3 3 0
34 151 24 11 4 30 45 8 7 63 41 126 21 30 253 0 14 21 74 8 52 11 101 2 13 8 23 13 28 14 3 57 30 51 12 16 0 38 146 114
35 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
36 1 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 1 0 0 1 0
37 750 97 74 39 91 313 76 25 471 154 587 148 181 1541 10 87 114 326 52 202 43 448 26 75 76 122 70 108 62 39 481 105 304 92 69 8 182 557 524
38 76 9 3 5 12 23 2 10 40 9 52 15 17 152 3 7 19 25 7 16 3 31 5 4 10 8 1 8 7 5 44 3 30 7 0 1 17 33 53
39 7 1 0 0 0 1 0 1 5 0 3 0 2 7 0 3 1 2 0 2 0 0 0 0 0 3 1 2 0 0 2 1 0 0 1 0 0 3 2
41 0 4 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 53 0 2 0 0 1 1 0 0 0 0 0 1 0
42 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
43 31 6 4 2 7 25 7 8 47 3 22 4 17 66 1 2 5 7 1 8 0 13 2 2 13 38 3 3 2 1 45 5 12 3 7 2 16 35 2
44 4 0 0 0 0 0 0 0 1 5 8 1 0 17 0 1 0 4 0 1 1 2 1 0 0 0 0 0 0 0 8 0 2 1 0 0 0 3 0
45 11 3 1 3 1 5 3 6 11 3 5 2 3 11 0 1 2 3 3 8 0 13 0 0 6 3 1 3 4 0 13 0 1 0 2 0 1 6 5
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Table A.3: OTU taxonomy for Dataset1, Dataset2 and Dataset3

ID Taxonomy
0 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Corynebacteriaceae; g__Corynebacterium
1 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Microbacteriaceae; g__Leucobacter
2 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Microbacteriaceae; g__Microbacterium
3 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Kocuria
4 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Micrococcus
5 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Nocardiaceae; g__Rhodococcus
6 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Propionibacterium
7 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides
8 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Flavobacterium
9 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Tamlana
10 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter
11 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Sphingobacterium
12 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus
13 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Oceanobacillus
14 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Paenibacillaceae; g__Brevibacillus
15 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Paenibacillaceae; g__Paenibacillus
16 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Lysinibacillus
17 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Staphylococcaceae; g__Jeotgalicoccus
18 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Staphylococcaceae; g__Staphylococcus
19 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus
20 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Caulobacter
21 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Mycoplana
22 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae; g__Afipia
23 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Brucellaceae; g__Ochrobactrum
24 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Methylobacteriaceae; g__Methylobacterium
25 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Phyllobacteriaceae; g__Mesorhizobium
26 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Rhizobiaceae; g__Agrobacterium
27 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Paracoccus
28 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Acetobacter
29 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Acidocella
30 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Gluconacetobacter
31 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Gluconobacter
32 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Novosphingobium
33 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Sphingomonas
34 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Alcaligenaceae; g__Achromobacter
35 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae; g__Burkholderia
36 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae; g__Lautropia
37 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Comamonas
38 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Delftia
39 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia
41 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Enterobacter
42 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea
43 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter
44 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas
45 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Rhodanobacter
46 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Stenotrophomonas
47 k__Bacteria; p__Thermi; c__Deinococci; o__Thermales; f__Thermaceae; g__Thermus
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Table A.4: OTU-table for Dataset4 (part 1).
ID R
A
L_

51
3

R
A
L_

51
4

R
A
L_

55
4

R
A
L_

56
3

R
A
L_

58
4

R
A
L_

59

R
A
L_

64
2

R
A
L_

71
2

R
A
L_

73

R
A
L_

73
7

R
A
L_

73
8

R
A
L_

75
0

R
A
L_

77
1

R
A
L_

77
6

R
A
L_

78
3

R
A
L_

78
7

R
A
L_

79
6

R
A
L_

80
1

R
A
L_

80
5

R
A
L_

80
8

R
A
L_

81
0

R
A
L_

81
9

R
A
L_

83

R
A
L_

83
7

R
A
L_

84
3

R
A
L_

84
9

R
A
L_

85

R
A
L_

85
0

R
A
L_

85
2

R
A
L_

85
5

R
A
L_

85
7

R
A
L_

85
9

R
A
L_

86
1

R
A
L_

87
9

R
A
L_

88
2

R
A
L_

88
4

R
A
L_

89
7

R
A
L_

90
0

R
A
L_

90
7

R
A
L_

90
8

R
A
L_

91
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.75 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.75 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
6 0 1 0 3 1 2 9 0 0 2 0 2 0 2 0 0 0 1 1 0 3 0 4 0 0 0 2 1 2 0 0 0 1 0 0 0 0 0 0 4 3
7 0 10 1 2 4 10 20 0 0 4 2 2 3 2 0 3 1 3 1 0 9 3 10 0 1 2 6 0 2 4 5 0 4 0 0 2 0 3 21 7 7
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167.25 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 3 0 0 0 13 9 1 0 1 0 2 1 1 0 3 0 1 0 0 1 0 2 1 0 0 2 0 1 0 0 0 0 0 0 0 0 3 5 0 1
13 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.25 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.75 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
28 1 0 0 0 1 1 4 0 0 3 1 1 1 0 0 1 1 0 0 0 3 0 1 0 0 0 1 2 0 2 2 0 1 1 2 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 4 0 2 1 6 9 0 0 12 0 5 2 0 0 1 0 3 0 1 1 0 5 0 0 3 12 0 2 5 0 0 1 0 0 1 0 3 0 6 7
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 1 0 0 0 0 0 0 3 5 0 1 0 0 0 2 0 4 0 0 7 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 0 0 5 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 13 0 0 11 476 0 0 0 1 46 0 789 123 0 0 0 0 1 32 20 6 0 0 0 0 13 0 0 0 0 0 0 40 5 0 0 56 0 0
44 0 0 1 0 0 5 104 0 0 0 0 0 0 273 27 0 0 0 0 0 3 3 0 0 0 0 0 8 0 0 0 0 0 0 5 6 0 0 15 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 8.75 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5415612073 461 176812172016 351 313 438 26 11658013561558 596 133 1739 242 681 1405 309317986533 321 931 743 464 70 582 754195721.75 0 432 520 2 914 138 377 2301570
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0104
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57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.25 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.5 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 1 4 0 0 0 3 12 0 0 3 0 0 0 0 0 1 0 2 0 0 6 0 1 0 0 0 6 0 1 0 1 0 0 0 0 0 0 1 6 4 2
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
81 6 34 9 12 39 60 152 2 1 74 11 12 2 21 1 29 3 30 2 3 69 15 59 10 14 4 38 12 24 54 6 0 10 0 5 10 2 13 77 68 89
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 0 1 0 1 0 7 5 0 0 1 0 4 6 5 1 0 0 0 4 2 0 1 3 0 0 2 7 0 0 0 1 0.25 0 0 0 2 0 3 5 6 1
86 0 0 0 0 0 0 5 0 0 0 0 12 0 8 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
88 0 1 0 0 1 0 7 0 0 2 0 1 0 2 0 1 1 1 0 0 5 1 3 0 0 2 2 1 0 1 0 0.5 0 0 0 0 0 2 2 1 3
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
91 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9393721628103151632139269012078202348 16 294499 934 977 2159 195 206510225659155252051383253801222227179713612244 199 3723985381.5 476 146028783161541122041931510935
94 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
95 0 0 0 1 631 0 0 0 0 2756 0 0 0 0 0 1598 0 565 1 0 0 0 0 0 2440 0 0 0 1066 58 0 0 5252 0 0 0 0 0 0 0 1
96 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 1003 0 0 0 0 0 0 0 0 0 0 0 0
97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0
98 1 1 0 0 0 2 7 0 0 0 0 59 0 13 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 5 1 1
99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 1 0 1 3 1 4 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 6 0 0 0 0 1.25 1 0 0 0 0 3 3 1 0
101 8 52 11 20 34 101 257 2 2 69 13 23 8 23 4 43 13 32 0 2 153 28 79 14 8 3 57 30 22 51 12 0.25 16 0 11 14 24 38 146 107 114
102 0 0 0 0 0 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0
103 0 1 0 0 0 0 2 0 0 0 0 1 0 1 0 2 0 0 0 0 7 0 1 0 0 0 2 0 0 0 0 4.5 1 0 0 1 0 0 1 0 0
104 52 202 43 124 170 448 988 26 18 428 75 131 76 122 22 177 70 140 19 41 492 108 423 62 86 39 481 105 149 304 92 0 69 8 36 63 70 182 557 504 524
105 7 16 3 7 16 31 80 5 2 46 4 19 10 8 1 10 1 12 1 8 38 8 33 7 8 5 44 3 14 30 7 0 0 1 3 3 5 17 33 49 53
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0105
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115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 0 2 0 1 2 0 4 0 0 2 0 2 0 3 0 0 1 2 0 0 0 2 0 0 0 0 2 1 3 0 0 0 1 0 0 0 0 0 3 6 2
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.5 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 1 19 0 0 0 0 0 0 53 7 0 0 0 0 0 0 2 0 0 0 0 1 1 0 0 0 1.75 0 0 2 0 0 0 1 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.25 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 0 0 0 0 0 0 0
138 1 8 0 4 7 13 46 2 1 17 2 16 13 38 6 9 3 12 0 3 25 3 9 2 3 1 45 5 10 12 3 0.75 7 2 3 1 4 16 35 27 2
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
143 0 1 1 2 1 2 3 1 0 7 0 1 0 0 0 0 0 1 0 0 1 0 3 0 0 0 8 0 1 2 1 0.75 0 0 0 0 1 0 3 2 0
144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
145 3 8 0 5 0 13 26 0 0 10 0 3 6 3 0 0 1 2 0 1 12 3 14 4 0 0 13 0 0 1 0 0 2 0 1 0 1 1 6 14 5
146 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.75 0 0 0 0 0 0 0 0 0
147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
148 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
149 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.5: OTU-table for Dataset4 (part 2).
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0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.75 0 3.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 2.5 0.25 0 5.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 3 1 0 1 0 1 0 1 1 0 5 0 0 0 0 0 0 2 2 2 1 1 7 1 0 0 0 0 0 1 0 1 0 2 1 0 1 2 3 0 4
7 11 7 4 3 1 1 0 1 2 4 0 11 0 0 1 0 1 3 4 3 4 1 4 15 1 0 0 0 1 1 1 1 0 2 1 3 0 4 1 9 1 9
8 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0.67 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 0.25 0.25 0 6 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 0 0 249 45.5 0 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 6 0 4 3 0 1 0 1 0 0 0 2 0 0 0 0 0 0 6 1 1 1 2 6 0 0 1 0 2 0 0 0 1 0 0 0 1 1 0 0 0 7
13 0 0 0 0 0 0 0 0 0 0 0 0 2.5 0.25 0 3.33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 2.75 0.5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 34 5.25 0 22.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 3.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 1 1 0 0 0 0 0 0 2 1 0 1 1.5 0 1 1.67 1 1 2 0 5 0 2 8 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 2 0 2
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 2.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0.75 0 0 5.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0.75 0.75 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.67 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 0 0 0 0 1 0 0 0 3 0 0
37 13 6 1 2 3 4 2 4 3 11 0 10 0 0 1 0 0 0 13 3 10 0 2 12 1 1 5 0 0 1 1 1 1 0 0 5 1 1 0 12 5 7
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 1 12 0 0 0 0 0 0 0 1.75 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 1 2806 80 18 0 19 10 5 0 0 1 0 0 0 0 0 0 0 3 3 0 82 4 1 0 0 0 0 1 0 0 0 15 0 0 0 0 1 0 2 0 0
44 0 570 18 6 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
49 0 0 0 1 0 0 0 0 0 0 0 0 21 1.75 0 154.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 43 3.75 0 33.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 25 1 1464 252 1841 1620 267 42 192 109 22872570 362.25 49852 122 33145 642 162 16 305 5 384 82 158226072887 1 1305 3 549 4 620266417712429 21 281 2 1330 3511 0 967
55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0107
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57 0 0 0 0 0 0 0 0 0 0 0 0 130.75 13.5 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 16.75 3.25 0 32.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 3.5 0 0 1.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 2.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 0 0 1.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 0 0 0 0 0 0 0 0 0 0 0 0 4 0.5 0 4.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0 0 119 13 0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 0 3.25 1 0 5.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 0 0 41.75 6 0 37.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.25 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 4 1 0 0 0 1 0 1 1 1 0 2 0 0 0 0 0 0 2 1 1 0 2 3 0 0 2 0 0 0 0 0 0 0 0 1 0 1 0 7 0 9
77 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
81 73 38 13 6 17 2 4 16 62 27 3 51 0.75 0 8 0 0 12 42 28 94 15 19 232 5 4 50 2 7 5 21 11 20 6 6 12 0 10 8 92 32 111
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
83 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 1.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 5 5 0 1 0 2 1 2 0 3 0 0 0 0 0 0.67 0 0 5 0 1 1 6 6 4 0 3 0 2 0 3 0 0 2 1 1 5 1 0 0 0 2
86 0 4 4 0 0 3 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
88 0 3 1 1 0 0 0 0 0 0 2 3 0.75 0 1 1.67 2 0 3 0 5 0 1 5 1 1 4 0 2 0 0 0 2 0 0 1 1 1 0 3 2 13
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91 0 0 0 0 0 0 0 0 0 0 0 0 1.75 0 0 5.67 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93409 488 6520 558 103272138645212513324564450 679 50722.523796.5490032249.33135938525679677 64 3834694186620452922 18 36311462082 4 2321104187438641640588 159 11625209822543001
94 0 0 0 0 0 0 0 1 1 3 0 3 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 1 0 1
95 2 0 0 0 970 1 1049 0 0 0 0 0 0 0 0 0 1083 187 0 0 4192 0 1 2 2150 1 0 0 0 0 334 0 0 0 0 0 0 1718 267 0 0 0
96 1 0 0 1716 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 419 0 1 0 0 0 0 0 1 0 1
97 0 0 0 0 0 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98 1 24 0 0 1 11 2 1 0 0 0 3 0.5 0 0 3.33 0 0 0 0 0 0 11 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
99 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 6 0 0 0 0 0 0 0 0 0 0 2 4.25 1.75 0 37.67 0 0 2 0 1 0 0 3 0 4 0 0 0 1 0 0 1 0 0 0 0 0 0 3 2 0
101151 65 24 15 11 4 4 30 50 45 8 158 1.75 0 15 0 7 7 63 41 126 21 30 253 17 14 40 0 17 14 21 13 29 8 4 23 17 23 16 121 74 147
102 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
103 1 1 0 0 0 0 0 0 0 0 0 1 8.5 0.75 1 9.67 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0
104750 214 97 90 74 35 39 91 345 313 76 539 0 0 96 0 25 41 471 154 587 148 181 1541 99 23 181 10 91 87 114 37 127 71 57 179 44 73 44 700 326 758
105 76 17 9 6 3 4 5 12 25 23 2 38 0 0 4 0 10 1 40 9 52 15 17 152 7 1 16 3 12 7 19 2 17 6 1 20 2 5 6 68 25 66
106 0 0 0 0 0 0 0 0 0 0 0 0 1.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0108
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115 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 7 1 1 0 0 1 0 0 1 1 0 2 0 0 1 1.33 1 0 5 0 3 0 2 7 0 2 0 0 0 3 1 0 0 0 0 1 1 1 0 2 2 3
117 0 0 0 0 0 0 0 0 0 0 0 0 0.75 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 13.25 1.25 0 9.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 0 0 10.25 1.25 0 4.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 0 0 22.25 2.25 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 0 0 5.75 1.25 0 10.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128 0 138 4 0 0 0 0 2 0 0 0 0 59.5 1 0 2.67 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 16 3.25 0 10.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2.67 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 0 0 2.25 0.5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 2.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 31 92 6 5 4 10 2 7 1 25 7 15 57 1.75 3 14.67 8 1 47 3 22 4 17 66 2 3 9 1 3 2 5 1 7 3 0 8 3 2 1 36 7 26
139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 0 0 2 0.25 0 2.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
141 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
143 4 0 0 0 0 0 0 0 0 0 0 3 4.75 0.75 1 6.67 0 0 1 5 8 1 0 17 1 0 1 0 1 1 0 0 0 0 0 1 0 0 2 2 4 5
144 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
145 11 2 3 1 1 2 3 1 1 5 3 13 0 0 2 0 6 0 11 3 5 2 3 11 3 0 2 0 5 1 2 0 5 5 3 5 2 1 0 21 3 3
146 0 0 0 0 0 0 0 0 0 0 0 0 32.75 0.25 0 6.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
147 0 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
148 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.6: OTU taxonomy from Dataset4 dataset.

ID Taxonomy
0 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Actinomycetaceae; g__Actinomyces
1 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Brevibacteriaceae; g__Brevibacterium
2 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Corynebacteriaceae; g__Corynebacterium
3 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Dermabacteraceae; g__Brachybacterium
4 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Dermacoccaceae; g__Dermacoccus
5 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Gordoniaceae; g__Gordonia
6 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Microbacteriaceae; g__Leucobacter
7 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Microbacteriaceae; g__Microbacterium
8 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Kocuria
9 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Micrococcus
10 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Rothia
11 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Mycobacteriaceae; g__Mycobacterium
12 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Nocardiaceae; g__Rhodococcus
13 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Propionibacterium
14 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Pseudonocardiaceae; g__Pseudonocardia
15 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Bifidobacterium
16 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Gardnerella
17 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Scardovia
18 k__Bacteria; p__Actinobacteria; c__Coriobacteriia; o__Coriobacteriales; f__Coriobacteriaceae; g__Atopobium
19 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides
20 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Paraprevotellaceae; g__Prevotella
21 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides
22 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Porphyromonas
23 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Tannerella
24 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Prevotellaceae; g__Prevotella
25 k__Bacteria; p__Bacteroidetes; c__Cytophagia; o__Cytophagales; f__Cytophagaceae; g__Dyadobacter
26 k__Bacteria; p__Bacteroidetes; c__Cytophagia; o__Cytophagales; f__Cytophagaceae; g__Hymenobacter
27 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Capnocytophaga
28 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Flavobacterium
29 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Tamlana
30 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Chryseobacterium
31 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Cloacibacterium
32 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Elizabethkingia
33 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Wautersiella
34 k__Bacteria; p__Bacteroidetes; c__Saprospirae; o__Saprospirales; f__Chitinophagaceae; g__Flavisolibacter
35 k__Bacteria; p__Bacteroidetes; c__Saprospirae; o__Saprospirales; f__Chitinophagaceae; g__Sediminibacterium
36 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter
37 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Sphingobacterium
38 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Anoxybacillus
39 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus
40 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Geobacillus
41 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Oceanobacillus
42 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Listeriaceae; g__Brochothrix
43 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Paenibacillaceae; g__Brevibacillus
44 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Paenibacillaceae; g__Paenibacillus
45 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Lysinibacillus
46 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Planomicrobium
47 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Staphylococcus
48 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Staphylococcaceae; g__Jeotgalicoccus
49 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Staphylococcaceae; g__Staphylococcus
50 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Aerococcaceae; g__Aerococcus
51 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Carnobacteriaceae; g__Desemzia
52 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Carnobacteriaceae; g__Granulicatella
53 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus
54 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus
55 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Leuconostocaceae; g__Weissella
56 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Lactococcus
57 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus
58 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__Clostridium
59 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__Thermoanaerobacterium
60 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Blautia
61 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Coprococcus
62 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Oribacterium
63 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Roseburia
64 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Ruminococcus
65 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Tissierellaceae; g__Anaerococcus
66 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Tissierellaceae; g__Parvimonas
67 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Tissierellaceae; g__Peptoniphilus
68 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Megasphaera
69 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Selenomonas
70 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Veillonella
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Table A.6 (cont.)
ID Taxonomy
71 k__Bacteria; p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Fusobacteriaceae; g__Cetobacterium
72 k__Bacteria; p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Fusobacteriaceae; g__Fusobacterium
73 k__Bacteria; p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Leptotrichiaceae; g__Leptotrichia
74 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Brevundimonas
75 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Caulobacter
76 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Mycoplana
77 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Phenylobacterium
78 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Aurantimonadaceae; g__Aurantimonas
79 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae; g__Afipia
80 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae; g__Bradyrhizobium
81 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Brucellaceae; g__Ochrobactrum
82 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Hyphomicrobiaceae; g__Devosia
83 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Hyphomicrobiaceae; g__Pedomicrobium
84 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Hyphomicrobiaceae; g__Rhodoplanes
85 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Methylobacteriaceae; g__Methylobacterium
86 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Phyllobacteriaceae; g__Mesorhizobium
87 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Phyllobacteriaceae; g__Phyllobacterium
88 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Rhizobiaceae; g__Agrobacterium
89 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Hyphomonadaceae; g__Hyphomonas
90 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Amaricoccus
91 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Paracoccus
92 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Rhodobacter
93 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Acetobacter
94 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Acidocella
95 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Gluconacetobacter
96 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Gluconobacter
97 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter
98 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Novosphingobium
99 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Sphingobium
100 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Sphingomonas
101 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Alcaligenaceae; g__Achromobacter
102 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae; g__Burkholderia
103 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae; g__Lautropia
104 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Comamonas
105 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Delftia
106 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Hydrogenophaga
107 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Leptothrix
108 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Methylibium
109 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Paucibacter
110 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Polaromonas
111 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Rubrivivax
112 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Schlegelella
113 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Tepidimonas
114 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Cupriavidus
115 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Janthinobacterium
116 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia
117 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Ralstonia
119 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Methylophilales; f__Methylophilaceae; g__Methylotenera
120 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae; g__Eikenella
121 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae; g__Kingella
122 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae; g__Neisseria
123 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Rhodocyclales; f__Rhodocyclaceae; g__Propionivibrio
124 k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; o__Bdellovibrionales; f__Bdellovibrionaceae; g__Bdellovibrio
125 k__Bacteria; p__Proteobacteria; c__Epsilonproteobacteria; o__Campylobacterales; f__Campylobacteraceae; g__Arcobacter
126 k__Bacteria; p__Proteobacteria; c__Epsilonproteobacteria; o__Campylobacterales; f__Campylobacteraceae; g__Campylobacter
127 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Aeromonadales; f__Aeromonadaceae; g__Aeromonas
128 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Enterobacter
129 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Erwinia
130 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Escherichia
131 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea
132 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Legionellales; f__Legionellaceae; g__Legionella
133 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Methylococcales; f__Methylococcaceae; g__Methylomonas
134 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Oceanospirillales; f__Halomonadaceae; g__Halomonas
135 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Actinobacillus
136 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Aggregatibacter
137 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Haemophilus
138 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter
139 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Alkanindiges
140 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Enhydrobacter
141 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Perlucidibaca
142 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Psychrobacter
143 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas
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Table A.6 (cont.)
ID Taxonomy
144 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Pseudoxanthomonas
145 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Rhodanobacter
146 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Stenotrophomonas
147 k__Bacteria; p__Thermi; c__Deinococci; o__Deinococcales; f__Deinococcaceae; g__Deinococcus
148 k__Bacteria; p__Thermi; c__Deinococci; o__Thermales; f__Thermaceae; g__Thermus
149 k__Bacteria; p__Verrucomicrobia; c__Verrucomicrobiae; o__Verrucomicrobiales; f__Verrucomicrobiaceae; g__Prosthecobacter
150 k__Bacteria; p__Wwe1; c__Cloacamonae; o__Cloacamonales; f__Cloacamonaceae; g__W22

Table A.7: OTU-table from Jehrke dataset.39
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020470027486420962225677848118671471012853447758329 80228 24911292872339525991 7909
1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
7 1 1 0 5 4 4 3 1 1 2 0 0 3 6 1
8 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0
9 1 0 2 0 5 5 0 0 0 1 0 0 0 15 2
10 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
13 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0
14 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
16 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0
17 0 1 0 0 1 0 0 0 1 0 0 0 0 18 0
18 168 188 91 222 492 307 157 40 44 110 5 23 289 349 91
19 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
21 3 0 3 0 0 1 1 0 0 0 0 0 0 0 0
22 0 0 0 0 6 4 0 0 0 1 0 0 4 4 2
23 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
26 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0
27 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
29 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
31 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
33 8 3 1 1 0 6 3 2 0 2 0 0 7 8 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
35 20 20 12 27 65 38 29 4 6 12 0 3 29 24 15
36 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
37 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
38 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
39 2 0 0 1 3 0 0 0 0 0 0 0 0 1 0
40 1 0 0 0 0 2 0 0 0 2 0 0 8 3 0
41 0 0 0 0 4 2 0 0 0 0 0 0 1 4 0
42 0 0 0 0 1 4 0 0 0 0 0 1 3 2 0
43 0 0 0 0 1 0 0 0 0 0 0 0 3 5 0
44 0 0 0 0 0 3 0 0 0 0 0 0 11 6 0
45 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0
46 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
47 0 0 0 0 1 1 0 0 0 0 0 0 0 5 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
49 0 0 0 2 0 1 2 0 3 0 0 0 2 8 2
50 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0
51 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0
52 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
53 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
55 1 0 0 7 11 26 0 0 1 21 0 0 136 6 1
56 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
58 0 0 1 0 1 0 1 2 2 1 0 0 1 5 0
59 0 0 0 0 1 1 2 0 0 1 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
61 0 0 0 0 2 4 1 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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65 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
67 16 7 7 5 49 18 15 2 2 5 0 0 30 429 4
68 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
69 1 0 0 1 1 3 4 1 2 2 0 0 3 6 0
70 20 23 10 10 80 37 15 1 7 7 2 1 44 38 14
71 0 0 0 0 2 0 0 0 17 43 0 31 5 8 2
72 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
73 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
74 35 18 19 36 82 52 29 9 8 7 0 0 57 32 12
75 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
76 7 3 221 5 811 1130 1946 777 1250 1741 22 727 450 465 221
77 1226 610 112 939 473 755 167 54 67851105003 7910 18644350635047513897
78 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
80 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
81 43 38 41 50 272 166 72 13 18 32 1 3 120 145 35
82 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
83 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
84 0 1 0 1 0 2 0 0 0 0 0 0 0 0 1
85 0 1 0 0 0 3 3 1 1 0 0 0 0 6 0
86 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
87 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
88 16 20 13 16 27 22 14 4 5 6 0 2 42 43 12
89 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
90 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
91 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
92 0 0 0 0 2 12 0 0 0 0 0 0 2 3 0
93 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
94 0 1 0 0 0 2 0 0 0 0 0 0 1 5 1
95 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
96 0 0 0 1 7 0 0 0 0 0 0 0 0 0 0
97 1 2 7 0 10 2 3 1 2 0 0 0 4 10 0
98 39 46 41 34 266 141 49 20 12 35 0 5 110 141 31
99 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

100 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
101 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
102 3 0 0 1 3 4 4 2 2 1 0 1 3 13 1
103 18 16 11 21 66 68 21 12 7 15 0 2 50 52 11
104 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
106 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0
107 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
108 0 1 1 0 2 2 5 1 0 0 0 1 2 6 0
109 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 3 0 0 0 0 0 28 3 2
111 1 0 0 1 0 0 2 0 0 1 0 0 0 3 0
112 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
113 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0
114 0 0 1 0 0 0 0 1 0 5 0 0 0 9 0
115 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
116 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
118 0 2 0 0 0 0 0 0 0 0 0 0 2 2 2
119 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
121 2 0 0 0 0 1 0 1 0 0 0 0 0 4 0
122 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0
123 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
124 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
125 0 0 0 1 6 0 0 0 1 1 0 0 0 7 0
126 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
128 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
130 0 2 0 0 1 2 0 0 0 0 0 0 3 1 1
131 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
132 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 6 0 1 0 0 0 0 0 17 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
135 8 0 18 2 310 318 638 151 214 279 0 55 6 21 2
136 7411 7516 2256 4343 4922247807 83872 2198935223 47914 2569 9480 395574632810863
137 0 1 1 0 0 1 0 0 0 2 0 0 0 4 1
138 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0
139 21 33 1553 24 2 29 0 1 2 7 0 0 3 1 0
140 0 0 0 0 1 4 0 0 0 0 0 0 2 0 0
141 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0
142 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0
143 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0
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144 0 0 0 0 1 1 0 0 0 0 0 0 8 2 0
145 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
146 0 1 3 1 8 3 6 0 6 1 0 0 109 3 1
147 0 0 0 0 3 1 1 0 0 1 0 0 0 7 0
148 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
149 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
151 0 0 0 1 4 2 1 0 0 0 0 0 0 0 0
152 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
153 6 1 3 8 17 12 2 3 0 3 0 0 10 15 4
154 3 0 2 0 7 8 1 0 1 0 0 0 4 4 0
155 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0
156 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
157 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
158 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
159 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
160 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
161 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
162 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
163 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
164 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
165 0 0 0 0 1 0 1 0 0 0 0 0 12 0 0
166 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0
167 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0
168 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
169 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
171 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
172 0 0 0 0 2 3 0 0 0 0 0 1 0 0 0
173 2 8 4 6 33 8 8 4 2 3 0 0 5 20 4
174 4 6 2 3 9 25 4 3 3 2 0 0 9 0 4
175 3 5 2 2 45 25 10 9 1 5 1 2 21 17 4
176 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
177 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
178 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
179 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
180 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
181 1 11 3 3 16 5 2 0 3 2 0 0 13 11 8
182 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
183 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
184 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
185 0 0 0 0 1 6 0 0 0 0 0 0 1 3 0
186 1 5 0 1 7 228 3 0 0 4 0 0 8 0 0
187 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
188 3 1 2 15 2 52 2 8 8 5 0 0 0 29 3
189 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0
190 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
191 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
192 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
193 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
194 0 1 0 3 0 8 1 0 1 0 0 1 1 4 1
195 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
196 2 1 1 2 16 7 0 1 0 0 0 0 4 2 1
197 1 0 1 1 4 2 222 0 1 5 0 1 11 32 1
198 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0
199 1 0 1 2 4 3 1 0 0 1 0 0 3 5 0
200 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
201 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0
202 1 2 0 0 7 2 8 2 1 2 0 0 17 2 1
203 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
204 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
205 1 6 0 4 15 17 99 0 0 0 0 1 4 11 5
206 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
207 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
208 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0
209 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
210 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
211 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
212 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

¯
Table A.8: OTU taxonomy from Jehrke dataset.

ID Taxonomy
0 k__Bacteria
1 k__Bacteria; p__Acidobacteria; c__Acidobacteria-5
2 k__Bacteria; p__Acidobacteria; c__Acidobacteria-6; o__Iii1-15
3 k__Bacteria; p__Acidobacteria; c__Da052; o__Ellin6513
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Table A.8 (cont.)
ID Taxonomy
4 k__Bacteria; p__Actinobacteria; c__Acidimicrobiia; o__Acidimicrobiales
5 k__Bacteria; p__Actinobacteria; c__Acidimicrobiia; o__Acidimicrobiales; f__C111
6 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales
7 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Actinomycetaceae; g__Actinomyces
8 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Brevibacteriaceae; g__Brevibacterium
9 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Corynebacteriaceae; g__Corynebacterium
10 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Dermabacteraceae; g__Brachybacterium
11 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Dermacoccaceae; g__Dermacoccus
12 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Gordoniaceae; g__Gordonia
13 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Intrasporangiaceae
14 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Microbacteriaceae
15 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae
16 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Kocuria
17 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Micrococcus
18 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Rothia
19 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Mycobacteriaceae; g__Mycobacterium
20 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Nocardiaceae
21 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Nocardioidaceae
22 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Propionibacterium
23 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Pseudonocardiaceae; g__Pseudonocardia
24 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Streptomycetaceae
25 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Bifidobacterium
26 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Gardnerella
27 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Scardovia
28 k__Bacteria; p__Actinobacteria; c__Coriobacteriia; o__Coriobacteriales; f__Coriobacteriaceae; g__Atopobium
29 k__Bacteria; p__Actinobacteria; c__Thermoleophilia; o__Gaiellales; f__Gaiellaceae
30 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides
31 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Paraprevotellaceae; g__Prevotella
32 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides
33 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Porphyromonas
34 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Tannerella
35 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Prevotellaceae; g__Prevotella
36 k__Bacteria; p__Bacteroidetes; c__Cytophagia; o__Cytophagales; f__Cytophagaceae
37 k__Bacteria; p__Bacteroidetes; c__Cytophagia; o__Cytophagales; f__Cytophagaceae; g__Dyadobacter
38 k__Bacteria; p__Bacteroidetes; c__Cytophagia; o__Cytophagales; f__Cytophagaceae; g__Hymenobacter
39 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae
40 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Capnocytophaga
41 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Flavobacteriaceae; g__Flavobacterium
42 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae
43 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Chryseobacterium
44 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Cloacibacterium
45 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Elizabethkingia
46 k__Bacteria; p__Bacteroidetes; c__Flavobacteriia; o__Flavobacteriales; f__Weeksellaceae; g__Wautersiella
47 k__Bacteria; p__Bacteroidetes; c__Saprospirae; o__Saprospirales; f__Chitinophagaceae
48 k__Bacteria; p__Bacteroidetes; c__Saprospirae; o__Saprospirales; f__Chitinophagaceae; g__Flavisolibacter
49 k__Bacteria; p__Bacteroidetes; c__Saprospirae; o__Saprospirales; f__Chitinophagaceae; g__Sediminibacterium
50 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales
51 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter
52 k__Bacteria; p__Chloroflexi; c__Anaerolineae; o__Caldilineales; f__Caldilineaceae
53 k__Bacteria; p__Chloroflexi; c__Tk17; o__Mle1-48
54 k__Bacteria; p__Cyanobacteria; c__4c0d-2; o__Mle1-12
55 k__Bacteria; p__Cyanobacteria; c__Chloroplast; o__Streptophyta
56 k__Bacteria; p__Fbp
57 k__Bacteria; p__Firmicutes
58 k__Bacteria; p__Firmicutes; c__Bacilli
59 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales
60 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Anoxybacillus
61 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus
62 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Geobacillus
63 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Listeriaceae; g__Brochothrix
64 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Paenibacillaceae
65 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Planomicrobium
66 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Planococcaceae; g__Staphylococcus
67 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Staphylococcaceae; g__Staphylococcus
68 k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Thermoactinomycetaceae
69 k__Bacteria; p__Firmicutes; c__Bacilli; o__Gemellales
70 k__Bacteria; p__Firmicutes; c__Bacilli; o__Gemellales; f__Gemellaceae
71 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales
72 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Aerococcaceae; g__Aerococcus
73 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Carnobacteriaceae; g__Desemzia
74 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Carnobacteriaceae; g__Granulicatella
75 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Enterococcaceae; g__Enterococcus
76 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae
77 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus
78 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Leuconostocaceae
79 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Leuconostocaceae; g__Weissella
80 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Lactococcus
81 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus
82 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae
83 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__Clostridium
84 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__Thermoanaerobacterium
85 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae
86 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Blautia
87 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Coprococcus
88 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Oribacterium
89 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Roseburia
90 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Ruminococcus
91 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae
92 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Tissierellaceae; g__Anaerococcus
93 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Tissierellaceae; g__Parvimonas
94 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Tissierellaceae; g__Peptoniphilus
95 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae
96 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Megasphaera
97 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Selenomonas
98 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae; g__Veillonella
99 k__Bacteria; p__Firmicutes; c__Clostridia; o__Halanaerobiales; f__Halanaerobiaceae
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ID Taxonomy
100 k__Bacteria; p__Firmicutes; c__Clostridia; o__Sha-98
101 k__Bacteria; p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Fusobacteriaceae; g__Cetobacterium
102 k__Bacteria; p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Fusobacteriaceae; g__Fusobacterium
103 k__Bacteria; p__Fusobacteria; c__Fusobacteriia; o__Fusobacteriales; f__Leptotrichiaceae; g__Leptotrichia
104 k__Bacteria; p__Gn02; c__Bd1-5
105 k__Bacteria; p__Od1
106 k__Bacteria; p__Od1; c__Sm2f11
107 k__Bacteria; p__Od1; c__Zb2
108 k__Bacteria; p__Proteobacteria
109 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria
110 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae
111 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Brevundimonas
112 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Caulobacter
113 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Caulobacterales; f__Caulobacteraceae; g__Phenylobacterium
114 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales
115 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Aurantimonadaceae
116 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Aurantimonadaceae; g__Aurantimonas
117 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae
118 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae; g__Bradyrhizobium
119 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Brucellaceae; g__Ochrobactrum
120 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Hyphomicrobiaceae; g__Devosia
121 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Hyphomicrobiaceae; g__Pedomicrobium
122 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Hyphomicrobiaceae; g__Rhodoplanes
123 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Methylobacteriaceae
124 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Methylobacteriaceae; g__Methylobacterium
125 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Methylocystaceae
126 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Phyllobacteriaceae
127 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Phyllobacteriaceae; g__Mesorhizobium
128 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Phyllobacteriaceae; g__Phyllobacterium
129 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Rhizobiaceae
130 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Rhizobiaceae; g__Agrobacterium
131 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Hyphomonadaceae; g__Hyphomonas
132 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Amaricoccus
133 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Paracoccus
134 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodobacterales; f__Rhodobacteraceae; g__Rhodobacter
135 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae
136 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; f__Acetobacteraceae; g__Acetobacter
137 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rickettsiales
138 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rickettsiales; f__Mitochondria
139 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rickettsiales; f__Rickettsiaceae; g__Wolbachia
140 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales
141 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Erythrobacteraceae
142 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae
143 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter
144 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Novosphingobium
145 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Sphingobium
146 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Sphingomonas
147 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria
148 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__A21b; f__Eb1003
149 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales
150 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Alcaligenaceae
151 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Alcaligenaceae; g__Achromobacter
152 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae
153 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae; g__Lautropia
154 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae
155 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Hydrogenophaga
156 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Leptothrix
157 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Methylibium
158 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Paucibacter
159 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Polaromonas
160 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Rubrivivax
161 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Schlegelella
162 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Comamonadaceae; g__Tepidimonas
163 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae
164 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Cupriavidus
165 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Janthinobacterium
166 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia
167 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Ralstonia
168 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Ellin6067
169 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Methylophilales; f__Methylophilaceae
170 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Methylophilales; f__Methylophilaceae; g__Methylotenera
171 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Mnd1
172 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae
173 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae; g__Eikenella
174 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae; g__Kingella
175 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Neisseriales; f__Neisseriaceae; g__Neisseria
176 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Rhodocyclales; f__Rhodocyclaceae; g__Propionivibrio
177 k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; o__Bdellovibrionales; f__Bdellovibrionaceae; g__Bdellovibrio
178 k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; o__Myxococcales
179 k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; o__Myxococcales; f__Om27
180 k__Bacteria; p__Proteobacteria; c__Epsilonproteobacteria; o__Campylobacterales; f__Campylobacteraceae; g__Arcobacter
181 k__Bacteria; p__Proteobacteria; c__Epsilonproteobacteria; o__Campylobacterales; f__Campylobacteraceae; g__Campylobacter
182 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria
183 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Aeromonadales; f__Aeromonadaceae
184 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Aeromonadales; f__Aeromonadaceae; g__Aeromonas
185 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae
186 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Enterobacter
187 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Erwinia
188 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Escherichia
189 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea
190 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Legionellales; f__Legionellaceae; g__Legionella
191 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Methylococcales; f__Methylococcaceae; g__Methylomonas
192 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Oceanospirillales; f__Halomonadaceae
193 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Oceanospirillales; f__Halomonadaceae; g__Halomonas
194 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Actinobacillus
195 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Aggregatibacter
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Table A.8 (cont.)
ID Taxonomy
196 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Haemophilus
197 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter
198 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Alkanindiges
199 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Enhydrobacter
200 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Perlucidibaca
201 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Psychrobacter
202 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas
203 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae
204 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Pseudoxanthomonas
205 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Stenotrophomonas
206 k__Bacteria; p__Sr1
207 k__Bacteria; p__Thermi; c__Deinococci; o__Deinococcales; f__Deinococcaceae; g__Deinococcus
208 k__Bacteria; p__Tm7; c__Tm7-1
209 k__Bacteria; p__Tm7; c__Tm7-3
210 k__Bacteria; p__Tm7; c__Tm7-3; o__Ew055
211 k__Bacteria; p__Verrucomicrobia; c__Verrucomicrobiae; o__Verrucomicrobiales; f__Verrucomicrobiaceae; g__Prosthecobacter
212 k__Bacteria; p__Wwe1; c__Cloacamonae; o__Cloacamonales; f__Cloacamonaceae; g__W22
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Table A.9: DGRP lines by dataset.

DGRP D1 D2 D3 D4 DGRP D1 D2 D3 D4 DGRP D1 D2 D3 D4
513 No Yes Yes Yes 783 Yes No Yes Yes 358 No Yes Yes Yes
514 No Yes Yes Yes 272 No Yes Yes Yes 360 No Yes Yes Yes
26 No Yes Yes Yes 787 Yes No Yes Yes 367 Yes No Yes Yes
28 Yes No Yes Yes 796 No Yes Yes Yes 879 No Yes Yes Yes
554 No Yes Yes Yes 801 Yes No Yes Yes 882 Yes No Yes Yes
45 Yes No Yes Yes 805 Yes No Yes Yes 371 Yes No Yes Yes
563 Yes No Yes Yes 808 Yes No Yes Yes 884 Yes No Yes Yes
59 No Yes Yes Yes 810 Yes No Yes Yes 374 Yes No Yes Yes
584 Yes No Yes Yes 301 No No No Yes 377 No Yes Yes Yes
73 Yes No Yes Yes 303 No No No Yes 380 Yes No Yes Yes
83 Yes No Yes Yes 304 Yes No Yes Yes 385 No Yes Yes Yes
85 No Yes Yes Yes 819 No Yes Yes Yes 897 Yes No Yes Yes
105 No Yes Yes Yes 315 No No No Yes 900 No Yes Yes Yes
109 Yes No Yes Yes 319 No Yes Yes Yes 393 No Yes Yes Yes
642 Yes No Yes Yes 321 Yes No Yes Yes 907 No Yes Yes Yes
149 No Yes Yes Yes 837 No Yes Yes Yes 908 Yes No Yes Yes
161 Yes No Yes Yes 843 Yes No Yes Yes 398 Yes No Yes Yes
176 No Yes Yes Yes 332 No Yes Yes Yes 399 Yes No Yes Yes
181 Yes No Yes Yes 849 No Yes Yes Yes 913 No Yes Yes Yes
195 No Yes Yes Yes 850 No Yes Yes Yes 409 Yes No Yes Yes
712 No Yes Yes Yes 340 No Yes Yes Yes 426 Yes No Yes Yes
737 Yes No Yes Yes 852 Yes No Yes Yes 427 Yes No Yes Yes
738 No Yes Yes Yes 855 No Yes Yes Yes 440 Yes No Yes Yes
235 No Yes Yes Yes 857 No Yes Yes Yes 441 Yes No Yes Yes
237 Yes No Yes Yes 859 No No No Yes 443 Yes No Yes Yes
750 Yes No Yes Yes 861 No Yes Yes Yes 486 No Yes Yes Yes
771 No Yes Yes Yes 350 No Yes Yes Yes 492 Yes No Yes Yes
776 No Yes Yes Yes 352 No Yes Yes Yes
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Table A.10: Sample metadata for Jehrke dataset39 from MG-RAST.

sample_name DGRP_Line sample_id metagenome_id library_name env_package_id library_id project_id sequence_count_raw average_length_raw bp_count_raw collection_date
25175_male_a RAL_301 mgs623327 0167db4f606d676d343736383034372e33 11_S10_L001_R.join mge623328 mgl623329 mgp82581 217286 446.457 47281604 2015-06-17
25175_female_b RAL_301 mgs623336 62a421f5466d676d343736383034312e33 20_S19_L001_R.join mge623337 mgl623338 mgp82581 105306 451.665 27126995 2015-06-17
25175_female_a RAL_301 mgs623333 51924b2ae16d676d343736383032362e33 19_S18_L001_R.join mge623334 mgl623335 mgp82581 105904 451.695 88756179 2015-06-17
25175_male_b RAL_301 mgs623330 fa8a9926c26d676d343736383032312e33 12_S11_L001_R.join mge623331 mgl623332 mgp82581 167405 449.647 55776935 2015-06-17
25176_male_a RAL_303 mgs623345 6c7b034b156d676d343736383034342e33 13_S12_L001_R.join mge623346 mgl623347 mgp82581 139987 458.334 76727481 2015-06-17
25176_male_b RAL_303 mgs623348 258c5d49f26d676d343736383033332e33 14_S13_L001_R.join mge623349 mgl623350 mgp82581 60060 457.32 111331468 2015-06-17
25176_female_a RAL_303 mgs623351 ed79bf23746d676d343736383032352e33 21_S20_L001_R.join mge623352 mgl623353 mgp82581 285966 461.294 16635633 2015-06-17
25176_female_b RAL_303 mgs623354 131351aae46d676d343736383032342e33 22_S21_L001_R.join mge623355 mgl623356 mgp82581 34612 456.703 27620493 2015-06-17
25181_male_a RAL_315 mgs623363 63f97eaacd6d676d343736383034382e33 15_S14_L001_R.join mge623364 mgl623365 mgp82581 268415 448.167 47194659 2015-06-17
25181_male_b RAL_315 mgs623366 0d9b86b1b16d676d343736383034332e33 16_S15_L001_R.join mge623367 mgl623368 mgp82581 243443 439.291 61495021 2015-06-17
25181_female_b RAL_315 mgs623369 f21338ebe96d676d343736383033352e33 24_S22_L001_R.join mge623370 mgl623371 mgp82581 196496 450.713 15600066 2015-06-17
25210_male_a RAL_859 mgs623312 711f9b11df6d676d343736383034392e33 9_S8_L001_R.join mge623313 mgl623314 mgp82581 36063 440.752 95769166 2015-06-17
25210_male_b RAL_859 mgs623315 5968d4ecd76d676d343736383033372e33 10_S9_L001_R.join mge623316 mgl623317 mgp82581 60478 440.501 125968432 2015-06-17
25210_female_b RAL_859 mgs623321 fe51d430306d676d343736383033342e33 18_S17_L001_R.join mge623322 mgl623323 mgp82581 217813 441.106 118399401 2015-06-17
25210_female_a RAL_859 mgs623318 e2ef2f43ff6d676d343736383032332e33 17_S16_L001_R.join mge623319 mgl623320 mgp82581 124046 439.957 95828359 2015-06-17
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Table B.1: Dataset1(40) Diversity Estimates

DGRP Shannon Simpson wUF_MDS1 DGRP Shannon Simpson wUF_MDS1
109 1.333283251 0.5767945214 0.4491659601 492 1.263557927 0.6007924157 -0.0115800321
161 1.098915794 0.5383230514 -0.2063943063 563 0.7078725304 0.4115338654 -0.09177633745
181 0.8419019022 0.516694701 0.06779063193 584 1.252944043 0.6437422946 -0.02472772503
237 1.564597053 0.7308027748 0.2728947485 642 1.966514036 0.8006842058 0.1786223538
28 1.199774591 0.5631696023 0.44908215 73 0.5014845988 0.2800185507 -0.1909210749
304 0.2628659737 0.09626838843 -0.2888634206 737 0.8363221314 0.356901969 -0.2043724563
321 0.4362730136 0.1815913396 -0.2877232526 783 0.8129252822 0.4212744726 -0.1042374807
367 1.194668271 0.6762452981 0.02696318841 787 1.041465457 0.4572718226 -0.1914167221
371 0.7545331626 0.5091275522 0.1273324715 801 1.386488235 0.6645934098 -0.1417574753
374 1.559918789 0.6630929757 0.1673563261 805 0.3740737496 0.1990854439 -0.2383007562
380 1.467779386 0.6559760774 -0.02737894086 808 0.3142714175 0.1584717388 -0.2593558082
399 0.8881248329 0.4796642159 0.3490252028 810 1.213676057 0.6118781322 0.2677424618
409 0.8367408581 0.52685952 0.1215471592 83 0.9296462406 0.5456351372 0.1908224869
426 0.7384804568 0.4867198012 0.01949360948 843 1.126451316 0.6389970026 -0.172609024
427 0.6525387641 0.2681357179 -0.2192756816 852 1.515895953 0.7319721201 -0.1090958636
440 0.9865510283 0.52489585 -0.001881140474 882 0.6028388277 0.3039088073 -0.181443969
441 0.6069383197 0.2580093407 -0.2841101939 884 0.9697981558 0.4257863299 -0.166018756
443 0.4654457538 0.2258356755 -0.2425862416 897 0.8495693701 0.5101041402 0.02203341344
45 1.245863505 0.6191679049 0.2953459524 908 1.268505459 0.6332529217 0.277290446

121



Table B.2: Dataset2(39) Diversity Estimates

DGRP Shannon Simpson wUF_MDS1 DGRP Shannon Simpson wUF_MDS1
105 1.624921967 0.6985614184 0.1900056172 59 1.188720171 0.6108385597 0.1427318739
149 0.665449692 0.3443161451 -0.1158252046 712 0.7549415945 0.438633531 -0.03156022283
176 0.71908617660.3693663062 -0.1672527372 738 1.223779249 0.6085946746 0.05627238464
195 0.60357218150.3038255823 -0.2596243821 776 1.572658871 0.730755903 0.3843135878
235 1.833088174 0.7711769876 0.1741639917 796 0.81385178590.5204838922 0.1246304302
26 0.769421957 0.32969541 -0.1574519168 819 0.81424179260.47301071310.004430373926
319 1.161355279 0.6527156618-0.09351491695 837 0.78973260750.4078089758 -0.0765162926
332 0.52798539960.2116431636 -0.2104080125 849 0.34262578940.1680420782 -0.2188061816
340 1.28595753 0.6230748954 0.07619014244 85 0.95251337810.4178449672 -0.1044139189
350 0.77145310650.3325906067 -0.1880300719 850 1.696575214 0.7365421488 0.1561942118
352 1.537847671 0.7192694083 0.2803459925 855 1.500995997 0.7020189226 0.368213566
358 0.40734588650.1452582217 -0.2339051919 857 1.197838697 0.6075155578 0.08086883273
360 1.613346181 0.7480184618 0.264315283 861 0.40260467890.1847160681 -0.2939934879
377 0.6008450997 0.392907779 -0.0605050455 879 0.57827650930.3605087255 -0.09203487747
385 0.728102669 0.3885900877-0.08438158735 900 0.97893822060.4305647625 -0.1017202141
486 0.67137675120.3071526406 -0.1737264452 907 0.98246851090.4140846767 -0.1138601129
513 0.45826790270.2555592525 -0.167706462 913 1.509351739 0.7222411402 0.1900728554
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Table B.3: Dataset3(79) Diversity Estimates

DGRP Shannon Simpson wUF_MDS1 DGRP Shannon Simpson wUF_MDS1 DGRP Shannon Simpson wUF_MDS1
105 1.624921967 0.6985614184 -0.1310488288 380 1.467779386 0.6559760774 0.008449770165 796 0.8138517859 0.5204838922 -0.1175207228
109 1.333283251 0.5767945214 -0.4362294712 385 0.728102669 0.3885900877 0.0985589527 801 1.386488235 0.6645934098 0.1218805044
149 0.665449692 0.3443161451 0.130472373 399 0.8881248329 0.4796642159 -0.3670751855 805 0.3740737496 0.1990854439 0.2162803944
161 1.098915794 0.5383230514 0.1868672799 409 0.8367408581 0.52685952 -0.14588713 808 0.3142714175 0.1584717388 0.238220418
176 0.7190861766 0.3693663062 0.1828989781 426 0.7384804568 0.4867198012 -0.04435417252 810 1.213676057 0.6118781322 -0.2862457435
181 0.8419019022 0.516694701 -0.09253695054 427 0.6525387641 0.2681357179 0.2050295282 819 0.8142417926 0.4730107131 0.006878377781
195 0.6035721815 0.3038255823 0.275413391 440 0.9865510283 0.52489585 -0.01961231954 83 0.9296462406 0.5456351372 -0.2132673757
235 1.833088174 0.7711769876 -0.1212560742 441 0.6069383197 0.2580093407 0.2679643906 837 0.7897326075 0.4078089758 0.09113478293
237 1.564597053 0.7308027748 -0.2883396841 443 0.4654457538 0.2258356755 0.2207787337 843 1.126451316 0.6389970026 0.1474054719
26 0.769421957 0.32969541 0.176690097 45 1.245863505 0.6191679049 -0.3119692723 849 0.3426257894 0.1680420782 0.2337306089
28 1.199774591 0.5631696023 -0.4592087132 486 0.6713767512 0.3071526406 0.1955932285 85 0.9525133781 0.4178449672 0.1232373065
304 0.2628659737 0.09626838843 0.2699130611 492 1.263557927 0.6007924157 -0.007948402774 850 1.696575214 0.7365421488 -0.115932505
319 1.161355279 0.6527156618 0.109725217 513 0.4582679027 0.2555592525 0.1828416867 852 1.515895953 0.7319721201 0.08752177669
321 0.4362730136 0.1815913396 0.2677212727 563 0.7078725304 0.4115338654 0.0681558039 855 1.500995997 0.7020189226 -0.3461929512
332 0.5279853996 0.2116431636 0.2280097774 584 1.252944043 0.6437422946 0.001073908591 857 1.197838697 0.6075155578 -0.06295749398
340 1.28595753 0.6230748954 -0.05612547593 59 1.188720171 0.6108385597 -0.1303979894 861 0.4026046789 0.1847160681 0.3046430718
350 0.7714531065 0.3325906067 0.205065738 642 1.966514036 0.8006842058 -0.1989289548 879 0.5782765093 0.3605087255 0.1045019911
352 1.537847671 0.7192694083 -0.2597693851 712 0.7549415945 0.438633531 0.04466043852 882 0.6028388277 0.3039088073 0.1588471895
358 0.4073458865 0.1452582217 0.25075539 73 0.5014845988 0.2800185507 0.1679110998 884 0.9697981558 0.4257863299 0.1499605162
360 1.613346181 0.7480184618 -0.22486432 737 0.8363221314 0.356901969 0.1909209644 897 0.8495693701 0.5101041402 -0.04599046482
367 1.194668271 0.6762452981 -0.0536853285 738 1.223779249 0.6085946746 -0.03452901899 900 0.9789382206 0.4305647625 0.1225100307
371 0.7545331626 0.5091275522 -0.1512093334 776 1.572658871 0.730755903 -0.3889831191 907 0.9824685109 0.4140846767 0.1342945357
374 1.559918789 0.6630929757 -0.1617295358 783 0.8129252822 0.4212744726 0.08094614313 908 1.268505459 0.6332529217 -0.2945313703
377 0.6008450997 0.392907779 0.07290212258 787 1.041465457 0.4572718226 0.1761069323 913 1.509351739 0.7222411402 -0.1522369523
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Table B.4: Dataset4(83) Diversity Estimates

DGRP Shannon Simpson wUF_MDS1 DGRP Shannon Simpson wUF_MDS1 DGRP Shannon Simpson wUF_MDS1
105 1.624921967 0.6985614184 -0.02121720216 377 0.6008450997 0.392907779 -0.03271751009 801 1.386488235 0.6645934098 -0.1318716862
109 1.333283251 0.5767945214 0.4042860388 380 1.467779386 0.6559760774 -0.1048457667 805 0.3740737496 0.1990854439 -0.2033405274
149 0.665449692 0.3443161451 -0.107659865 385 0.728102669 0.3885900877 -0.07868184707 808 0.3142714175 0.1584717388 -0.2304584911
161 1.098915794 0.5383230514 -0.1870463679 399 0.8881248329 0.4796642159 0.4037017152 810 1.213676057 0.6118781322 0.302551772
176 0.7190861766 0.3693663062 -0.1645416918 409 0.8367408581 0.52685952 0.1959067355 819 0.8142417926 0.4730107131 0.03193652732
181 0.8419019022 0.516694701 0.1434583179 426 0.7384804568 0.4867198012 0.09522785571 83 0.9296462406 0.5456351372 0.2558034729
195 0.6035721815 0.3038255823 -0.2800385551 427 0.6525387641 0.2681357179 -0.2405024806 837 0.7897326075 0.4078089758 -0.07525903216
235 1.833088174 0.7711769876 0.03835759097 440 0.9865510283 0.52489585 0.0436637615 843 1.126451316 0.6389970026 -0.1294250378
237 1.564597053 0.7308027748 0.1968610934 441 0.6069383197 0.2580093407 -0.2902124448 849 0.3426257894 0.1680420782 -0.2261639963
26 0.769421957 0.32969541 -0.2093402202 443 0.4654457538 0.2258356755 -0.2096987419 85 0.9525133781 0.4178449672 -0.1437101716
28 1.199774591 0.5631696023 0.4501936467 45 1.245863505 0.6191679049 0.3212960507 850 1.696575214 0.7365421488 0.07096435757
301 0.3069281854 0.09287037319 -0.2989564113 486 0.6713767512 0.3071526406 -0.2392993422 852 1.515895953 0.7319721201 -0.0753020883
303 0.6530481426 0.437554516 0.3947735065 492 1.263557927 0.6007924157 -0.01159460918 855 1.500995997 0.7020189226 0.327238223
304 0.2628659737 0.09626838843 -0.2801956712 513 0.4582679027 0.2555592525 -0.1634815106 857 1.197838697 0.6075155578 0.06131456809
315 0.8846300285 0.5301751823 0.2254863439 563 0.7078725304 0.4115338654 -0.03617651667 859 1.202706525 0.5239392918 -0.02865947606
319 1.161355279 0.6527156618 -0.08382594991 584 1.252944043 0.6437422946 0.02536725101 861 0.4026046789 0.1847160681 -0.3183130533
321 0.4362730136 0.1815913396 -0.2722804898 59 1.188720171 0.6108385597 0.1478899159 879 0.5782765093 0.3605087255 -0.07057476938
332 0.5279853996 0.2116431636 -0.2597011229 642 1.966514036 0.8006842058 0.1129385521 882 0.6028388277 0.3039088073 -0.1405202515
340 1.28595753 0.6230748954 0.04781146762 712 0.7549415945 0.438633531 -0.01219699288 884 0.9697981558 0.4257863299 -0.2004205557
350 0.7714531065 0.3325906067 -0.2480723358 73 0.5014845988 0.2800185507 -0.1464128244 897 0.8495693701 0.5101041402 0.08576845463
352 1.537847671 0.7192694083 0.2512787938 737 0.8363221314 0.356901969 -0.2355894063 900 0.9789382206 0.4305647625 -0.1494514787
358 0.4073458865 0.1452582217 -0.2688587374 738 1.223779249 0.6085946746 0.02263644385 907 0.9824685109 0.4140846767 -0.1614999583
360 1.613346181 0.7480184618 0.1759495642 776 1.572658871 0.730755903 0.4054953279 908 1.268505459 0.6332529217 0.3015652395
367 1.194668271 0.6762452981 0.09970418978 783 0.8129252822 0.4212744726 -0.05233273787 913 1.509351739 0.7222411402 0.1139884207
371 0.7545331626 0.5091275522 0.2074514857 787 1.041465457 0.4572718226 -0.1985076256
374 1.559918789 0.6630929757 -0.0248640486 796 0.8138517859 0.5204838922 0.1677134846
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APPENDIX C

COMMUNITY ANALYSIS PLOTS
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Phylogenetic Trees

Figure C.1: Phylogenetic Tree for Dataset1 dataset. Circular phylogenetic tree for
Dataset1(40) dataset, where taxa are in format “Class; Genus”
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Figure C.2: Phylogenetic Tree for Dataset2 dataset. Circular phylogenetic tree for
Dataset2(39) dataset, where taxa are in format “Class; Genus”
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Figure C.3: Phylogenetic Tree for Dataset3 dataset. Circular phylogenetic tree for
Dataset3(79) dataset, where taxa are in format “Class; Genus”
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Figure C.4: Phylogenetic Tree for Dataset4 dataset. Circular phylogenetic tree for
Dataset4(83) dataset, where taxa are in format “Class; Genus”
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Abundance

Figure C.5: Relative abundance of Dataset1(40) dataset

Figure C.6: Relative abundance of Dataset2(39) dataset
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Figure C.7: Relative abundance of Dataset3(79) dataset

Figure C.8: Relative abundance of Dataset4(83) dataset
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Figure C.9: Total genus abundance per datasets

Figure C.10: Total genus abundance per datasets for Firmicutes phylum
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Figure C.11: Total genus abundance per datasets for Proteobacteria phylum

Multidimensional Scaling

Figure C.12: Ordination plot for Dataset1 dataset. Multidimensional scaling of weighted
UniFrac distance matrix of Dataset1(40) OTU-table.
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Figure C.13: Ordination plot for Dataset2 dataset. Multidimensional scaling of weighted
UniFrac distance matrix of Dataset2(39) OTU-table.

Figure C.14: Ordination plot for Dataset3 dataset. Multidimensional scaling of weighted
UniFrac distance matrix of Dataset3(79) OTU-table.
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Figure C.15: Ordination plot for Dataset4 dataset. Multidimensional scaling of
unweighted UniFrac distance matrix of Dataset4(83) OTU-table.

Alpha-Diversity Estimates

Figure C.16: Alpha-diversity estimates for each dataset
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Correlation Plots

Figure C.17: Pairwise correlations for target phenotype bio-diversity estimates for
Dataset1(40). Plot by R package “GGally”
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Figure C.18: Pairwise correlations for target phenotype bio-diversity estimates for
Dataset2(39). Plot by R package “GGally”

Figure C.19: Pairwise correlations for target phenotype bio-diversity estimates for
Dataset3(79). Plot by R package “GGally”
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APPENDIX D

MANHATTAN PLOTS FOR GWAS

Phenotype - Shannon

Figure D.1: Manhattan plot for Dataset1(40) Shannon phenotype
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Figure D.2: Manhattan plot for Dataset2(39) Shannon phenotype

Figure D.3: Manhattan plot for Dataset3(79) Shannon phenotype
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Figure D.4: Manhattan plot for Dataset4(83) Shannon phenotype

Phenotype - Simpson

Figure D.5: Manhattan plot for Dataset1(40) Simpson phenotype
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Figure D.6: Manhattan plot for Dataset2(39) Simpson phenotype

Figure D.7: Manhattan plot for Dataset3(79) Simpson phenotype
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Figure D.8: Manhattan plot for Dataset4(83) Simpson phenotype

Phenotype - wUniFrac MDS1

Figure D.9: Manhattan plot for Dataset1(40) weighted UniFrac MDS1 phenotype
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Figure D.10: Manhattan plot for Dataset2(39) weighted UniFrac MDS1 phenotype

Figure D.11: Manhattan plot for Dataset3(79) weighted UniFrac MDS1 phenotype
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Figure D.12: Manhattan plot for Dataset4(83) weighted UniFrac MDS1 phenotype
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APPENDIX E

TOP GWAS ASSOCIATIONS TABLES
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Table E.1: Top hit annotations for Dataset1(40) dataset with Shannon phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
2R_8988998_SNP 2.0 8988998.0 1.5277993483165027e-06 -0.3404816457791875 0.054445693062772915 0.7810442944337064 Undefined

Table E.2: Top hit annotations for Dataset1(40) dataset with Simpson phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3R_26926653_SNP 4.0 26926653.0 7.282340779433084e-07 -0.1316841715225932 0.020096446369398804 0.7949907926725638 FBgn0039817
3R_25526181_SNP 4.0 25526181.0 1.3556657896687364e-06 -0.1424957739051795 0.02261272435045046 0.7833645531546207 Undefined
3R_21957954_SNP 4.0 21957954.0 2.11646920479903e-06 -0.1402076337666479 0.0228974632084761 0.7745743069966624 FBgn0039415
2R_8988998_SNP 2.0 8988998.0 2.6357693769815707e-06 -0.1510450105624624 0.025024322638507162 0.7700966171472533 Undefined
2L_19059735_SNP 1.0 19059735.0 3.093686547009968e-06 -0.1567973549439974 0.026253916080345014 0.7667639882511703 FBgn0032749
3R_24415449_SNP 4.0 24415449.0 3.7851859582254724e-06 -0.13605830646629286 0.023090169221843416 0.7624885809162547 FBgn0262741
3R_24433055_SNP 4.0 24433055.0 3.874277211085113e-06 -0.1375376453149421 0.023377705773616468 0.7619898101592687 FBgn0039589
2R_6299587_SNP 2.0 6299587.0 5.608582619633968e-06 -0.15388304617673634 0.026820787737135497 0.7538952936539087 FBgn0261698
X_18429680_SNP 5.0 18429680.0 5.775464687734007e-06 -0.13892670337233687 0.024262745583473997 0.7532403549666742 FBgn0265598
X_10431347_SNP 5.0 10431347.0 6.381917866701345e-06 -0.13006211839905488 0.022871274159871488 0.7509949249578488 FBgn0085443
3R_17320894_SNP 4.0 17320894.0 8.116238336440463e-06 -0.13029911694691146 0.02329907038778764 0.7454916475423269 Undefined
2R_4916164_SNP 2.0 4916164.0 9.841962761559143e-06 -0.1200382962436462 0.02175761454863368 0.7409766102283006 FBgn0033365

Table E.3: Top hit annotations for Dataset1(40) dataset with weighted UniFrac MDS1 phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3L_2002367_SNP 3.0 2002367.0 4.3274519683291036e-07 0.1535306301445328 0.02269443576408029 0.8041936237030163 FBgn0262030
3R_25565889_SNP 4.0 25565889.0 1.7442369765132527e-06 -0.15295403125598928 0.024667850219918814 0.7784398331591272 FBgn0039690
3L_4019527_SNP 3.0 4019527.0 2.8947457171634656e-06 0.15949286721491612 0.02658787572571659 0.7681533997994177 FBgn0004895
3L_4019528_SNP 3.0 4019528.0 2.8947457171634656e-06 0.15949286721491612 0.02658787572571659 0.7681533997994177 FBgn0004895
3L_4019525_SNP 3.0 4019525.0 2.894745717163481e-06 0.15949286721491598 0.02658787572571658 0.7681533997994175 FBgn0004895
2L_12356111_INS 1.0 12356111.0 3.350939117313009e-06 -0.1917644289903276 0.03227981899846257 0.7650816803240486 FBgn0262475
3L_2002343_SNP 3.0 2002343.0 4.577892198587761e-06 0.1469533057288676 0.025260952668964456 0.7583767111131618 FBgn0262030
2L_9685981_SNP 1.0 9685981.0 5.3378880008379755e-06 0.14965336054138595 0.025995418423579032 0.7549957452271079 FBgn0000273
2L_9685982_SNP 1.0 9685982.0 5.337888000838001e-06 0.1496533605413858 0.02599541842357901 0.7549957452271078 FBgn0000273
2L_9685975_SNP 1.0 9685975.0 5.337888000838019e-06 0.14965336054138567 0.025995418423578998 0.7549957452271077 FBgn0000273
2L_9685986_SNP 1.0 9685986.0 5.337888000838054e-06 0.1496533605413863 0.02599541842357912 0.7549957452271076 FBgn0000273
2L_16388651_SNP 1.0 16388651.0 5.948068366472829e-06 0.17402652001031846 0.030454280225286137 0.7525805606366102 Undefined
2L_16388639_SNP 1.0 16388639.0 5.948068366472847e-06 0.1740265200103183 0.030454280225286123 0.7525805606366099 Undefined
2L_16388658_SNP 1.0 16388658.0 5.948068366472887e-06 0.17402652001031818 0.03045428022528612 0.7525805606366099 Undefined
3R_14624160_SNP 4.0 14624160.0 8.603667919486614e-06 0.14023259270249186 0.025178052396768555 0.7441354467681509 FBgn0038653
3R_16633261_SNP 4.0 16633261.0 9.360923530474173e-06 -0.1745114417898489 0.03151931404019853 0.7421590532803322 FBgn0038826
3L_7705263_SNP 3.0 7705263.0 9.69291483733953e-06 -0.17318211277927462 0.03135634696007183 0.7413373543750921 FBgn0052373146



Table E.4: Top hit annotations for Dataset2(39) dataset with Shannon phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
X_8949044_SNP 5.0 8949044.0 3.478475050308975e-07 0.3544249187963656 0.04856758324823498 0.8468698147685833 FBgn0030077
2R_13932114_SNP 2.0 13932114.0 4.899697480660093e-07 0.3837576188601913 0.053784238200011485 0.8414087669987682 FBgn0034291
2R_13212976_SNP 2.0 13212976.0 6.397273427402421e-07 0.3194243264785425 0.04556811432983876 0.8370116599236817 FBgn0265487
2R_13213406_SNP 2.0 13213406.0 7.506661842384007e-07 0.31773037339939075 0.04581450662746702 0.8343118324504596 FBgn0265487
3L_721148_DEL 3.0 721148.0 9.003725085904557e-07 0.33688550746228124 0.04917569836505265 0.8311826779946055 Undefined
3L_721196_SNP 3.0 721196.0 9.003725085904676e-07 0.33688550746228096 0.04917569836505265 0.8311826779946053 Undefined
3L_721171_SNP 3.0 721171.0 9.003725085904676e-07 0.33688550746228124 0.04917569836505268 0.8311826779946053 Undefined
3L_721238_SNP 3.0 721238.0 9.003725085904712e-07 0.3626210141237887 0.052932350060732415 0.8311826779946052 Undefined
X_6329781_SNP 5.0 6329781.0 9.164916348909826e-07 0.3722559627418926 0.05440407134028511 0.8308739185339066 FBgn0259242
3R_12149306_SNP 4.0 12149306.0 9.237982893612816e-07 0.3288968370863895 0.04809311914954005 0.8307355462719256 FBgn0038414
3L_721213_SNP 3.0 721213.0 9.42341137735966e-07 0.31335621435903177 0.045882417178469546 0.8303886993821982 Undefined
3L_16691743_SNP 3.0 16691743.0 9.94799250711523e-07 0.3835263368403703 0.0563636920655267 0.8294392937783094 FBgn0063485
3R_1331531_INS 4.0 1331531.0 1.0101860405097451e-06 0.3273560842877553 0.04815900987079543 0.8291692514055296 Undefined
3L_2815393_SNP 3.0 2815393.0 1.096507141361628e-06 0.3386383909496604 0.0500976613019273 0.8277187438251118 FBgn0263392
3R_5319909_SNP 4.0 5319909.0 1.601114490964204e-06 0.33185380449758545 0.050387917410249575 0.8208453349200179 FBgn0037698
3L_989005_SNP 3.0 989005.0 1.904814138742164e-06 0.3457658465444041 0.05313808595446709 0.8175920296281215 FBgn0264574
3R_5489497_SNP 4.0 5489497.0 1.99023532080852e-06 -0.3753395142898516 0.05786006348526807 0.8167601222307469 FBgn0037726
X_11167397_SNP 5.0 11167397.0 2.5253148531245733e-06 0.3272866590453825 0.05130403566235097 0.8121713562894274 FBgn0265595
X_17652507_SNP 5.0 17652507.0 3.1720403903885176e-06 0.3084156421422825 0.04913528949773726 0.8076586001537069 Undefined
3L_1011527_SNP 3.0 1011527.0 3.776180233849874e-06 0.3645885211162847 0.058815104609099236 0.8041274356503276 FBgn0024277
3L_1011554_SNP 3.0 1011554.0 3.7761802338498804e-06 0.3645885211162845 0.05881510460909922 0.8041274356503276 FBgn0024277
3L_13845358_SNP 3.0 13845358.0 3.808151636253303e-06 0.3315148747764992 0.05351217163385444 0.8039548630819496 FBgn0029167
2R_13213180_SNP 2.0 13213180.0 4.173461100494633e-06 0.3294334166717022 0.053528970704897406 0.8020689978755295 FBgn0265487
2R_13213182_SNP 2.0 13213182.0 4.173461100494633e-06 0.3294334166717022 0.053528970704897406 0.8020689978755295 FBgn0265487
2L_7886804_SNP 1.0 7886804.0 4.344696937414557e-06 0.3673327558073956 0.059861211353300164 0.8012348293341536 FBgn0031961
X_21931828_SNP 5.0 21931828.0 4.601591544552707e-06 0.3120353545299172 0.05106232916364152 0.800036337412511 FBgn0262866
2L_4349883_SNP 1.0 4349883.0 6.036048925539912e-06 0.297243844181278 0.049617392865728485 0.7942658365719718 FBgn0265910
2R_8721568_DEL 2.0 8721568.0 6.3574018872730725e-06 0.33936473296386765 0.056865631995283175 0.7931418270287928 Undefined
3L_1186186_SNP 3.0 1186186.0 6.6559456776255225e-06 0.34265191536530154 0.057611676783491814 0.7921416884258045 Undefined
3R_19833650_SNP 4.0 19833650.0 7.405284690974725e-06 0.3162317746368167 0.05359244081795832 0.7897957574868288 FBgn0020647
3L_1011542_SNP 3.0 1011542.0 7.732219738740746e-06 0.3422667056186943 0.05819175952971335 0.7888373717388629 FBgn0024277
2R_13213177_DEL 2.0 13213177.0 7.733879953506218e-06 0.3070847496402156 0.052211003774579184 0.7888325969252545 FBgn0265487
3R_26174152_DEL 4.0 26174152.0 8.383781218258587e-06 0.3799764649420262 0.06499525374292674 0.7870294876164974 FBgn0010113
2L_8352415_SNP 1.0 8352415.0 8.901093860720726e-06 -0.36181982599879 0.062168395398023366 0.7856803631011255 FBgn0051901
2R_9524078_SNP 2.0 9524078.0 9.934018767466973e-06 0.3281929021771301 0.056859482264699286 0.7831816105596213 FBgn0000633
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Table E.5: Top hit annotations for Dataset2(39) dataset with Simpson phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
X_8949044_SNP 5.0 8949044.0 1.6715385453048494e-06 0.14765152939206974 0.02248607195770517 0.8200450267519488 FBgn0030077
3L_2815393_SNP 3.0 2815393.0 3.7240180708179115e-06 0.1409992726040014 0.022723120256879614 0.8044117865763436 FBgn0263392
3L_16691743_SNP 3.0 16691743.0 4.2530551736407236e-06 0.15881640547964315 0.02584106693469664 0.8016775665194575 FBgn0063485
2R_17125652_SNP 2.0 17125652.0 4.7603127755048505e-06 -0.13553305155432524 0.02223378848373565 0.7993250970694786 FBgn0034606
2R_8721568_DEL 2.0 8721568.0 6.416493753893198e-06 0.1460256765760136 0.024485519354898136 0.7929406209841441 Undefined
3R_21525727_SNP 4.0 21525727.0 8.03162660134656e-06 0.14435893487440482 0.024613491559313392 0.7879905545017886 FBgn0051092
2L_8352415_SNP 1.0 8352415.0 9.026001074065383e-06 -0.15601705743461974 0.026835189764304046 0.7853650009051326 FBgn0051901

Table E.6: Top hit annotations for Dataset2(39) dataset with weighted UniFrac MDS1 phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
X_6802552_INS 5.0 6802552.0 1.5776067221160147e-06 0.13230287837777227 0.020068000521713585 0.8211194373489651 FBgn0029922
X_8949044_SNP 5.0 8949044.0 1.6913232869086285e-06 0.13434453386813436 0.02047624652991652 0.8198255724306978 FBgn0030077
2R_13363494_SNP 2.0 13363494.0 1.994421168821793e-06 0.12684223512436466 0.019556102480367425 0.8167201755633049 FBgn0034224
3L_3533376_SNP 3.0 3533376.0 2.819041413779154e-06 0.11888812244531713 0.01878221770474429 0.8100083509680133 FBgn0005640
X_14458205_SNP 5.0 14458205.0 2.844769267492121e-06 0.1430695380563299 0.02261704412792653 0.8098285339967731 Undefined
2R_8721568_DEL 2.0 8721568.0 3.059870560940069e-06 0.1356817192032812 0.02156070192144664 0.808379032738881 Undefined
2R_14475427_SNP 2.0 14475427.0 4.464746463554567e-06 0.13843402127298224 0.02260410384747426 0.8006671776684875 FBgn0050115
2R_13895882_SNP 2.0 13895882.0 4.909029052016271e-06 -0.12718879708876007 0.020911762013723384 0.7986774622617051 FBgn0034286

Table E.7: Top hit annotations for Dataset3(79) dataset with Shannon phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3L_10287406_SNP 3.0 10287406.0 1.341593127178228e-06 0.22094892742368008 0.04106445353161823 0.5737298059035231 Undefined
X_7038830_SNP 5.0 7038830.0 1.7429992746315746e-06 0.22154052337389388 0.04172053459667355 0.5686590292576739 FBgn0029939
2R_10607652_SNP 2.0 10607652.0 4.0399039420552335e-06 0.2186656144400509 0.04302773929588672 0.5517806153184837 Undefined
X_10902990_SNP 5.0 10902990.0 4.814549237659734e-06 0.21051767430049576 0.04181957493673622 0.5481386870000401 FBgn0259241
3L_10741790_SNP 3.0 10741790.0 5.260505956365872e-06 -0.21951236782670114 0.04381795350465315 0.5462832022558597 Undefined
2R_10607645_SNP 2.0 10607645.0 5.2858662233930526e-06 0.21613650268274406 0.04315545763553527 0.5461821496106609 Undefined
3L_7220939_SNP 3.0 7220939.0 7.933936626831212e-06 0.261355088515779 0.05337741258547255 0.5375285133223948 Undefined
2R_4961519_DEL 2.0 4961519.0 8.23477141099046e-06 0.22998337240698466 0.04706932472757104 0.5367233726547529 FBgn0011746
3R_2285727_SNP 4.0 2285727.0 9.56542803361758e-06 0.20738937630254173 0.04280922191077308 0.5334617340819962 Undefined
3L_4734179_SNP 3.0 4734179.0 9.62382218022142e-06 0.22896145857710765 0.047278625238700515 0.5333284902414632 FBgn0035574
3R_10164736_SNP 4.0 10164736.0 9.860171781118334e-06 0.20704188958471856 0.0428120331158029 0.5327967589111707 FBgn0024321148



Table E.8: Top hit annotations for Dataset3(79) dataset with Simpson phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3L_10741790_SNP 3.0 10741790.0 2.245184786775977e-07 -0.1099756021927992 0.018782204318580974 0.6062401862573679 Undefined
3R_26926653_SNP 4.0 26926653.0 7.425312020901372e-07 -0.108984234849633 0.01967658629961043 0.5848854663335553 FBgn0039817
2L_4803632_SNP 1.0 4803632.0 4.379002999593101e-06 -0.09954902812915184 0.019674014114853568 0.5501125875818521 Undefined
X_3907145_SNP 5.0 3907145.0 4.5288871541573505e-06 -0.10651196592760216 0.021088510704572672 0.5494134236456834 Undefined
2R_4961519_DEL 2.0 4961519.0 4.853534405809613e-06 0.10595712509931952 0.02105775294018253 0.5479702215897713 FBgn0011746
2R_10607652_SNP 2.0 10607652.0 5.216806515856014e-06 0.0977233712318579 0.019498132266705995 0.5464584012715523 Undefined
2R_10607645_SNP 2.0 10607645.0 6.426990858096086e-06 0.09679541533468088 0.01953669835252816 0.5420469341182609 Undefined
2R_10251238_SNP 2.0 10251238.0 7.275124963024913e-06 -0.09964859942998218 0.020252403019048057 0.5393959471219171 FBgn0033929
2L_16898786_SNP 1.0 16898786.0 7.416315068041829e-06 -0.09800286008581986 0.01993945281557977 0.5389828435438575 FBgn0051805
2R_14586562_SNP 2.0 14586562.0 9.336115705802177e-06 -0.09453013046572194 0.0194857565072253 0.5339924069158821 FBgn0262103

Table E.9: Top hit annotations for Dataset3(79) dataset with weighted UniFrac MDS1 phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3L_10741790_SNP 3.0 10741790.0 1.514921737498106e-06 0.10721363417063184 0.020047883526710268 0.57138644470395 Undefined
3L_4785064_SNP 3.0 4785064.0 4.874282243742567e-06 -0.10780635756599308 0.02143024826199745 0.5478810784958231 FBgn0035574
3L_7145588_SNP 3.0 7145588.0 6.126865701357874e-06 -0.10793487616925786 0.021727249139368958 0.5430637273300399 FBgn0259173
2L_19392900_SNP 1.0 19392900.0 7.697363159922064e-06 -0.10775196578932936 0.02196895740257888 0.5381818870234446 FBgn0032775
2L_20328945_SNP 1.0 20328945.0 8.098023318418486e-06 -0.097839200135813 0.02000517730877996 0.5370859050038828 FBgn0003475
X_8617865_SNP 5.0 8617865.0 8.628568120039363e-06 -0.09674158811372788 0.0198521205333598 0.5357098425643407 FBgn0262989
2L_20365990_SNP 1.0 20365990.0 9.760698680463746e-06 -0.09614267162398757 0.0198687599429333 0.5330190894070198 FBgn0015803

Table E.10: Top hit annotations for Dataset4(83) dataset with Shannon phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
X_7038830_SNP 5.0 7038830.0 7.1593145106701e-07 0.21924282073760365 0.039808134299597314 0.5700819428587236 FBgn0029939
3L_10287406_SNP 3.0 10287406.0 1.04723073999601e-06 0.2156982537439681 0.03988563633464786 0.5630634356362669 Undefined
3L_7220939_SNP 3.0 7220939.0 1.4498474535203285e-06 0.2620652557677897 0.04923909095732763 0.5569293356452835 Undefined
3L_4734179_SNP 3.0 4734179.0 2.558105844920887e-06 0.2264082273145695 0.043777619802051713 0.5459204183364652 FBgn0035574
3L_10741790_SNP 3.0 10741790.0 3.1868278793193765e-06 -0.2125675058714236 0.04157289377063795 0.5415522760383915 Undefined
3R_2285727_SNP 4.0 2285727.0 3.7554948519073298e-06 0.20585350331096264 0.0406090685971038 0.538248093644466 Undefined
X_10902990_SNP 5.0 10902990.0 4.770996740953946e-06 0.20361961239874296 0.04068483175023449 0.5333682706257499 FBgn0259241
3L_8323379_SNP 3.0 8323379.0 5.2431058430356245e-06 0.2197367981167412 0.044129593494125666 0.5314232721893595 FBgn0085491
2L_8354915_SNP 1.0 8354915.0 5.6726049057374904e-06 0.2264666257074259 0.045676289591093946 0.5297910526461226 FBgn0051901
X_21931828_SNP 5.0 21931828.0 5.913330503953548e-06 0.20156295639612531 0.04074584145110685 0.5289260339219725 FBgn0262866
3L_7221082_SNP 3.0 7221082.0 6.920222454400603e-06 0.20473810823906435 0.041747414882809614 0.5256316616333077 Undefined
2R_4961519_DEL 2.0 4961519.0 8.021850705305679e-06 0.21876895474611988 0.04497682294185242 0.5225049734819694 FBgn0011746
X_21910670_SNP 5.0 21910670.0 9.339990854223686e-06 0.23069706462475484 0.04783735133592383 0.5192521238191358 FBgn0027279149



Table E.11: Top hit annotations for Dataset4(83) dataset with Simpson phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3L_10741790_SNP 3.0 10741790.0 1.712929740437477e-07 -0.10571144758499308 0.01798572366080376 0.5951015261064534 Undefined
2L_4803632_SNP 1.0 4803632.0 2.212576731493798e-06 -0.0985056202614098 0.01890563351010048 0.5487714004206774 Undefined
3R_26926653_SNP 4.0 26926653.0 6.14378617380493e-06 -0.09803792113244464 0.01985986901046401 0.5281281898599128 FBgn0039817
2L_16898786_SNP 1.0 16898786.0 8.938756770513191e-06 -0.09445322837719787 0.01953723467418556 0.5201943882081229 FBgn0051805
2R_4961519_DEL 2.0 4961519.0 9.171872669409763e-06 0.0984588688214711 0.020395445254241185 0.5196422521974194 FBgn0011746

Table E.12: Top hit annotations for Dataset4(83) dataset with weighted UniFrac MDS1 phenotype

SNP Chr ChrPos PValue SnpWeight SnpWeightSE SnpFractVarExpl Gene
3L_10741790_SNP 3.0 10741790.0 9.182550859170851e-07 -0.1078674426179312 0.01981986956455379 0.565507203200885 Undefined
2L_2891800_SNP 1.0 2891800.0 9.507225969403653e-07 -0.11808559651300045 0.021733749819311917 0.5648630256482536 FBgn0041111
3L_7145588_SNP 3.0 7145588.0 2.349908730056981e-06 0.11266082792065055 0.02168900143843529 0.5475914592693543 FBgn0259173
3L_14002353_SNP 3.0 14002353.0 5.788424486647457e-06 0.10716213822630033 0.021637500246259128 0.5293706768871573 FBgn0036398
2R_14127188_SNP 2.0 14127188.0 7.123568703348399e-06 0.10720526049994268 0.021894959023395527 0.5250211108619336 Undefined
2R_12180575_SNP 2.0 12180575.0 7.84025382402157e-06 0.0997426584684661 0.02047989089974861 0.5229916698821909 FBgn0034109
X_21880696_SNP 5.0 21880696.0 9.939863756913033e-06 0.09719859841036198 0.02022650344463601 0.5179114756125739 FBgn0031190

150



APPENDIX F

ASSOCIATION ANALYSIS RESULTS

151



Variant-Dataset Union Tables

Table F.1: Overlap table for significance levels for mGWAS associations. Significance levels are: ∗ ∗ ∗ < 5G10−7 < ∗∗ < 5G10−6 < ∗ < 5G10−5

gene D1_shannon D1_simpson D1_wUF.MDS1 D2_shannon D2_simpson D2_wUF.MDS1 D3_shannon D3_simpson D3_wUF.MDS1 D4_shannon D4_simpson D4_wUF.MDS1
2R_8988998_SNP Undefined * *
3R_2285727_SNP Undefined * *
X_17652507_SNP Undefined *
2R_8721568_DEL Undefined * * *
3L_1186186_SNP Undefined *
3L_10287406_SNP Undefined * *
3L_10741790_SNP Undefined * ** * * ** **
2R_10607645_SNP Undefined * *
3L_7220939_SNP Undefined * *
2L_4803632_SNP Undefined * *
3L_721213_SNP Undefined **
X_3907145_SNP Undefined *
3L_7221082_SNP Undefined *
2L_16388651_SNP Undefined *
2L_16388639_SNP Undefined *
2L_16388658_SNP Undefined *
X_14458205_SNP Undefined *
2R_14127188_SNP Undefined *
3R_1331531_INS Undefined *
2R_10607652_SNP Undefined * *
3L_721238_SNP Undefined **

3R_25526181_SNP Undefined *
3L_721171_SNP Undefined **

3R_17320894_SNP Undefined *
3L_721148_DEL Undefined **
3L_721196_SNP Undefined **
2L_4349883_SNP FBgn0265910 *
X_18429680_SNP FBgn0265598 *
X_11167397_SNP FBgn0265595 *
2R_13213180_SNP FBgn0265487 *
2R_13213406_SNP FBgn0265487 **
2R_13213182_SNP FBgn0265487 *
2R_13213177_DEL FBgn0265487 *
2R_13212976_SNP FBgn0265487 **
3L_989005_SNP FBgn0264574 *
3L_2815393_SNP FBgn0263392 * *
X_8617865_SNP FBgn0262989 *
X_21931828_SNP FBgn0262866 * *
3R_24415449_SNP FBgn0262741 *
2L_12356111_INS FBgn0262475 *
2R_14586562_SNP FBgn0262103 *
3L_2002367_SNP FBgn0262030 **152



Table F.1 (cont.)
gene D1_shannon D1_simpson D1_wUF.MDS1 D2_shannon D2_simpson D2_wUF.MDS1 D3_shannon D3_simpson D3_wUF.MDS1 D4_shannon D4_simpson D4_wUF.MDS1

3L_2002343_SNP FBgn0262030 *
2R_6299587_SNP FBgn0261698 *
X_6329781_SNP FBgn0259242 **
X_10902990_SNP FBgn0259241 * *
3L_7145588_SNP FBgn0259173 * *
3L_8323379_SNP FBgn0085491 *
X_10431347_SNP FBgn0085443 *
3L_16691743_SNP FBgn0063485 ** *
3L_7705263_SNP FBgn0052373 *
2L_8352415_SNP FBgn0051901 * *
2L_8354915_SNP FBgn0051901 *
2L_16898786_SNP FBgn0051805 * *
3R_21525727_SNP FBgn0051092 *
2R_14475427_SNP FBgn0050115 *
2L_2891800_SNP FBgn0041111 **
3R_26926653_SNP FBgn0039817 ** ** *
3R_25565889_SNP FBgn0039690 *
3R_24433055_SNP FBgn0039589 *
3R_21957954_SNP FBgn0039415 *
3R_16633261_SNP FBgn0038826 *
3R_14624160_SNP FBgn0038653 *
3R_12149306_SNP FBgn0038414 **
3R_5489497_SNP FBgn0037726 *
3R_5319909_SNP FBgn0037698 *
3L_14002353_SNP FBgn0036398 *
3L_4734179_SNP FBgn0035574 * *
3L_4785064_SNP FBgn0035574 *
2R_17125652_SNP FBgn0034606 *
2R_13932114_SNP FBgn0034291 **
2R_13895882_SNP FBgn0034286 *
2R_13363494_SNP FBgn0034224 *
2R_12180575_SNP FBgn0034109 *
2R_10251238_SNP FBgn0033929 *
2R_4916164_SNP FBgn0033365 *
2L_19392900_SNP FBgn0032775 *
2L_19059735_SNP FBgn0032749 *
2L_7886804_SNP FBgn0031961 *
X_21880696_SNP FBgn0031190 *
X_8949044_SNP FBgn0030077 ** * *
X_7038830_SNP FBgn0029939 * **
X_6802552_INS FBgn0029922 *

3L_13845358_SNP FBgn0029167 *
X_21910670_SNP FBgn0027279 *
3R_10164736_SNP FBgn0024321 *
3L_1011542_SNP FBgn0024277 *
3L_1011554_SNP FBgn0024277 *
3L_1011527_SNP FBgn0024277 *
3R_19833650_SNP FBgn0020647 *
2L_20365990_SNP FBgn0015803 *
2R_4961519_DEL FBgn0011746 * * * *
3R_26174152_DEL FBgn0010113 *
3L_3533376_SNP FBgn0005640 *
3L_4019528_SNP FBgn0004895 *153



Table F.1 (cont.)
gene D1_shannon D1_simpson D1_wUF.MDS1 D2_shannon D2_simpson D2_wUF.MDS1 D3_shannon D3_simpson D3_wUF.MDS1 D4_shannon D4_simpson D4_wUF.MDS1

3L_4019527_SNP FBgn0004895 *
3L_4019525_SNP FBgn0004895 *
2L_20328945_SNP FBgn0003475 *
2R_9524078_SNP FBgn0000633 *
2L_9685975_SNP FBgn0000273 *
2L_9685981_SNP FBgn0000273 *
2L_9685982_SNP FBgn0000273 *
2L_9685986_SNP FBgn0000273 *

Table F.2: Overlap table for significance values for mGWAS associations

gene D1_shannon D1_simpson D1_wUF.MDS1 D2_shannon D2_simpson D2_wUF.MDS1 D3_shannon D3_simpson D3_wUF.MDS1 D4_shannon D4_simpson D4_wUF.MDS1
2R_8988998_SNP Undefined 1.53E-06 2.64E-06 1.81E-03 4.90E-01 4.80E-01 4.29E-01 4.51E-02 6.87E-02 3.33E-01 5.78E-02 6.37E-02 3.60E-01
3R_2285727_SNP Undefined 2.62E-02 6.75E-02 1.01E-01 1.63E-03 2.16E-03 2.74E-03 9.57E-06 1.06E-04 2.41E-03 3.76E-06 5.15E-05 3.58E-02
X_17652507_SNP Undefined 3.44E-01 2.88E-01 4.95E-01 3.17E-06 1.73E-05 3.70E-03 6.04E-03 2.11E-02 2.61E-01 3.23E-03 1.63E-02 3.83E-01
2R_8721568_DEL Undefined 8.89E-01 9.41E-01 6.51E-01 6.36E-06 6.42E-06 3.06E-06 1.05E-01 1.00E-01 6.37E-02 5.59E-02 6.31E-02 1.06E-01
3L_1186186_SNP Undefined 1.72E-01 4.17E-01 7.90E-01 6.66E-06 8.78E-05 1.07E-02 2.09E-04 7.67E-04 4.41E-02 1.31E-04 4.28E-04 1.30E-01
3L_10287406_SNP Undefined 7.42E-03 4.93E-02 6.06E-02 1.00E-04 1.56E-03 4.23E-03 1.34E-06 1.66E-04 1.91E-03 1.05E-06 2.24E-04 4.94E-02
3L_10741790_SNP Undefined 5.65E-03 1.80E-03 1.63E-03 4.55E-04 4.46E-05 1.94E-04 5.26E-06 2.25E-07 1.51E-06 3.19E-06 1.71E-07 9.18E-07
2R_10607645_SNP Undefined 6.34E-02 5.65E-02 6.89E-01 1.88E-04 2.74E-04 1.04E-03 5.29E-06 6.43E-06 7.29E-03 3.26E-05 6.28E-05 2.45E-02
3L_7220939_SNP Undefined 2.74E-02 3.22E-02 6.50E-01 9.85E-04 7.56E-04 1.50E-02 7.93E-06 3.57E-05 3.32E-02 1.45E-06 1.22E-05 1.26E-01
2L_4803632_SNP Undefined 4.42E-03 9.69E-04 1.31E-02 2.33E-01 1.31E-01 1.63E-01 4.60E-04 4.38E-06 9.63E-05 2.50E-04 2.21E-06 7.94E-05
3L_721213_SNP Undefined 6.14E-01 3.88E-01 3.71E-02 9.42E-07 3.65E-05 1.18E-04 1.34E-01 2.34E-01 9.86E-01 2.07E-01 3.75E-01 4.93E-01
X_3907145_SNP Undefined 5.56E-03 1.30E-03 7.82E-03 1.48E-01 1.08E-01 1.56E-01 8.45E-05 4.53E-06 1.56E-04 1.28E-04 1.04E-05 6.15E-04
3L_7221082_SNP Undefined 2.08E-02 6.18E-02 1.03E-02 2.11E-04 2.63E-03 1.11E-03 1.92E-05 1.12E-03 1.89E-04 6.92E-06 7.78E-04 1.98E-02
2L_16388651_SNP Undefined 4.19E-01 2.51E-01 5.95E-06 5.61E-01 4.33E-01 2.70E-01 3.96E-01 3.45E-01 3.22E-03 2.40E-01 2.56E-01 5.41E-03
2L_16388639_SNP Undefined 4.19E-01 2.51E-01 5.95E-06 3.88E-01 3.48E-01 2.37E-01 3.20E-01 2.87E-01 1.59E-03 2.33E-01 2.22E-01 2.41E-03
2L_16388658_SNP Undefined 4.19E-01 2.51E-01 5.95E-06 5.63E-01 4.34E-01 2.72E-01 3.97E-01 3.46E-01 3.25E-03 2.41E-01 2.56E-01 5.45E-03
X_14458205_SNP Undefined 2.80E-01 1.56E-01 4.30E-01 2.16E-04 8.90E-05 2.84E-06 3.24E-04 2.07E-04 2.18E-03 4.20E-04 2.48E-04 4.07E-03
2R_14127188_SNP Undefined 4.09E-01 4.62E-02 6.27E-03 2.78E-02 3.85E-02 1.60E-02 2.72E-02 1.48E-03 1.96E-04 2.86E-02 1.05E-03 7.12E-06
3R_1331531_INS Undefined 3.58E-01 3.48E-01 9.06E-01 1.01E-06 2.31E-05 5.52E-05 5.01E-02 5.96E-02 6.13E-02 4.33E-02 5.22E-02 9.36E-02
2R_10607652_SNP Undefined 2.71E-02 2.65E-02 3.97E-01 2.59E-04 2.72E-04 9.35E-04 4.04E-06 5.22E-06 3.91E-03 3.04E-05 6.10E-05 1.55E-02
3L_721238_SNP Undefined 1.71E-01 9.28E-02 1.24E-02 9.00E-07 2.14E-05 6.03E-05 3.91E-01 5.90E-01 6.70E-01 5.49E-01 8.11E-01 3.44E-01

3R_25526181_SNP Undefined 2.69E-05 1.36E-06 8.47E-02 3.60E-01 5.21E-01 7.90E-01 1.45E-03 4.31E-04 4.69E-01 4.21E-03 2.23E-03 6.39E-01
3L_721171_SNP Undefined 2.17E-01 8.01E-02 3.62E-03 9.00E-07 2.14E-05 6.03E-05 2.68E-01 4.50E-01 7.23E-01 3.83E-01 6.53E-01 3.42E-01

3R_17320894_SNP Undefined 1.14E-04 8.12E-06 5.95E-04 9.61E-01 1.00E+00 8.25E-01 4.38E-02 1.12E-02 4.25E-02 8.34E-02 2.08E-02 4.46E-02
3L_721148_DEL Undefined 2.04E-01 7.48E-02 3.43E-03 9.00E-07 2.14E-05 6.03E-05 2.45E-01 4.12E-01 7.90E-01 3.55E-01 6.10E-01 3.91E-01
3L_721196_SNP Undefined 7.47E-01 9.95E-01 1.53E-01 9.00E-07 2.14E-05 6.03E-05 5.40E-02 8.06E-02 6.53E-01 8.68E-02 1.46E-01 7.48E-01
2L_4349883_SNP FBgn0265910 2.02E-01 4.98E-02 7.88E-01 6.04E-06 2.80E-04 1.61E-03 1.12E-03 2.11E-03 1.31E-01 1.06E-03 2.15E-03 3.89E-01
X_18429680_SNP FBgn0265598 5.22E-05 5.78E-06 3.04E-03 9.42E-01 8.37E-01 8.81E-01 5.58E-02 5.14E-02 1.99E-02 2.56E-02 2.79E-02 5.68E-02
X_11167397_SNP FBgn0265595 6.14E-01 4.90E-01 5.50E-01 2.53E-06 2.20E-05 8.32E-04 2.80E-02 6.34E-02 1.91E-01 3.34E-02 7.65E-02 3.01E-01
2R_13213180_SNP FBgn0265487 4.08E-01 7.71E-01 4.41E-01 4.17E-06 1.76E-05 3.67E-03 2.10E-01 2.33E-01 8.18E-01 2.15E-01 2.35E-01 7.80E-01
2R_13213406_SNP FBgn0265487 3.20E-01 3.67E-01 2.08E-01 7.51E-07 2.74E-05 2.87E-04 8.06E-05 1.59E-03 5.90E-03 4.96E-05 7.82E-04 2.63E-02
2R_13213182_SNP FBgn0265487 4.08E-01 7.71E-01 4.41E-01 4.17E-06 1.76E-05 3.67E-03 2.10E-01 2.33E-01 8.18E-01 2.15E-01 2.35E-01 7.80E-01
2R_13213177_DEL FBgn0265487 4.05E-01 6.03E-01 4.39E-01 7.73E-06 1.05E-04 2.43E-03 5.13E-04 1.45E-02 5.03E-02 4.54E-04 1.07E-02 2.26E-01
2R_13212976_SNP FBgn0265487 4.05E-01 6.03E-01 4.39E-01 6.40E-07 2.24E-05 3.15E-04 9.35E-05 4.46E-03 1.89E-02 8.98E-05 3.33E-03 1.24E-01
3L_989005_SNP FBgn0264574 1.12E-01 1.25E-01 2.08E-01 1.90E-06 5.84E-05 8.16E-04 9.91E-05 2.73E-04 1.15E-02 3.12E-05 1.26E-04 2.70E-02
3L_2815393_SNP FBgn0263392 5.12E-01 7.25E-01 3.98E-01 1.10E-06 3.72E-06 1.02E-05 2.03E-02 1.26E-02 2.35E-01 7.44E-03 6.61E-03 2.50E-01
X_8617865_SNP FBgn0262989 2.48E-01 2.07E-01 1.57E-04 8.60E-02 7.71E-02 8.63E-02 1.64E-02 1.23E-02 8.63E-06 1.89E-02 9.63E-03 3.45E-05
X_21931828_SNP FBgn0262866 2.36E-02 5.99E-02 5.00E-01 4.60E-06 1.58E-04 4.17E-05 1.47E-05 1.80E-04 3.95E-03 5.91E-06 1.49E-04 2.40E-02
3R_24415449_SNP FBgn0262741 1.77E-05 3.79E-06 1.12E-04 8.18E-01 6.13E-01 9.94E-01 7.36E-04 1.44E-04 4.72E-03 1.07E-03 3.49E-04 2.41E-02154



Table F.2 (cont.)
gene D1_shannon D1_simpson D1_wUF.MDS1 D2_shannon D2_simpson D2_wUF.MDS1 D3_shannon D3_simpson D3_wUF.MDS1 D4_shannon D4_simpson D4_wUF.MDS1

2L_12356111_INS FBgn0262475 2.56E-03 3.65E-04 3.35E-06 6.91E-01 7.09E-01 7.26E-01 6.78E-01 5.45E-01 3.45E-01 6.78E-01 5.32E-01 2.75E-01
2R_14586562_SNP FBgn0262103 2.75E-03 6.51E-04 3.19E-02 1.93E-02 7.06E-03 1.18E-02 5.92E-05 9.34E-06 1.29E-04 5.53E-05 1.85E-05 4.01E-03
3L_2002367_SNP FBgn0262030 9.38E-02 5.28E-02 4.33E-07 4.48E-01 4.13E-01 5.71E-01 4.31E-01 3.12E-01 2.38E-03 2.75E-01 1.84E-01 3.54E-03
3L_2002343_SNP FBgn0262030 8.89E-02 7.83E-02 4.58E-06 5.07E-01 4.18E-01 5.43E-01 3.48E-01 3.09E-01 2.91E-03 2.13E-01 1.80E-01 5.74E-03
2R_6299587_SNP FBgn0261698 3.50E-05 5.61E-06 1.08E-03 5.19E-01 5.21E-01 7.55E-01 5.68E-05 3.73E-05 5.35E-03 7.17E-05 9.05E-05 6.18E-02
X_6329781_SNP FBgn0259242 7.63E-02 1.06E-01 1.21E-01 9.16E-07 2.12E-05 5.54E-05 2.61E-04 9.42E-04 5.23E-03 3.81E-04 7.03E-04 1.10E-02
X_10902990_SNP FBgn0259241 4.42E-03 4.79E-02 5.33E-01 1.92E-03 1.23E-02 5.06E-02 4.81E-06 1.07E-03 1.37E-01 4.77E-06 1.10E-03 7.95E-01
3L_7145588_SNP FBgn0259173 1.61E-01 1.02E-01 2.60E-04 3.70E-01 3.25E-01 6.42E-02 7.67E-02 4.39E-02 6.13E-06 7.67E-02 3.00E-02 2.35E-06
3L_8323379_SNP FBgn0085491 2.37E-03 2.20E-02 1.98E-01 1.06E-03 1.44E-03 4.67E-03 1.79E-05 2.90E-04 2.31E-02 5.24E-06 1.35E-04 9.68E-02
X_10431347_SNP FBgn0085443 7.04E-05 6.38E-06 5.01E-03 9.51E-01 6.88E-01 9.28E-01 2.80E-02 1.57E-02 1.55E-01 1.35E-02 6.49E-03 1.60E-01
3L_16691743_SNP FBgn0063485 8.32E-01 9.08E-01 7.82E-01 9.95E-07 4.25E-06 1.38E-03 8.34E-02 5.96E-02 1.67E-01 1.04E-01 5.26E-02 8.01E-02
3L_7705263_SNP FBgn0052373 5.49E-03 1.46E-03 9.69E-06 8.82E-01 7.46E-01 7.20E-01 1.62E-01 9.94E-02 4.35E-02 9.39E-02 4.04E-02 1.08E-02
2L_8352415_SNP FBgn0051901 4.84E-01 4.71E-01 3.89E-01 8.90E-06 9.03E-06 5.32E-03 1.55E-03 4.90E-03 3.83E-02 7.89E-04 2.88E-03 6.83E-02
2L_8354915_SNP FBgn0051901 1.04E-02 1.28E-02 7.49E-02 2.68E-03 1.39E-03 7.35E-03 1.37E-05 2.64E-05 1.19E-03 5.67E-06 1.30E-05 4.32E-03
2L_16898786_SNP FBgn0051805 1.97E-03 3.86E-04 3.71E-02 1.40E-01 1.16E-01 1.02E-01 6.66E-05 7.42E-06 1.40E-03 7.91E-05 8.94E-06 2.01E-03
3R_21525727_SNP FBgn0051092 9.52E-01 6.23E-01 9.55E-01 6.57E-05 8.03E-06 2.47E-05 4.17E-03 6.87E-04 1.13E-02 3.97E-03 3.83E-04 7.61E-03
2R_14475427_SNP FBgn0050115 4.89E-01 5.27E-01 3.50E-01 6.54E-04 4.20E-04 4.46E-06 3.72E-03 1.44E-02 1.21E-02 2.51E-03 1.27E-02 1.04E-01
2L_2891800_SNP FBgn0041111 4.96E-01 1.04E-01 3.33E-03 5.69E-02 7.81E-02 1.68E-01 6.37E-02 5.34E-03 2.30E-05 6.99E-02 4.67E-03 9.51E-07
3R_26926653_SNP FBgn0039817 1.61E-04 7.28E-07 4.20E-05 1.21E-01 1.30E-01 1.12E-01 2.06E-05 7.43E-07 2.16E-05 5.57E-05 6.14E-06 6.54E-04
3R_25565889_SNP FBgn0039690 3.82E-02 1.25E-02 1.74E-06 9.43E-01 9.67E-01 6.47E-01 1.01E-01 6.43E-02 8.66E-03 7.49E-02 5.29E-02 8.79E-03
3R_24433055_SNP FBgn0039589 8.55E-05 3.87E-06 9.77E-04 6.62E-01 5.90E-01 3.71E-01 1.93E-03 3.31E-04 4.58E-04 5.04E-03 9.88E-04 4.88E-04
3R_21957954_SNP FBgn0039415 1.47E-04 2.12E-06 3.25E-03 4.02E-01 2.79E-01 3.80E-01 4.72E-03 2.63E-04 3.63E-03 3.74E-03 2.17E-04 4.94E-03
3R_16633261_SNP FBgn0038826 3.91E-02 2.30E-02 9.36E-06 6.35E-01 7.80E-01 8.66E-01 2.80E-01 4.56E-01 2.72E-01 1.80E-01 2.75E-01 2.33E-01
3R_14624160_SNP FBgn0038653 1.10E-01 5.94E-02 8.60E-06 7.24E-01 9.57E-01 5.23E-01 6.60E-01 5.44E-01 8.35E-02 5.17E-01 3.55E-01 6.20E-02
3R_12149306_SNP FBgn0038414 1.00E+00 1.00E+00 1.00E+00 9.24E-07 2.02E-05 4.67E-05 4.32E-04 2.17E-03 4.97E-02 3.39E-04 1.59E-03 9.68E-02
3R_5489497_SNP FBgn0037726 8.85E-01 8.99E-01 8.82E-01 1.99E-06 2.29E-05 1.98E-03 9.61E-02 1.40E-01 3.20E-01 4.26E-02 8.25E-02 4.73E-01
3R_5319909_SNP FBgn0037698 4.69E-01 6.30E-01 2.94E-01 1.60E-06 2.49E-05 1.11E-04 3.30E-03 1.13E-02 1.31E-02 1.03E-02 3.42E-02 7.28E-02
3L_14002353_SNP FBgn0036398 3.81E-02 4.61E-03 4.47E-04 2.65E-02 2.71E-02 1.48E-02 4.25E-03 4.50E-04 1.31E-05 2.12E-03 2.05E-04 5.79E-06
3L_4734179_SNP FBgn0035574 2.50E-02 2.49E-02 5.14E-01 1.26E-04 5.87E-04 2.26E-03 9.62E-06 4.77E-05 4.55E-02 2.56E-06 3.14E-05 2.98E-01
3L_4785064_SNP FBgn0035574 4.25E-01 3.79E-01 9.15E-04 2.71E-01 1.50E-01 6.68E-02 8.94E-02 3.85E-02 4.87E-06 2.30E-01 1.08E-01 3.43E-05
2R_17125652_SNP FBgn0034606 6.84E-01 6.35E-01 5.22E-01 9.14E-05 4.76E-06 2.72E-05 4.57E-03 2.32E-03 3.13E-03 2.04E-03 7.04E-04 1.21E-03
2R_13932114_SNP FBgn0034291 4.63E-01 3.14E-01 3.86E-01 4.90E-07 1.04E-05 3.10E-04 1.13E-03 1.32E-03 3.96E-03 9.74E-03 1.57E-02 2.00E-02
2R_13895882_SNP FBgn0034286 5.82E-01 3.95E-01 6.53E-01 1.77E-03 3.14E-04 4.91E-06 2.02E-01 1.82E-01 2.58E-02 1.37E-01 1.30E-01 2.08E-02
2R_13363494_SNP FBgn0034224 5.45E-01 4.92E-01 6.82E-01 1.08E-03 1.31E-04 1.99E-06 2.74E-01 1.89E-01 1.79E-01 3.76E-01 3.07E-01 3.18E-01
2R_12180575_SNP FBgn0034109 2.10E-01 6.23E-02 1.85E-05 4.85E-01 4.84E-01 3.29E-01 2.26E-01 7.06E-02 1.44E-05 2.03E-01 6.20E-02 7.84E-06
2R_10251238_SNP FBgn0033929 6.53E-02 5.46E-02 3.15E-01 2.76E-03 5.17E-04 2.02E-04 3.77E-05 7.28E-06 4.84E-04 2.94E-04 5.15E-05 2.50E-03
2R_4916164_SNP FBgn0033365 1.72E-04 9.84E-06 2.86E-03 4.25E-01 4.80E-01 9.48E-02 1.67E-02 4.02E-03 1.20E-01 4.32E-02 8.00E-03 1.21E-01
2L_19392900_SNP FBgn0032775 1.02E-01 1.01E-01 5.73E-05 7.59E-01 9.28E-01 9.40E-01 8.37E-02 4.76E-02 7.70E-06 4.17E-02 3.56E-02 5.91E-05
2L_19059735_SNP FBgn0032749 7.06E-04 3.09E-06 3.04E-04 2.23E-01 2.40E-01 3.10E-01 1.48E-02 1.54E-03 9.81E-03 1.52E-02 2.12E-03 1.59E-02
2L_7886804_SNP FBgn0031961 1.58E-01 3.62E-01 8.00E-01 4.34E-06 3.04E-05 7.58E-05 9.01E-04 6.37E-03 4.23E-02 3.13E-04 4.71E-03 3.38E-01
X_21880696_SNP FBgn0031190 2.84E-01 1.20E-01 7.75E-03 1.28E-02 1.59E-02 1.01E-02 6.07E-03 1.17E-03 1.48E-05 3.85E-03 6.31E-04 9.94E-06
X_8949044_SNP FBgn0030077 5.40E-01 3.80E-01 2.12E-01 3.48E-07 1.67E-06 1.69E-06 1.81E-02 3.30E-02 3.13E-01 4.96E-02 1.09E-01 5.37E-01
X_7038830_SNP FBgn0029939 9.91E-05 2.66E-03 1.90E-02 3.23E-03 9.57E-03 1.07E-02 1.74E-06 2.87E-04 1.63E-03 7.16E-07 1.55E-04 5.47E-02
X_6802552_INS FBgn0029922 2.64E-01 2.25E-01 2.81E-01 3.90E-04 2.08E-04 1.58E-06 7.26E-03 7.83E-03 1.62E-02 6.59E-03 6.99E-03 3.99E-02

3L_13845358_SNP FBgn0029167 4.45E-01 2.51E-01 2.33E-01 3.81E-06 9.24E-05 1.74E-05 4.34E-03 3.56E-03 2.16E-03 1.62E-03 2.12E-03 5.77E-03
X_21910670_SNP FBgn0027279 7.03E-05 1.10E-03 5.94E-02 6.21E-03 1.74E-02 3.60E-02 2.38E-05 5.26E-04 1.04E-02 9.34E-06 3.49E-04 5.38E-02
3R_10164736_SNP FBgn0024321 6.98E-03 1.14E-02 3.26E-01 4.79E-03 4.61E-03 7.37E-02 9.86E-06 1.22E-05 2.30E-02 9.70E-05 3.41E-04 3.08E-01
3L_1011542_SNP FBgn0024277 1.30E-01 7.83E-02 2.18E-01 7.73E-06 1.35E-04 6.16E-04 2.00E-01 5.63E-01 9.19E-01 1.77E-01 4.85E-01 9.22E-01
3L_1011554_SNP FBgn0024277 5.55E-01 5.18E-01 7.56E-01 3.78E-06 8.76E-05 7.11E-05 2.09E-01 3.30E-01 2.92E-01 2.05E-01 2.95E-01 2.86E-01
3L_1011527_SNP FBgn0024277 5.55E-01 5.18E-01 7.56E-01 3.78E-06 8.76E-05 7.11E-05 2.09E-01 3.30E-01 2.92E-01 2.04E-01 2.94E-01 2.89E-01
3R_19833650_SNP FBgn0020647 5.70E-01 9.11E-01 4.80E-01 7.41E-06 2.07E-04 1.72E-03 7.15E-03 4.12E-02 6.31E-01 4.66E-02 1.41E-01 8.77E-01
2L_20365990_SNP FBgn0015803 2.09E-01 1.50E-01 2.10E-04 3.87E-01 2.52E-01 2.25E-01 4.45E-02 1.19E-02 9.76E-06 3.68E-02 8.60E-03 1.46E-05
2R_4961519_DEL FBgn0011746 4.01E-03 4.38E-03 4.72E-01 7.09E-03 2.12E-02 5.34E-02 8.23E-06 4.85E-06 2.05E-02 8.02E-06 9.17E-06 1.23E-01155



Table F.2 (cont.)
gene D1_shannon D1_simpson D1_wUF.MDS1 D2_shannon D2_simpson D2_wUF.MDS1 D3_shannon D3_simpson D3_wUF.MDS1 D4_shannon D4_simpson D4_wUF.MDS1

3R_26174152_DEL FBgn0010113 2.62E-01 3.02E-01 4.89E-01 8.38E-06 3.56E-05 1.27E-05 4.77E-04 3.21E-03 1.02E-02 3.53E-03 2.14E-02 1.50E-01
3L_3533376_SNP FBgn0005640 2.85E-01 5.40E-01 2.74E-01 1.76E-03 3.80E-04 2.82E-06 8.99E-03 2.01E-02 6.92E-03 1.03E-02 3.41E-02 4.46E-02
3L_4019528_SNP FBgn0004895 7.80E-02 1.33E-01 2.89E-06 5.66E-01 6.34E-01 3.13E-01 3.92E-01 4.16E-01 1.36E-03 5.44E-01 6.82E-01 4.02E-02
3L_4019527_SNP FBgn0004895 7.80E-02 1.33E-01 2.89E-06 5.66E-01 6.34E-01 3.13E-01 3.92E-01 4.16E-01 1.36E-03 5.44E-01 6.82E-01 4.02E-02
3L_4019525_SNP FBgn0004895 7.80E-02 1.33E-01 2.89E-06 5.25E-01 5.68E-01 2.72E-01 4.10E-01 4.41E-01 1.58E-03 5.64E-01 7.12E-01 4.50E-02
2L_20328945_SNP FBgn0003475 1.05E-01 7.99E-02 4.51E-04 1.89E-02 4.52E-02 6.19E-02 6.23E-04 7.67E-04 8.10E-06 9.20E-04 5.49E-04 3.59E-05
2R_9524078_SNP FBgn0000633 5.15E-01 5.43E-01 4.64E-02 9.93E-06 1.83E-04 1.50E-03 9.80E-03 3.96E-02 3.82E-02 1.17E-02 2.90E-02 3.67E-02
2L_9685975_SNP FBgn0000273 1.40E-01 1.61E-01 5.34E-06 2.44E-01 2.77E-01 5.71E-01 3.25E-01 2.37E-01 3.34E-01 3.25E-01 2.24E-01 2.68E-01
2L_9685981_SNP FBgn0000273 1.40E-01 1.61E-01 5.34E-06 3.21E-01 2.18E-01 4.64E-01 4.36E-01 6.01E-01 6.84E-03 5.00E-01 7.14E-01 5.47E-02
2L_9685982_SNP FBgn0000273 1.40E-01 1.61E-01 5.34E-06 3.21E-01 2.18E-01 4.64E-01 4.36E-01 6.01E-01 6.84E-03 6.48E-01 7.95E-01 5.11E-02
2L_9685986_SNP FBgn0000273 1.40E-01 1.61E-01 5.34E-06 3.21E-01 2.18E-01 4.64E-01 4.36E-01 6.01E-01 6.84E-03 6.48E-01 7.95E-01 5.11E-02
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Venn Diagrams

Overlaps for Shannon Phenotype

Figure F.1: Overlapping SNPs for Shannon phenotype
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Figure F.2: Overlapping genes for Shannon phenotype

Overlaps for Simpson Phenotype

Figure F.3: Overlapping SNPs for Simpson phenotype
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Figure F.4: Overlapping genes for Simpson phenotype

Overlaps for Weighted UniFrac MDS1 Phenotype

Figure F.5: Overlapping SNPs for weighted UniFrac MDS1 phenotype
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Figure F.6: Overlapping genes for weighted UniFrac MDS1 phenotype
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Figure F.7: Full UpSet diagram for overlapping SNPs identified by mGWAS(FastLMM) for every dataset and its corresponding phenotype161



Figure F.8: Full UpSet diagram for overlapping genes identified by mGWAS(FastLMM) for every dataset and its corresponding phenotype162



APPENDIX G

POST-GWAS ANALYSIS RESULTS
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Table G.1: Significance p-values for auto-selected covariates, tested using linear
regression models for post-GWAS analysis

In_2L_tIn_2R_NSIn_3R_PIn_3R_KIn_3R_Mo wolba
Dataset1(40)-Acetobacter NA NA NA NA NA NA
Dataset1(40)-Comamonas NA NA NA NA NA 4.105E-02
Dataset1(40)-Firmicutes NA NA NA NA NA 7.239E-05

Dataset1(40)-Lactobacillus NA NA NA NA NA 1.103E-03
Dataset1(40)-Proteobacteria NA NA NA NA NA 4.359E-02

Dataset1(40)-Shannon NA NA NA NA NA NA
Dataset1(40)-Simpson NA NA NA NA NA NA

Dataset2(39)-Acetobacter NA NA NA NA 9.252E-01 NA
Dataset2(39)-Comamonas NA NA NA NA NA NA
Dataset2(39)-Firmicutes NA NA NA NA 3.919E-02 3.919E-02

Dataset2(39)-Lactobacillus NA NA NA NA 1.177E-01 NA
Dataset2(39)-Proteobacteria NA NA NA NA NA NA

Dataset2(39)-Shannon NA NA NA NA NA NA
Dataset2(39)-Simpson NA NA NA NA NA NA

Dataset3(79)-Acetobacter NA NA NA NA 5.653E-02 NA
Dataset3(79)-Comamonas NA NA NA NA NA 7.723E-03
Dataset3(79)-Firmicutes NA NA NA NA NA 2.825E-02

Dataset3(79)-Lactobacillus NA NA NA NA NA 4.718E-02
Dataset3(79)-Proteobacteria NA NA NA NA NA 4.881E-02

Dataset3(79)-Shannon NA NA NA NA NA NA
Dataset3(79)-Simpson NA NA NA NA NA NA

Dataset4(83)-Acetobacter NA NA NA NA 2.835E-02 2.835E-02
Dataset4(83)-Comamonas NA NA NA NA NA NA
Dataset4(83)-Firmicutes NA NA NA NA NA 2.137E-02

Dataset4(83)-Lactobacillus NA NA NA NA NA 4.129E-02
Dataset4(83)-Proteobacteria NA NA NA NA 2.546E-02 2.546E-02

Dataset4(83)-Shannon NA NA NA NA NA NA
Dataset4(83)-Simpson NA NA NA NA NA NA

Table G.2: Normalization methods for post-GWAS phenotypes identified by
“bestNormalize” R package

Dataset3(79)Dataset4(83)Dataset1(40)Dataset2(39)
Shannon no_transform log_x no_transform log_x
Simpson no_transform boxcox no_transform orderNorm

Lactobacillus orderNorm orderNorm orderNorm orderNorm
Acetobacter boxcox boxcox sqrt_x boxcox
Comamonas orderNorm arcsinh_x arcsinh_x sqrt_x
Firmicutes orderNorm orderNorm sqrt_x sqrt_x

Proteobacteria boxcox arcsinh_x sqrt_x arcsinh_x
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Table G.3: Shapiro–Wilk test significance p-values for original post-GWAS phenotypes
prior to normalization

Dataset3(79)Dataset4(83)Dataset1(40)Dataset2(39)
Shannon 0.0911 0.0829 0.8281 0.0346
Simpson 0.0405 0.0505 0.1043 0.0401

Lactobacillus 0 0 0 0.0001
Acetobacter 0 0 0 0.0001
Comamonas 0 0 0 0
Firmicutes 0 0 0 0.0001

Proteobacteria 0 0 0 0.0036
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Figure G.1: Original and normalized phenotype histograms for GLM analysis
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Table G.4: Phenotype significance p-values for candidate genes of interest from both mGWAS/FastLMM and post-GWAS/GLM analysis

FBgn0039817 FBgn0051805
Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)

FastLMM Shannon 1.61E-04 1.21E-01 2.06E-05 5.57E-05 1.97E-03 1.40E-01 6.66E-05 7.91E-05
Simpson 7.28E-07 1.30E-01 7.43E-07 6.14E-06 3.86E-04 1.16E-01 7.42E-06 8.94E-06

GLM

Shannon 2.11E-07 1.47E-01 8.36E-06 3.51E-05 2.57E-04 1.80E-02 2.41E-05 1.63E-04
Simpson 2.74E-08 3.68E-01 2.32E-06 2.38E-05 6.41E-04 4.11E-03 4.74E-06 4.53E-05

Lactobacillus 8.77E-02 1.78E-02 8.61E-01 6.71E-01 9.50E-01 7.38E-01 3.98E-01 2.07E-01
Acetobacter 1.70E-01 2.22E-02 7.77E-03 5.33E-02 4.26E-02 5.74E-02 2.24E-02 1.89E-01
Comamonas 1.62E-01 3.13E-01 5.92E-02 1.83E-01 1.78E-01 8.66E-01 2.55E-01 5.62E-01
Firmicutes 1.92E-02 1.84E-02 6.40E-01 9.33E-01 8.28E-01 7.14E-01 2.61E-01 1.15E-01

Proteobacteria 1.47E-04 1.85E-02 5.57E-05 4.31E-03 1.78E-02 7.69E-03 1.81E-03 9.30E-02
FBgn0259241 FBgn0011746

Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)

FastLMM Shannon 4.42E-03 1.92E-03 4.81E-06 4.77E-06 4.01E-03 7.09E-03 8.23E-06 8.02E-06
Simpson 4.79E-02 1.23E-02 1.07E-03 1.10E-03 4.38E-03 2.12E-02 4.85E-06 9.17E-06

GLM

Shannon 1.38E-02 2.70E-02 9.98E-05 7.07E-05 1.66E-03 1.38E-01 1.10E-03 5.76E-04
Simpson 1.13E-02 5.94E-03 1.51E-03 4.33E-04 5.44E-04 6.88E-02 8.41E-04 6.54E-04

Lactobacillus 4.91E-02 5.73E-02 1.86E-02 1.37E-02 5.06E-01 6.22E-01 1.57E-01 5.93E-01
Acetobacter 1.48E-02 3.49E-03 1.59E-03 9.27E-04 2.59E-01 1.05E-01 4.98E-01 3.15E-02
Comamonas 1.10E-01 7.24E-01 3.99E-01 2.33E-01 5.57E-02 6.17E-01 2.56E-01 2.00E-02
Firmicutes 6.02E-02 9.34E-02 3.80E-02 2.48E-02 4.39E-01 6.47E-01 1.28E-01 4.85E-01

Proteobacteria 5.99E-02 3.23E-02 3.56E-03 6.23E-05 1.65E-01 3.12E-01 6.51E-01 3.23E-02167



Table G.5: Phenotype significance levels for candidate genes of interest from both mGWAS/FastLMM and post-GWAS/GLM analysis

FBgn0039817 FBgn0051805
Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)

FastLMM Shannon *
Simpson ** ** * * *

GLM

Shannon *** *** *** *** * *** ***
Simpson *** *** *** ** ** *** ***

Lactobacillus *
Acetobacter * * * *
Comamonas
Firmicutes * *

Proteobacteria *** * *** ** * * **
FBgn0259241 FBgn0011746

Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)Dataset1(40)Dataset2(39)Dataset3(79)Dataset4(83)

FastLMM Shannon ** ** * *
Simpson ** *

GLM

Shannon * * *** *** ** ** **
Simpson * * ** *** ** ** **

Lactobacillus * * *
Acetobacter * ** ** ** *
Comamonas *
Firmicutes * *

Proteobacteria * ** *** *168



APPENDIX H

ADDITIONAL TABLES

Table H.1: Covariates per sample for GWAS

DGRP In_2L_t In_2R_NS In_3R_P In_3R_K In_3R_Mowolba
100 INV/ST ST ST INV ST y
101 INV/ST ST ST ST ST n
105 ST ST ST INV ST n
109 INV/ST ST ST ST ST n
129 ST ST ST ST ST n
136 ST ST ST INV/ST ST y
138 ST ST INV ST ST n
142 ST ST ST ST ST y
149 ST ST ST ST ST y
153 ST ST ST ST ST y
158 ST ST ST ST ST n
161 INV ST ST ST ST n
176 ST ST ST ST ST y
177 ST ST ST ST ST n
181 ST ST ST ST ST y
189 ST ST INV ST ST y
195 ST ST ST ST ST n
208 ST ST ST ST ST n
21 ST ST ST ST ST y
217 ST ST ST ST ST n
223 ST ST ST ST ST y
227 ST ST ST ST ST y
228 ST ST ST ST ST n
229 ST ST ST ST ST n
233 INV ST ST ST ST n
235 ST ST ST ST ST n
237 INV/ST INV/ST ST ST ST y
239 ST ST ST ST ST n
256 ST ST ST ST ST y
26 INV ST ST ST ST n
28 ST INV ST ST ST n
280 ST ST ST ST ST y
287 ST ST ST ST ST y
301 INV/ST ST ST ST ST n
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Table H.1 (cont.)
DGRP In_2L_t In_2R_NS In_3R_P In_3R_K In_3R_Mowolba
303 INV/ST INV/ST ST ST ST n
304 ST INV ST ST ST y
306 ST ST ST ST ST y
307 ST ST ST ST ST n
309 ST ST ST INV/ST ST n
31 ST ST ST INV/ST ST n
310 ST ST ST ST ST y
313 INV ST ST ST ST n
315 ST ST ST ST ST n
317 ST ST ST ST INV/ST y
318 ST ST ST ST ST y
319 ST ST ST ST ST y
32 INV ST ST ST INV n
320 ST ST ST ST ST y
321 ST ST ST ST ST y
324 ST ST ST ST INV n
325 ST ST ST ST ST n
332 ST ST ST ST ST n
335 ST ST ST ST INV/ST y
336 INV/ST INV/ST ST ST ST y
338 INV/ST INV/ST ST ST ST y
340 ST ST ST ST ST y
348 INV ST ST ST INV n
350 INV ST ST ST INV n
352 INV/ST ST ST ST INV y
354 ST ST ST ST ST n
355 ST ST ST ST ST y
356 ST ST ST ST ST y
357 ST ST ST ST ST n
358 INV ST ST ST INV n
359 INV ST ST ST ST n
360 ST ST ST ST ST y
361 ST ST INV/ST ST ST y
362 ST ST ST ST ST y
365 ST ST ST ST ST y
367 ST ST ST ST ST n
370 ST ST ST ST ST y
371 ST ST ST ST ST n
373 ST ST INV/ST ST ST n
374 ST ST ST ST INV y
375 ST ST ST ST ST n
377 INV/ST INV/ST ST ST ST n
379 ST ST ST ST ST n
38 ST ST ST INV/ST ST n
380 ST ST ST ST ST y
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Table H.1 (cont.)
DGRP In_2L_t In_2R_NS In_3R_P In_3R_K In_3R_Mowolba
381 INV/ST ST ST ST ST n
382 ST ST ST ST ST y
383 INV ST ST ST ST y
385 ST ST ST ST ST n
386 INV ST ST ST ST n
390 INV ST ST ST INV/ST n
391 ST ST ST ST ST n
392 ST ST ST ST ST n
395 ST ST ST ST ST n
397 ST ST INV/ST ST ST y
399 ST ST ST ST ST n
40 ST ST ST ST ST y
405 INV/ST ST ST ST ST y
406 INV ST ST ST ST n
409 ST INV ST ST INV y
41 ST ST ST ST ST n
42 ST ST ST ST ST n
426 INV/ST INV/ST ST ST ST n
427 ST ST ST ST ST n
437 ST ST ST ST INV n
439 ST ST ST ST ST n
440 ST ST ST INV/ST ST y
441 ST ST ST ST ST y
443 INV/ST ST ST ST ST n
45 ST ST ST ST ST n
461 ST ST ST ST ST y
48 ST ST ST INV/ST ST y
486 ST ST ST ST ST y
49 ST ST ST ST ST y
491 ST ST ST ST ST n
492 INV/ST ST ST ST INV/ST n
502 INV/ST ST ST ST ST n
505 ST ST ST ST ST y
508 ST ST ST ST ST n
509 ST ST ST ST ST n
513 ST ST ST ST ST y
517 ST ST ST ST ST n
528 INV/ST INV/ST ST ST ST y
530 ST ST ST ST ST y
531 ST ST ST ST ST y
535 ST ST ST ST ST y
551 ST ST ST ST INV/ST y
555 ST ST ST ST INV y
559 ST ST ST INV/ST INV/ST n
563 INV/ST INV/ST ST ST ST n
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Table H.1 (cont.)
DGRP In_2L_t In_2R_NS In_3R_P In_3R_K In_3R_Mowolba
566 ST ST ST ST INV/ST n
57 ST ST ST ST ST n
584 INV ST ST ST ST y
589 ST ST ST ST ST y
59 ST ST ST ST ST n
595 INV/ST ST ST ST ST y
596 ST ST ST ST ST n
627 INV ST ST ST ST n
630 INV ST INV/ST ST ST n
634 ST ST INV/ST ST ST y
639 ST ST ST ST ST y
642 ST INV ST ST ST n
646 ST ST ST INV ST y
69 ST INV ST ST ST y
703 ST ST ST ST ST n
705 ST ST ST ST ST y
707 ST ST ST ST INV y
712 ST ST ST ST INV y
714 ST ST ST ST INV n
716 ST ST ST ST ST y
721 ST ST ST ST ST y
727 ST ST ST ST ST y
73 ST ST ST ST ST y
730 ST ST ST ST ST y
732 ST ST ST INV/ST ST n
737 ST ST ST ST ST y
738 ST ST ST ST INV/ST y
748 INV ST ST ST ST y
75 ST ST ST ST ST y
757 ST ST ST ST ST n
761 ST ST ST ST ST y
765 ST ST ST ST ST n
774 ST ST ST ST ST n
776 ST ST INV ST ST y
783 ST ST ST ST ST y
786 ST ST INV ST ST y
787 ST ST ST ST ST y
790 ST ST ST ST ST y
796 ST ST ST ST ST y
799 ST ST ST ST ST n
801 ST ST ST ST ST y
802 INV/ST ST ST INV/ST ST y
804 ST ST ST ST ST y
805 ST ST ST ST ST y
808 ST ST ST ST ST n
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Table H.1 (cont.)
DGRP In_2L_t In_2R_NS In_3R_P In_3R_K In_3R_Mowolba
810 ST ST ST ST INV n
812 INV/ST INV ST ST ST n
818 ST ST ST ST ST y
819 ST ST ST ST ST y
820 ST ST ST ST INV y
821 ST INV/ST ST ST ST y
822 ST ST ST ST ST y
83 ST ST ST ST ST n
832 ST ST ST ST ST y
837 INV ST ST ST ST y
843 ST ST ST ST ST n
849 INV/ST ST ST ST ST n
85 INV/ST ST ST ST ST n
850 ST ST ST ST ST y
852 ST INV ST ST ST y
853 ST ST ST ST ST y
855 ST ST ST ST INV/ST y
857 ST INV/ST ST ST ST n
859 ST ST ST ST ST y
861 ST ST ST ST INV y
879 ST ST ST ST ST y
88 INV/ST ST ST ST ST n
882 ST ST ST ST ST y
884 ST ST INV/ST ST ST y
887 ST ST ST ST ST y
890 ST ST ST ST ST y
892 ST ST ST ST ST y
894 INV/ST ST ST ST ST n
897 ST ST ST ST ST y
900 ST ST ST ST ST n
907 ST ST ST ST ST n
908 ST ST ST ST INV n
91 ST ST ST ST ST n
911 ST ST ST ST ST n
913 ST ST ST INV/ST ST y
93 INV ST ST ST ST n
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Table H.2: Directory for the main scripts in the supplementary disk (CD/DVD)

Script Label Filename Description Location (/cdroot)

DataProcessingScript BIOM_THESIS_MERGE_main.py Merging, QC, phylogenetic tree
reconstruction using PhyloMAF /QC_Merging

DataProcessingScript
(Jupyter) MS_DATA_PROCESSING.ipynb Same as DataProcessingScript

but as Jupyter notebook /QC_Merging

MakeAlphaPhenotype MAKE_alpha_datasets.R Generate alpha-diversity estimates
for each dataset and phenotype /DataAnalysis/Analysis/

MakeBetaPhenotype MAKE_beta_dataset.R Generate MDS1 of beta-diversity
estimates for each dataset /DataAnalysis/Analysis/

RunOverallGwas run_mgwas_all.sh Automated Bash script to run GWAS
for all datasets and phenotypes /DataAnalysis/Analysis/

RunDatasetGwas run.sh Bash script to run GWAS for single dataset /DataAnalysis/Analysis/Scripts/
RunFastLMM run_fastlmm.py Python script to run

FastLMM based GWAS analysis /DataAnalysis/Analysis/Scripts/

ParseGwasAssoc MAKE_top_assoc.py Parse GWAS output by producing
top associations with annotations /DataAnalysis/Analysis/

ParseAssocAll MAKE_overlay_tables.py Produce concatenated overlap table
for top GWAS associations /DataAnalysis/Analysis/

MakeVennDiagrams venn_diagram_PLOTS.R Produce Venn and UpSet diagrams
for top GWAS assocations /DataAnalysis/Analysis/

MakeManhattanPlots manhattan_PLOTS.R Produce Manhattan plots
for GWAS assocations /DataAnalysis/Analysis/

RunGlmAnalysisANALYZE_target_snp_regression.R Run complete Post-GWAS analysis scheme. /DataAnalysis/Analysis/
MakeGwasGlmTables MAKE_comparison_tables.py Parse post-GWAS results and make

GWAS-GLM comparison tables /DataAnalysis/Analysis/
MakeAlphaPlots make_alpha_datasets_PLOTS.R Produce alpha-diversity and abundance plots /DataAnalysis/Analysis/
MakeBetaPlots make_beta_dataset_PLOTS.R Produce beta-diversity MDS plots /DataAnalysis/Analysis/
MakeTreePlots make_tree_dataset_PLOTS.R Produce phylogenetic tree visualizations /DataAnalysis/Analysis/
MakeFDPlots make_wolbachia_PLOTS.R Produce plots for “Future Directions” section. /DataAnalysis/Analysis/
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