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ABSTRACT 
 

A GREY VERHULST MODEL FOR FORECASTING 

CONSTRUCTION COSTS 
 

Forecasting costs in construction projects has an important place in whole 

processes. It is very important to observe possible changes in the construction process, 

especially in large scale projects. Using a series of data in a functional way can be useful 

to make the changes that can be made at a later time in that field. Grey models have an 

important place in the time series forecasting model. In line with this case, there are a 

number of methods developed over time. In fact, when these models are examined, it is 

seen that they follow and complement each other in the developmental stages, but the 

levels of development differ with some important decompositions. The ability to model 

and forecast construction costs can result in more accurate cost forecasting and budgeting. 

This has been modeled using a residual Fourier model by analyzing the remains of the 

Grey Verhulst Model, conditional variability of construction cost prices. The results show 

that the developed model can forecast construction costs with less errors. It was observed 

that the deviation rate in the final values decreased up to 0.97%. The data used in the time 

series analysis were observed for a relatively long time. These data are calculated with 

the assumption that the system will be developed in the future and the forecasted values 

will be maintained in the future based on these time series data. 
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ÖZET 

 
İNŞAAT MALİYETLERİNİN TAHMİNİ İÇİN  

BİR GRİ VERHULST MODELİ 

 
İnşaat projelerinde maliyetlerin öngörülmesi, gerek tasarım gerekse uygulama 

süreçlerinde önemli bir yere sahiptir. Özellikle büyük ölçekli projelerde yapım 

sürecindeki olası değişimlerim gözlenmesi oldukça önemlidir. Bir veri serisini işlevsel 

biçimde kullanmak, o alandaki ileri zamanlarda yapabilen değişimleri tamnin edebilmek 

için işe yarayabilir. Gri modeller zaman serileri tahmin modelinde önemli bir yere 

sahiptir. Bu işlevsellik doğrultusunda zaman içinde yapılmış çalışmalarla geliştirilmiş bir 

takım yöntemler bulunmaktadır. Aslında bu modellere bakıldığında bunların da gelişim 

aşamalarında birbirini izlediği ve tamamladığı, fakat bazı önemli ayrışımlarla gelişmişlik 

düzeylerinin farklılaştığı görülmektedir. Bir inşaat projesi ilk maliyet tahminleriyle 

başlar. Her ne kadar planlama aşamasında tahminleri destekleyecek pek çok yöntem 

geliştirilmiş olsa da, inşaat faaliyetleri ve projeleri için sürelerin yanı sıra maliyetlerin 

erken tahminleri hala hataya açıktır. Yanlış tahminlere neden olan ana etkenlerden biri, 

zaman içinde ekonomik koşulların değişmesinden dolayı kaynak fiyatlarındaki 

değişimdir. Bu, kaynak fiyatlarındaki dalgalanmaları dikkate alarak inşaat maliyetleri 

trendini izlemenin ve tahmin etmenin önemini göstermektedir. İnşaat maliyetlerini 

modelleme ve tahmin etme kabiliyeti, daha doğru maliyet tahmini ve bütçelemeyle 

sonuçlanabilir. Çalışmada Gri Verhulst Modeli’nin kalıntıları üzerinden, yapım maliyet 

fiyatlarının koşullu değişkenliği bir kalıntılı Fourier modeli kullanılarak modellenmiştir. 

Sonuçlar, geliştirilen modelin daha düşük hatalarla yapım maliyetlerini tahmin 

edebileceğini göstermektedir. Sonuçlar değerlendirildiğinde, sapma payının %0.97’ye 

kadar indiği saptanmıştır. Bu veriler modeli geliştirmek ve öngörülen değerleri bu zaman 

serisi verilerine dayanan sistemin gelecekte de korunacağı varsayımıyla hesaplanır. 

Politik değişiklikler veya savaşlar gibi kontrol edilemeyen faktörler olması durumunda, 

uzun zaman boyunca zaman serisi verilerinin, bu faktörlerin zamana özgü yapısından 

dolayı farklı zamanlarda farklı kalıplara sahip olma olasılığı vardır. 

 

  

iv 



TABLE OF CONTENTS 
 

LIST OF FIGURES .....................................................................................................vii 

 

LIST OF TABLES .................................................................................................... viii 

 

LIST OF ABBREVIATIONS ....................................................................................... ix 

 

CHAPTER  1. INTRODUCTION................................................................................. 1  

1.1. Introduction ........................................................................................ 1 

1.2. Objectives of the Study ....................................................................... 2 

1.3. Scope and Structure of the Study ......................................................... 2 

 

CHAPTER  2. FORECASTING STRATEGIES AND EVALUATION METHODS .... 4 

2.1. Literature Review................................................................................ 4 

2.2. Causal Based Forecasting Models ....................................................... 6 

2.2.1. Artificial Neural Network Model .................................................. 7 

2.2.2. Genetic Algorithm (GA) Model .................................................... 9 

2.2.3. Decision Tree Learning Model .................................................... 10 

2.2.4. Support Vector Machines (SVMs) Model.................................... 11 

2.3. Time Series Forecasting Models........................................................ 12 

2.3.1. Linear Regression Model ............................................................ 14 

2.3.2. Grey System Based Forecasting .................................................. 15 

2.3.3. GM(1,1) Model ........................................................................... 17 

2.3.4. Grey Verhulst Model .................................................................. 20 

2.3.5. Fourier Residual Modification Model .......................................... 22 

2.4. Evaluation Methods .......................................................................... 24 

 

CHAPTER 3. TIME SERIES FORECASTING IN CONSTRUCTION ..................... 26 

3.1. Literature Review.............................................................................. 27 

3.2. Used Forecasting Models in Construction Industry............................ 28 

 

 

v 



CHAPTER  4. RESEARCH METHOD ...................................................................... 36 

4.1. Use of Time Series Forecasting Models in the Models ...................... 36 

4.2. Time Series for Forecasting of Construction Costs and Costs Figures 36 

4.3. Applications of Time Series Forecasting ........................................... 38 

4.3.1. Linear Regression Model Application ......................................... 40 

4.3.2. GM(1,1) Model Application ........................................................ 42 

4.3.3. Grey Verhulst Model Application ............................................... 44 

4.3.4. Fourier Residual Modification Model Application ...................... 46 

 

CHAPTER  5. RESEARCH FINDINGS AND DISCUSSIONS .................................. 49 

5.1. Causal Based Forecasting Models ..................................................... 49 

5.2. Time Series Forecasting Models........................................................ 50 

5.3. Evaluation Results Review ................................................................ 53 

5.4. Discussions ....................................................................................... 55 

 

CHAPTER  6. CONCLUSIONS ................................................................................. 60 

6.1. Limitations and Future Works ........................................................... 61 

 

REFERENCES............................................................................................................ 62 

 

  

 

  

 

 

 

 

 

 

 

 

  

vi 



LIST OF FIGURES 
 

Figure           Page    

Figure 2.1.  Artificial Neural Network Schema ............................................................. 9 

Figure 2.2.  Genetic Algorithm Schema  ..................................................................... 10 

Figure 2.3.  Decision Tree Schema   ........................................................................... 11 

Figure 2.4.  Kernel Machine Schema   ........................................................................ 12 

Figure 2.5.  Linear Regression Model Graph .............................................................. 15 

Figure 2.6.  Grey System Forecasting Model Sample  ................................................. 17 

Figure 2.7.  GM (1,1) Forecasting Model Sample  ...................................................... 19 

Figure 2.8.  GVM Forecasting Model Sample  ............................................................ 21 

Figure 2.9.  A Simple Fourier Transform Expression Chart ........................................ 24 

Figure 5.1.  Model Fitting and Posterior Forecasting Chart of LRM  ........................... 53 

Figure 5.2.  Model Fitting and Posterior Forecasting Chart of GM (1,1) ..................... 54 

Figure 5.3.  Model Fitting and Posterior Forecasting Chart of GVM  .......................... 54 

Figure 5.4.  Model Fitting and Posterior Forecasting Chart of FT(GVMR)  ................ 55 

Figure 5.5.  Comparative Bar Chart of LRM  .............................................................. 56 

Figure 5.6.  Comparative Bar Chart of GM (1,1)  ........................................................ 57 

Figure 5.7.  Comparative Bar Chart of GVM  ............................................................. 57 

Figure 5.8.  Comparative Bar Chart of FT(GVMR)  .................................................... 58 

Figure 5.9.  Comparative Bar Charts of All Models (2019)  ........................................ 58 

Figure 5.10. Flowchart of Grey Correlation based Forecasting Analysis  ..................... 59 
 

  

vii 



LIST OF TABLES 

 

Table                                                                                                                                    Page  

Table 3.1.  Classification of Forecasting Models in the Literature ............................... 33 

Table 4.1.  Construction Cost Index and Rate of Change ................................................. 37 

Table 4.2.  Quasi-smoothness and quasi-exponentiality process of the datas ............... 40 

Table 4.3.  Application Steps of the Used Linear Regression Model ........................... 41 

Table 4.4.  Results and Evaluation Steps of the Used Linear Regression Model .......... 41 

Table 4.5.  Application Steps of the Used GM (1,1) Model (Stage 1) .......................... 42 

Table 4.6.  Application Steps of the Used GM (1,1) Model (Stage 2) .......................... 43 

Table 4.7.  Results and Evaluation Steps of the Used GM (1,1) Model ........................ 43 

Table 4.8.  Application Steps of the Used GVM (Stage 1)........................................... 44 

Table 4.9.  Application Steps of the Used GVM (Stage 2)........................................... 45 

Table 4.10. Results and Evaluation Steps of the Used GVM ........................................ 45 

Table 4.11. Application Steps of the Fourier Transform (Stage 1) ................................ 46 

Table 4.12. Application Steps of the Fourier Transform (Stage 2) ................................ 47 

Table 4.13. Application Steps of the Fourier Transform (Stage 3) ................................ 47 

Table 4.14. Application Steps of the Fourier Transform (Stage 4) ................................ 47 

Table 4.15. Results and Evaluation Steps of the Fourier Transform ............................. 48 

Table 5.1. Out-of-Sample Forecasting Performance Criteria of the Models ................ 56 

 

 

 

  

viii 



LIST OF ABBREVIATIONS 
 

ANFIS : Adaptive-Network-Based Fuzzy Inference System   

ANFIS : Adaptive-Network-Based Fuzzy Inference System   

ANN-GA : Genetic Algorithm-Based Artificial Neural Network  

CC : Co-efficient of Correlation    

FMSE : Forecast Mean-Square Error  

FWM : Fixed Weights Model   

FT : Fourier Transform 

GARCH : Generalized Auto Regressive Conditional Heteroscedasticity  

GM : Grey Model 

GMRAE : Geometric Mean of the Relative Absolute Error  

GVM : Grey Verhulst Model   

MAD : Mean Absolute Deviation   

MAE : Mean Absolute Error   

MAPE : Mean Absolute Percentage Error  

MRSS : Mean Residual Sum of Squares  

MSE : Mean Squared Error   

MWE : Mean Week Error   

MWM : Moving Weights Model  

RMSE : Root Mean Squared Error    

SARIMA : Seasonal Auto-Regressive Integrated Moving-Avarege   

VAR : Vector Auto Regression   

VEC : Vector Error Correction  
 

 

 

ix 



CHAPTER 1 

 

INTRODUCTION 

 
1.1. Introduction 

 

The cost of a construction project is an important parameter that must be analyzed 

by all parties, including the owner, contractor and subcontractor. An increase in 

construction costs during the project may have a negative impact on the overall project, 

such as delay or termination of the project, high project costs, and quantitative and 

qualitative deterioration of bid competition. Forecasting the trend in construction costs is 

crucial in forecasting the cost of construction projects, as well as in budget planning and 

assessing risks associated with coordination and costs. However, over the last few 

decades, many construction companies and project owners have suffered major 

construction losses, because final construction costs are much higher than originally 

anticipated at the planning stage, although they have made significant efforts to accurately 

forecast construction costs. 

This problem exists to a large extent because it is not easy to accurately forecast 

construction costs due to the smallness and uncertainty such as transport and construction 

material costs that directly affect the construction market and socioeconomic factors such 

as macroeconomic environments. In addition, there are great difficulties in forecasting 

actual construction costs for the future in the planning process for several months or 

several years, because the time interval between the project planning process and the 

actual construction time is quite large. 

Many studies have suggested forecasting methods that are based largely on 

causality analysis or time series analysis. In recent years, in most of the studies, methods 

based on time series analysis have been preferred, because independent variables should 

be selected precisely and accurately forecasted for causality analysis.  

The data used in the time series analysis were observed for a relatively long time. 

These data are calculated with the assumption that the system will be developed in the 

future and the forecasted values will be maintained in the future based on these time series 

data. In the case of uncontrollable factors such as policy changes or battles, it is likely 
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that over time, time series data will have different patterns at different times due to the 

time-specific nature of these factors. (Moon and Shin, 2017) 

 

1.2. Objectives of the Study 
 

The main objectives of the study are follows: 

• To investigate forecasting models, to define how they are used, to determine 

which data sets are used, 

• To determine the location and application of Grey Models in forecasting 

models, 

• Evaluating the output values of forecasting models and testing their usability 

in construction management. 

 

1.3. Scope and Structure of the Study 
 

The scope of thesis presented herein, like any other research studies is defined by 

the above-mentioned objectives of the research. This thesis is a research for interpreting 

the time series models for the forecasting of construction costs and interpretation of test 

results. The characteristics of the models were examined and in accordance with the 

studies, it was determined which models gave more realistic results. This provides an 

opportunity for the models to be used in construction management. 

This study, consists of 6 chapters aimed at defining, measuring and analyzing 

forecasting models and forecasting process. In the first part, (1) the reasons that require 

this research, (2) the aims of the study and (3) the scope of the study are prepared. In the 

second chapter, two main headings forecasting models determined as a result of literature 

review are explained. These main headings; "causal models" and "time series models". 

The time series models that the research focuses on are explained. In addition, a literature 

review is provided to gain insights into some other models. However, a forecasting 

method based on grey models was determined as the main objective. In addition, methods 

that evaluate the forecasted data are presented in this section. In the third chapter, as a 

result of the literature review, the use of time series forecasting models in the construction 

sector and the process of the models used were observed. It has been discussed how these 

can be improved, which methods can be used and how they will be more useful in the 
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construction industry. The fourth chapter is the center of the researches. With the help of 

sampling, data preparation and statistical analysis methods, the results of the models 

discussed are presented and evaluated. This section is the core of the study in terms of the 

application of all the grey models in question such as GM (1,1), Grey Verhulst Model 

and Fourier Transformation. In the fifth chapter, research findings on causal and time 

series forecasting models are interpreted and their reflection on the results are discussed. 

In the sixth and last chapter, the main conclusions of the study are summarized and 

recommendations for the role of the models in the construction sector are given. 
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CHAPTER 2 

 

FORECASTING STRATEGIES AND EVALUATION 

METHODS 

 
In this section, the methods used in the forecasting requirements, the forecasting 

method trends in many sectors, the introduction of these methods (qualifications, types, 

etc.), application stages and evaluation methods are mentioned. 

 

2.1 . Literature Review 
 

Especially for large-scale projects, the cost factor has been a major concern 

because of its significant cost implications and long-term changes. These temporary 

factors, such as resource prices, can lead to under or underestimating the total project 

cost, as resource prices vary depending on changes in demand, market conditions and 

macroeconomic conditions. For example, structural steel prices in Korea have tripled 

from 2001 to 2008, and according to recent global economic reports, additional material 

costs caused by inflation can often reduce the profitability of general contractors for large-

scale projects over the years. Since material costs constitute a significant portion of the 

total project cost, it is important to accurately estimate raw material prices in many sectors 

to accurately estimate the total cost (Hwang et al., 2012). 

To address these issues, many researchers have attempted to accurately estimate 

cost changes in projects, focusing on total costs or project cost index, using forecasting 

techniques such as time series analysis, causal-based models such as artificial neural 

networks or other possible methods. Of these techniques, in particular, time series 

analysis is widely used because associated observations represent the time dependent lag 

relationship between both single and interrelated multiple series. 

According to Hwang et al.; however, there are two main problems with the use of 

this method to forecast material cost increases. First, a large number of different materials 

are needed for many projects. Since the prices of various materials increase or decrease 

at different rates, the total material cost increase must be the sum of the price increase of 

each material. Second, the complex and iterative procedures of most forecasting methods 
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require significant time and effort to identify appropriate models and to forecast price 

increases for each material required. 

The accuracy, usage and shape of the projections that occur are determined by 

time interval and data availability (O'Connell, 1987). This is often difficult to do in 

practice and requires a fairly subjective forecast of future market conditions and inflation. 

The benefits of more objective methods and quantitative cost estimation models in this 

direction have been described for some time. Various cost models with varying 

complexity have been developed by the researchers. Univariate time series modeling also 

attracted positive attention. Time series models have been applied to estimate the 

behavior of project costs and sales prices (Thomas Ng. et al., 2004). 

Quantitative methods are proposed for estimating cost indexes of projects. These 

methods can be examined in two main categories as (1) Causal and (2) Statistical 

methods. Statistical methods studied and analyzed use timeline analysis and curve fitting 

techniques to estimate the cost index of a large number of materials (Shahandashti and 

Ashuri, 2013). 

Ashuri and Lu compared various univariate time series models to estimate various 

projects costs. They concluded that a seasonal autoregressive integrated moving average 

model and the Holt-Winters exponential correction process are the most accurate 

univariate time series approaches for in-sample and out-of-sample estimation. However, 

statistical methods are not long-term explanatory and are only efficient for short-term 

forecasts. 

According to Hwang et al., many studies focused on the rapidly changing material 

market conditions and tried to address cost changing factors to make cost planning more 

feasible. The main issues here are to determine affecting factors and to estimate project 

costs accurately and simply. 

The following studies are also noteworthy developments in Hwang el al. (2010). 

Ranasinghe (1996) presented a simple model that takes into account inflation effects and 

changing project costs. Akpan and Igwe (2001) developed an appropriate model for the 

assessment of cost overruns due to price increases, political factors and project execution 

factors. Trost and Oberlender (2003) presented a mathematical model to assess the 

accuracy of early forecastings using factor analysis and multivariate regression analysis. 

Sönmez (2008) developed an integrated approach to conceptual cost estimation which 

includes the advantages of parametric and probabilistic estimation techniques such as 
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regression models. Finally, Shane et al. (2009) classified individual cost increase factors 

to evaluate the total project cost in the future. 

These time series models provide systematic and time-related approaches to 

forecasting trends. That is, it is possible to make useful projections based on historical 

patterns. 

Although these models are useful for addressing cost raising factors and 

foreseeing early in the design phase, there are some limitations to reflecting different time 

delays between time-varying variables and impact factors. Because most of the time-

related data is dependent or actually has an autocorrelation (Lu and AbouRizk, 2009), one 

way to overcome these limitations is to apply time-related approaches to forecast trends 

in material prices. 

In these methods, time series approaches have been applied to cost estimation in 

various projects based on time trends, past values and other differentiation factors. 

 

2.2 . Causal Forecasting Models 
 

Causal models are mathematical models that make sense of causal relationships 

within some existing systems or populations. Based on statistical data, they derive 

inferences that can be made through causal relationships. It allows us to comment on 

causality epistemology and the relationship between causality and probability and makes 

it easier for us to analyze. In addition, focusing on some philosophical issues, applications 

such as logic of counterfactuals, theory of decision, and analysis of actual causation have 

been made (Hitchcock, 2020).  

Causal modeling is an interdisciplinary field of research mainly based on the work 

of the American biologist and statistician Sewall Wright (1921), during the period of 

further use of statistical techniques developed in the 1920s. It has been developed with 

significant contributions from biology, medicine, computer science, econometrics, 

philosophy, statistics and other disciplines. Given the importance of causality in many 

scientific fields, there is growing interest in the use of mathematical causal models. In the 

2000s, two major works; Spirtes, Glymour, and Scheines (2000) and Pearl (2009), have 

a decisive role in increasing its influence. 

Causal models try to make estimations about the behavior of a system. In 

particular, a causal model examines the true value or probability of counterfactual claims 
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about the system; estimates the effects of changes; and the probabilistic dependence or 

independence of the variables included in the model. With causal models, it may be easier 

to make the following interpretation: if we observed the results of probable correlations 

or experimental changes between variables, we can determine which causal models are 

consistent with these observations. Accordingly, the outputs of the model will guide what 

can be done “in principle”. For example, when excellent information about probability 

distribution on variables in the system is obtained, we will be able to consider how much 

we can deduce the correct causal structure of a system. In addition, application of causal 

models to the logic of counterfactuals, causality analysis and decision theory can be 

discussed (Hitchcock, 2020). 

Accordingly, when the models developed / developing causal based are examined, 

the concept of "Machine Learning" will be encountered. Realizing the concept of  

"Machine Learning" involves working on some training data, creating a model that is 

trained and can process additional data to make estimations later. Various types of models 

used for "Machine Learning" systems have been researched (Alpaydın, 2020). 

"Machine Learning" (ML) is the study of computer algorithms developed 

automatically through experience. It can be seen as a subset of artificial intelligence. ML 

algorithms create a mathematical model based on sample data known as "training data" 

to make estimations or decisions without being explicitly programmed. While ML 

algorithms are used in a wide variety of applications such as email filtering and computer 

vision, it is not difficult or possible to develop traditional algorithms to perform the 

necessary tasks, while providing many estimations (Koza et al., 1996). 

ML is closely related to calculation statistics that focus on predicting using 

computers. Mathematical optimization study provides methods, theory and application 

areas to machine learning. Data mining is a relevant field of study that focuses on 

exploratory data analysis through unsupervised learning. Machine learning is also 

referred to as "predictive analytics" with the methods it applies throughout business 

problems (Friedman, 1998). 

 

2.2.1. Artificial Neural Network Model 
 

Artificial neural networks (ANNs), or connectivity systems, often called neural 

networks (NNs), are computational systems that vaguely sample biological neural 

networks that make up the animal brains (Chen et al., 2019).  
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The data structures and functionality of neural networks are designed to simulate 

relational memory. Neural networks learn by processing samples that contain a known 

"input" and "result" and create probability-weighted relationships stored between the two 

in the network's data structure. (The "input" here is more accurately called the input set 

because it usually contains more than one argument rather than a single value.) Therefore, 

the "learning" of the neural network from a particular example is the difference in the 

situation. Clean the sample before and after processing. After a sufficient number of 

samples are given, they will be able to estimate the results from the inputs using the 

associations created from the net sample set. If the neural network is provided with a 

feedback loop about the correctness of its estimations, it continues to improve their 

relationship, which leads to an increased level of accuracy. In short, there is a direct 

relationship between the number and variety of samples processed by a neural network 

and the accuracy of their estimates. Since neural networks do not discriminate in the form 

of associations, they can create unexpected associations and reveal previously unknown 

relationships and dependencies. 

The ANN approach focused on solving problems based on the human brain. But 

as studies progressed, attention shifted towards performing certain tasks and led to 

deviations from biology. ANNs have started to be used in different jobs such as computer 

vision, speech recognition, machine translation, social network filtering, game board and 

video games, medical diagnostics, and even traditionally painting, by moving to areas 

where people need it. (Gatys et al.,2015).  

According to Cannady (1998), an artificial neural network consists of a series of 

processing elements which are very interconnected and convert a set of inputs into desired 

outputs. The result of the conversion is determined by the properties of the elements and 

the weights associated with the connections between them. By changing the connections 

between the nodes, the network can adapt to the desired outputs. Unlike expert systems 

that can provide a definite answer to the user, if the reviewed features exactly match those 

in the code base, neural networks are trained to recognize which performs an analysis of 

information and forecasts that the data matches the features. While the probability of a 

match determined by a neural network may be 100%, the accuracy of its decisions is 

based on the experience of the system in analyzing examples of the specified problem. 

The neural network initially gains experience by training the system to accurately 

identify preselected examples of the problem. The response of the neural network is 

reviewed and the configuration of the system is improved until the training data analysis 
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of the neural network reaches a satisfactory level. In addition to the initial training period, 

the neural network also gains experience over time in analyzing the problem-related data 

(Cannady, 1998).  

  

 

 
 

Figure 2.1. Artificial Neural Network Schema. 
(Source: Navlani, 2019) 

 

 

2.2.2. Genetic Algorithm (GA) Model 
 

In the computer science workspace, genetic algorithm (GA) is a metasismatic 

method inspired by the natural selection process of the larger evolutionary algorithm class 

(EA). Genetic algorithms are widely used to produce high-quality and stable solutions to 

optimization problems based on biologically inspired operators such as mutation, 

transition, and selection. John Holland developed genetic algorithms based on Darwin's 

concept of evolution in 1960, and GA studies further developed by his student David E. 

Goldberg (Mitchell et al., 1996).  

In the genetic algorithm model, an attempt is made to evolve candidate solutions 

(called individuals, creatures or phenotypes) towards better solutions. Candidate solutions 

have a number of properties (chromosomes or genotypes) that can be modified and 

mutated. Generally, although the solutions are represented in binary (as strings 0 and 1), 

it appears that other encodings can also be made (Whitley, 1994). 

9 



Evolution usually starts from a population of randomly coexisting individuals and 

continues with an iterative process in which each population is called a generation. In 

every generation, the suitability of each individual in the population is evaluated; 

suitability is usually the value of the objective function in the optimization problem being 

solved. More suitable individuals are selected stochastically from the existing population, 

and each individual's genome is modified (reassembled and possibly randomly mutated) 

to create a new generation. Next generation candidate solutions are then used in the next 

iteration of the algorithm. In general, the algorithm ends when a maximum number of 

generations are produced or a satisfactory level of suitability for the population is reached 

(Fernandes et al., 2020). 

 

 

 
 

Figure 2.2. Genetic Algorithm Schema. 
(Source: Epstein, 2016) 

 

 

2.2.3. Decision Tree Learning Model 
 

Decision Tree Learning is one of the predictive modeling approaches used in 

statistics, data mining and machine learning. Uses a decision tree (as an estimate model) 

to go from conclusions about an item (represented in branches) to the target value 

(represented in leaves) of the item. Tree models in which the target variable can take a 

separate set of values are called classification trees; in these tree structures, the leaves 

represent class labels and the branches represent combinations of features that lead to 
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these class labels. Decision trees (typically real numbers) where the target variable can 

take continuous values are called regression trees. Decision trees are among the most 

popular machine learning algorithms given their intelligibility and simplicity (Piryonesi 

and El-Diraby, 2019). 

In decision analysis, a decision tree can be used to visually and clearly represent 

decisions and decision making. In data mining, a decision tree defines data (but the 

resulting classification tree may be an input for decision making). This page is about 

decision trees in data mining (Wu et al, 2007).  

Decision Trees have uses and tree-based models are known to perform well in the 

ML algorithms group. Although the tree's split decision on each node is optimized for the 

data set that it is appropriate for and rarely generalizes to other data, a more robust model 

can be created by combining a large number of trees created in different ways and their 

resulting predictions.  

 

 

 
 

Figure 2.3. Decision Tree Schema. 
(Source: Niculaescu, 2018) 

 

 

2.2.4. Support Vector Machines (SVMs) Model 
 

Support-vector machines (SVMs, as well as support-vector networks) are 

supervised learning models with related learning algorithms that analyze data used in 

machine learning for classification and regression analysis. Support Vector Machine 
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(SVM) algorithm, one of the popular machine learning tools, provides solutions to both 

classification and regression problems. Given a set of training examples, each marked as 

belonging to one or the other, an SVM training algorithm creates a model that assigns 

new samples to one category or another, making it an unlikely binary linear classifier. In 

the SVM model, samples are represented as points in space, so that samples of separate 

categories are divided into as wide a space as possible. New samples are then mapped to 

the same area and are estimated to belong to a category based on the space they fall into 

(Cortes and Vapnik, 1995). 

In addition to performing linear classification, SVMs can perform a nonlinear 

classification using what is called the "Kernel Machine" by indirectly mapping its inputs 

to high-dimensional property fields (Ben-Hur et al., 2001). 

 

 

 
 

Figure 2.4. Kernel Machine Schema. 
(Source: Alisneaky, 2011) 

 

 

2.3 . Time Series Forecasting Models 

  
The time series is a series of data points indexed (or listed or graphed) in the order 

of time. More commonly, time series are a sequence of successive and preferably taken 

at equally spaced points. In other words, they are arrays of discrete time data. Examples 

of time series are the intensity of earthquake waves, the number of COVID-19 patients 

and the daily closing values of the Exchanges. 
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Time series are often expressed in line graphs. The time series is widely used in 

architecture, project management, statistics, pattern recognition, communication 

engineering, econometrics, finance, weather forecasting, earthquake forecasting, control 

engineering, astronomy, and any applied science and engineering that largely includes 

temporal measurements. 

Time series analysis includes consistent statistics and methods for inference by 

processing time series data to extract hidden features of the data. Time series estimates 

are the use of a suitable model to forecast future values based on current known values. 

For example; Regression analysis is often used to test the theories that the current values 

of one or more independent time series affect the current value of another time series, and 

this type of time series analysis is not called "time series analysis". Because time series 

analysis focuses on comparing the values of a single time series or different dependent 

time series at different points in time. 

Time series data has a natural temporal order. This distinguishes time series 

analysis from cross-sectional studies where the natural order of observations is lacking. 

Time series analysis is also different from those in which observations are typically 

evaluated by characteristics. A stochastic model for a time series will often reflect the fact 

that observations that are close together over time will be more closely related to separate 

observations. In addition, time series models often use the natural unidirectional time 

order, so values for a given period are expressed as derived from past values rather than 

future values (Lin et al., 2003). 

Time series analysis can be applied to real-value, continuous data, discrete 

numerical data or discrete symbolic data. In order to apply, Smoothness and 

Exponentiality tests of the data should be performed and values that are suitable for 

certain intervals should be taken (Özdemir and Özdagoglu, 2017). 

Many models can be used for Time Series forecastings. Among these methods; 

the study will focus on Linear Regression Model, Grey Model (1,1), Grey Verhulst Model 

and Fourier Transformation. These models will be presented and will be implemented 

and evaluated in the next sections. At this point, grey models will also be explained and 

implemented. This is the main focus of the study. 
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2.3.1. Linear Regression Model 
 

Linear regression is a linear approach to modeling the relationship between a 

scalar response (or dependent variable) and one or more explanatory variables (or 

independent variables). The state of an explanatory variable is called simple linear 

regression. For more than one explanatory variable, the process can be called multiple 

linear regression. This term differs from multivariate linear regression in which multiple 

associated dependent variables are forecasted rather than a single scalar variable 

(Freedman, 2009). 

According to Codur et al., normal distribution plays an important role in linear 

and nonlinear regression models. In both linear and nonlinear models, the y response 

variable is assumed to have a normal distribution for inference. In some cases, this 

assumption is unrealistic. An example is when a response variable is a discrete variable, 

such as a number, ie the number of defects, the number of people suffering from a 

particular disease, or the number of occurrences of natural events involving earthquakes 

and hurricanes. 

Generalized Linear Models allow fitting of regression models if the response is 

from the exponential family. In generalized linear models, the link function takes 

advantage of the natural distribution of the response. In particular, the wrong selection of 

the link function will affect the natural distribution, thus adversely affecting the results. 

(Codur et al., 2013) 

Linear Regression models how mean expected value of a continuous response 

variable depends on a set of explanatory variables, where index i stands for each data 

point: 

 

Yi = β0 + βxi + ϵiYi = β0 + βxi + ϵi 

or 

ϵ (Yi) = β0 + βxi ϵ(Yi) = β0 + βxi 

Linear 
Regression 

Model
GM(1,1) 
Model

Grey 
Verhulst 
Model

Fourier 
Transform
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• Random component: Y is a response variable and has a normal distribution, and 

generally we assume errors, ei ~ N(0, σ2). 

• Systematic component: X is the explanatory variable (can be continuous or 

discrete) and is linear in the parameters β0  + βxi . Notice that with a multiple linear 

regression where we have more than one explanatory variable, e.g., (X1, X2, ... Xk), we 

would have a linear combination of these Xs in terms of regression parameters β's, but the 

explanatory variables themselves could be transformed, e.g., X 2, or log(X). 

• Link function: Identity Link, η = g(ϵ(Yi)) = ϵ(Yi)  identity because we are 

modeling the mean directly; this is the simplest link function (Jammalamadaka, 2012). 

 

 

 
 

Figure 2.5. Linear Regression Model Graph. 
(Source: Tran, 2018) 

 

 

2.3.2. Grey System Based Forecasting 
 

Grey system theory was founded in 1982 by Julong Deng, a new methodology 

that focuses on the study of problems involving small samples and weak information. It 

deals with ambiguous systems that contain partially known information by producing, 
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digging and extracting useful information from the present. Thus, the operational 

behavior of systems and the laws of evolution can be accurately defined and monitored 

effectively. Uncertain systems with small sampling and weak information are widely 

available worldwide. This fact determines the broad applicability of grey system theory 

(Sifeng et al., 2011).  

According to Kayacan et al. (2010), In system theory, a system can be identified 

by a color representing a clear amount of information about that system. For example, if 

mathematical equations that describe internal properties or dynamics are not fully known, 

the system may be called a black box. On the other hand, if the definition of the system 

is fully known, it can be called a white system. 

Similarly, a system having both known and unknown information is defined as a 

grey system. In real life every system can be considered a grey system because there is 

always some uncertainty. Because of the noise (and limitations of our cognitive abilities) 

both from inside and outside the system we are concerned about, the information we have 

about this system is always ambiguous and limited in scope (Lin and Liu, 2004). 

There are many situations where there is a lack of information, either incomplete 

or inadequate. Even a simple motor control system always includes some grey features 

due to the system's time-varying parameters and measurement difficulties. Similarly, it is 

difficult to accurately estimate a region's electricity consumption due to various social 

and economic factors. These factors are often random and make it difficult to obtain an 

accurate model (Kayacan et al., 2010). 

Grey models estimate future values of a time series based on only the most recent 

data, depending on the window size of the estimator. It is assumed that all data values to 

be used in grey models are positive and the sampling frequency of the time series is 

constant. In the simplest terms, the grey models to be formulated below can be seen as 

curve fitting approaches. 

The main task of the grey system theory is to enforce the realistic management 

laws of the system using the available data. This process is known as the generation of 

grey sequence (Liu and Lin, 1998). 

Although the existing data of the system, which is generally white numbers, is 

very complex or chaotic, it is always claimed to contain certain laws. If the randomness 

of the data obtained from a grey system is somehow softened, it is easier to obtain any 

special features of that system. 
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Figure 2.6. Grey System Forecasting Model Sample. 
(Source: Peter et al., 2019) 

 

 

2.3.3. GM(1,1) Model 
 

GM (1,1) type grey model is the most widely used in the literature and is referred 

to as "Grey Model First Rank One Variable". This model is a time series forecasting 

model. The differential equations of GM (1,1) model have coefficients that vary with 

time. In other words, the model is refreshed when new data is available in the forecasting 

model. 

GM (1,1) model can only be used in positive data series (Deng, 1989). In this 

paper, since all primitive data points are positive, grey models can be used to forecast 

future values of primitive data points. 

In order to smooth the randomness, the primitive data obtained from the system 

consisting of GM (1,1) is subjected to an operator called Accumulation Generation 

Operator (AGO) (Deng, 1989). The differential equation (ie GM (1,1)) is solved to obtain 

the forecasted value in the n-forward step of the system. Finally, using the forecasted 

value, the Reverse Accumulative Manufacturing Manufacturer Operator (IAGO) is 

applied to find the forecasted values of the original data. 
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In accordance with the definitions the establishment of a difference differential 

equation model, GM (l, l) forecasting model. 

The application of the GM(1,1) model can be shown as: 

 

x(0) = (x(0)(1), x(0)(2),…, x(0)(n))                                      (1) 

 

Once application of Accumulation Generation Operator: 

 

x(1)(k) = � 𝑥𝑥(0)(𝑛𝑛)𝑘𝑘
𝑛𝑛=1                                             (2) 

x(1) = x(1)(1), x(1)(2),…, x(1)(n)) 

 

= (x(0)(1), x(1)(1), x(1)(2),…, x(1)(n - 1) + x(0)(n))                   (3) 

 

The albino equation x(1) is set up as follows: 

 
𝑑𝑑𝑑𝑑(1)

 𝑑𝑑𝑑𝑑 
 + ax(1) = b                                                (4) 

 

That formula belongs to GM (1,1) model:  

 

X(1)(k + 1) = (x(0)(1) – 
𝑏𝑏
𝑎𝑎

)e-ak + 
𝑏𝑏
𝑎𝑎
                                (5) 

 

[a,b]T = (BTB)-1BTY                                             (6) 

 

Where 

 

Y = [x(0)(2), x(0)(3),… x(0)(n)]T                                                  (7)   

 

B = 

⎣
⎢
⎢
⎢
⎢
⎡ −𝑧𝑧

(1)(2) 1
−𝑧𝑧(1)(3) 1.                      .  

.                      .  

.                      .  
– 𝑧𝑧(1)(𝑛𝑛)    1 ⎦

⎥
⎥
⎥
⎥
⎤

                                              (8) 
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According to Equation (5), the solution of x(0)(t) at time k: 

 

X(0)(k + 1) = (x(0)(1) – 
𝑏𝑏
𝑎𝑎

)e-ak (1 –  𝑒𝑒𝑎𝑎)                               (9) 

  

In Equation (1),  x(0) series consisting of the original data is shown. 

In Equation (2),  x(1) series is obtained by collecting the data by applying 

Accumulation Generation Operator (AGO) process. 

In Equation (3),  the series formed by the operation in Equation (2) is shown.

  

In Equation (4),  the formation equation of x(1) series is shown. 

In Equation (5),  the GM (1,1) model's equation is formed. 

In Equation (6),  the formula for the coefficients a and b is shown. 

In Equation (7) and (8),  the definitions of Y and B matrices are shown. 

In Equation (9), the solution of x(0) value forecasted at time k is shown. 

After this application process, depending on the time, the variables in the series 

reappear as forecasted values and form a basis for future forecasts. 

  

 

 
 

Figure 2.7. GM (1,1) Forecasting Model Sample. 
(Source: Li and Wang, 2018) 
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2.3.4. Grey Verhulst Model 
 

The Verhulst model was first introduced in 1837 by a German biologist, Pierre 

Franois Verhulst. The main purpose of the Velhulst model is to limit the entire system to 

a real system and is effective in defining some incremental operations such as the S curve 

with saturation zone (Kayacan et al.,2010). 

Verhulst proposed the Verhulst model when studying the law of biological 

reproduction.The main idea of Verhulst model is that the number of organism grows 

exponentially, but the growth rate of individual organism gradually slows down due to 

the environmental constraints, and it finally stabilizes at a fixed value; it is mainly used 

to describe the S-shaped process with saturation state (Fu et al., 2019). 

The Grey Verhulst model can be described as follows (Wen and Huang, 2004): 

 
𝑑𝑑𝑑𝑑(1) 
𝑑𝑑𝑑𝑑

 + ax(1) = b(x(1))2                                                   (10) 

 

Grey difference equation of Equation (10) is, 

 

x(0)(k) + az(1)(k) = b(z(1)(k))2                                               (11) 

 

x(0)(k) = –az(1)(k) + b(z(1)(k))2                                               (12) 

 

As applied for the GM(1,1) model, 

 

[a,b]T = (BTB)-1BTY                                                        (13) 

 

where 

 

Y = [x(0)(2), x(0)(3),… x(0)(n)]T                                                (14) 

 

B = 

⎣
⎢
⎢
⎢
⎢
⎡−𝑧𝑧

(1)(2) ((𝑧𝑧(1)(2))2

−𝑧𝑧(1)(3) ((𝑧𝑧(1)(3))2.                      .  
.                      .  
.                      .  

−𝑧𝑧(1)(𝑛𝑛)    ((𝑧𝑧(1)(𝑛𝑛))2⎦
⎥
⎥
⎥
⎥
⎤

                                                 (15) 
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The solution of x(1)(t) at time k: 

 

x(1)(k + 1) = 
𝑎𝑎𝑑𝑑(0)(1)

𝑏𝑏𝑑𝑑(0)(1) + �𝑎𝑎 − 𝑏𝑏𝑑𝑑(0)(1)�𝑒𝑒𝑎𝑎𝑎𝑎
                           (16) 

 

Applying the IAGO, the solution of x(0)(t) at time k: 

 

x(0)(k) = 
𝑎𝑎𝑑𝑑(0)(1)(𝑎𝑎− 𝑏𝑏𝑑𝑑(0)(1))

𝑏𝑏𝑑𝑑(0)(1) + �𝑎𝑎 − 𝑏𝑏𝑑𝑑(0)(1)�𝑒𝑒𝑎𝑎(𝑎𝑎−1)  * (1− 𝑒𝑒𝑎𝑎) 𝑒𝑒𝑎𝑎(𝑎𝑎−2)

𝑏𝑏𝑑𝑑(0)(1) + �𝑎𝑎 − 𝑏𝑏𝑑𝑑(0)(1)�𝑒𝑒𝑎𝑎(𝑎𝑎−2)     (17) 

 

As can be seen, in Equation (17), if a < 0, then 

 

lim
𝑘𝑘→∞

𝑥𝑥(1)(𝑘𝑘 + 1) → 𝑎𝑎
𝑏𝑏                                   (18) 

  

It means that the GVM Equation is 
𝑎𝑎
𝑏𝑏

 which limits the forecasting value. It is also 

the saturation point of forecasted x(0)(k) (Kayacan et al., 2010). 

 

 

 
 

Figure 2.8. GVM Forecasting Model Sample. 
(Source: Evans, 2014) 
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When k is sufficiently large, x(1)(k + 1) and x(1)(k) will be calculated at fairly close 

values. Due to this state of the GVM, it is often used to identify and forecast processes 

with the saturation region. 

 

2.3.5. Fourier Residual Modification Model 
 

In order to improve the modeling accuracy of grey models, several remedies have 

been discussed in the literature (Tan & Chang, 1996; Tan & Lu, 1996; Guo, Song, & Ye, 

2005). In this study, fourier series have been used to modify the grey models. 

Using the residual error, the modification of GM (1,1) and Grey Verhulst Models 

with Fourier Series can be defined as: 

 

x(0)(k + 1) = (x(0)(1) – 𝑏𝑏
𝑎𝑎
)e-ak (1 –  𝑒𝑒𝑎𝑎)                                      (19) 

 

then, the error sequence of X(0) can be defined as: 

 

ϵ(0) = (ϵ (0)(2), ϵ (0)(3), …, ϵ (0)(n))                                         (20) 

 

where, 

ϵ (0)(k) = x(0)(k) – xp
(0)(k),   k = 2, 3, …, n                               (21) 

 

The error residuals in Equation (21) can be expressed in Fourier series as follows: 

 

ϵ (0)(k) ≅ 1
2
 𝑎𝑎0 + ∑ [𝑎𝑎𝑖𝑖 cos( 2πi

𝑇𝑇
𝑘𝑘) + 𝑏𝑏𝑖𝑖sin( 2πi

𝑇𝑇
𝑘𝑘)𝑧𝑧

𝑖𝑖=0 ]                         (22) 

 

T = n – 1  and  z =  (𝑛𝑛 – 1
2

) – 1                                          (23) 

 

It is obvious that T will be an integer number and z will be selected as an integer 

number (Guo et al., 2005). 

Equation (22) can be rewritten as follows: 

 

ϵ(0) ≅ PC                                                         (24) 
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P and C matrixes can be defined as follows: 

 

P = 

⎣
⎢
⎢
⎢
⎢
⎡1/2 cos �2 2𝜋𝜋

𝑇𝑇
�  sin (2 2π

𝑇𝑇
) cos �2 2𝜋𝜋2

𝑇𝑇
� sin �2 2𝜋𝜋2

𝑇𝑇
�   ⋯ cos �2 2𝜋𝜋𝑧𝑧

𝑇𝑇
� sin (2 2πz

𝑇𝑇
)

1/2 cos �3 2𝜋𝜋
𝑇𝑇
� sin (3 2π

𝑇𝑇
) cos �3 2𝜋𝜋2

𝑇𝑇
� sin �3 2𝜋𝜋2

𝑇𝑇
�   ⋯ cos �3 2𝜋𝜋𝑧𝑧

𝑇𝑇
� sin (3 2πz

𝑇𝑇
)

… … …
1/2 cos �𝑛𝑛 2𝜋𝜋

𝑇𝑇
�  sin (𝑛𝑛 2π

𝑇𝑇
) cos �𝑛𝑛 2𝜋𝜋2

𝑇𝑇
� sin �𝑛𝑛 2𝜋𝜋2

𝑇𝑇
�   ⋯ cos �𝑛𝑛 2𝜋𝜋𝑧𝑧

𝑇𝑇
� sin (𝑛𝑛 2πz

𝑇𝑇
)⎦
⎥
⎥
⎥
⎥
⎤

 

                                                                                                                                       (25) 

 

C = [a0, a1, b1, a2, b2, … a2, b2]T                                          (26) 

 

The least squares method can be used to solve the equation and the C matrix 

can be calculated: 

 

C ≅ (PTP)-1 PT ϵ(0)                                                         (27) 

 

The x(0) values corrected by the Fourier series should be calculated as follows: 

 

xpf
(0)(k) = xp

(0)(k) – ϵp
(0)(k),  k = 2, 3, … n + 1                                  (28) 

  

In mathematics, a Fourier Transform (FT) is a mathematical transform that 

decomposes a function (often a function of time, or a signal) into its constituent 

frequencies, such as the expression of a musical chord in terms of the volumes and 

frequencies of its constituent notes. The term Fourier Transform refers to both the 

frequency domain representation and the mathematical operation that associates the 

frequency domain representation to a function of time. 
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Figure 2.9. A Simple Fourier Transform Expression Chart 
 

 

2.4 . Evaluation Methods 
 

All investigations and findings can be seen as fruitful and consistent, but there 

should always be room for doubt in science. Accordingly, three different evaluation 

methods, which are encountered and discussed in the literature reviews, are examined and 

described in the following section. These include Mean Square Error, Root Mean 

Square Error and Mean Average Percentage Error. The performance criteria of the 

results during the application can be evaluated with these evaluation methods. 

Mean Square Error (MSE) is probably the most commonly used error metric. It 

penalizes larger errors because squaring larger numbers has a greater impact than 

squaring smaller numbers. The MSE is the sum of the squared errors divided by the 

number of observations. 

Its formulation is as follows:  

 

MSE = ∑ (𝐴𝐴𝑑𝑑−𝐹𝐹𝑑𝑑)2𝑛𝑛
𝑡𝑡=1  

𝑛𝑛
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Root Mean Square Error (RMSE) is the square root of MSE. It is effective in 

determining more precise errors by calculating with the square root method and 

comparing the performance criteria of the calculations. 

Its formulation is as follows: 

 

RMSE = �∑ (𝐴𝐴𝑑𝑑−𝐹𝐹𝑑𝑑)2𝑛𝑛
𝑡𝑡=1  

𝑛𝑛
 

 

Mean Average Percentage Error (MAPE) is the avarege of absolute errors 

divided by actual observation values. Absolute errors are formed by summing up and 

dividing by the number of observations, so it can be called the absolute average of the 

errors resulting from the calculation. 

Its formulation is as follows: 

 

MAPE = 
∑ |𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡𝐴𝐴𝑡𝑡 |𝑛𝑛
𝑡𝑡=1

𝑛𝑛
 

 

The MAPE calculation, which is one of the most widely used methods, will be 

evaluated in the advanced stages and the performance levels can be compared between 

the applied models. In this way, it will be possible to have an idea about the forecastings 

obtained with the values used and to make long-term and consistent estimates. 

MAPE is also highly preferred in terms of evaluation accuracy, as it is a method 

that evaluates the forecasting made for values that change over a certain period of time, 

based on the difference between modeled and original data and the number of data 

targeted. 
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CHAPTER 3 

 

TIME SERIES FORECASTING IN CONSTRUCTION 

 
In the third chapter, the forecast models described in previous sections will be 

linked to the construction industry. Studies on this subject in the construction sector will 

be examined and presented, and the infrastructure will be established for forecastings in 

the next section. In line with this next chapter in the overall construction cost index in 

Turkey benefiting from calculations on these models will be made and examined for 

consistency with the current value. 

Accurate cost estimation is important for managing construction projects. A 

construction project is generally considered successful when delivered within its budget 

and on time. Under these circumstances, accurate time and cost estimation has long been 

considered a critical function of project management in the industry. 

The planning and control process also explains the importance of accurate 

efficiency forecasts: first, forecasts for the successful execution of construction activities 

inevitably require cost estimates, and second, the integrated management of construction 

projects must include the cost factor. 

While many good forecasting models, such as regression, econometrics, and time 

series models, are well developed in theory and applied in practice, they all require the 

input of sufficient and appropriate data to generate accurate forecasts. If there is 

insufficient data or if the data is sufficient but does not follow certain distribution models, 

these models may not produce accurate forecasts. 

To overcome these problems, this study aims to investigate whether the grey 

model can be used to estimate construction costs based on a limited amount of data, while 

also obtaining a degree of accuracy similar to other statistical forecasting models. 

Accordingly, studies in the literature on foresight in the construction industry have been 

researched. 
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3.1. Literature Review 

 
The cost of a construction project is an indispensable parameter that must be 

analyzed by all stakeholders, including the owner, contractor and subcontractor. Increases 

in construction costs during the project may have a negative impact on the overall project, 

such as delay or termination of the project, high project costs and qualitative deterioration 

of construction, loss of confidence. Estimating the course of construction costs, 

estimating the cost of construction projects, as well as budget planning and coordination 

and assessing risks associated with costs are crucial (Moon and Shin, 2017). 

Over the past few decades, many construction companies and project owners have 

suffered major capital losses, because total construction costs are much higher than 

originally planned and expected costs, although they have made significant efforts to 

make a positive contribution to construction costs (Touran and Lopez, 2006). 

According to forecasters in construction companies, material price trends to be 

forecasted have the following characteristics: (1) no seasonal changes were found in most 

material price time series data; (2) tangible prices tend to remain constant, even if they 

rise once during the recession; (3) Since a large number of factors affect material prices, 

extensive data collection is required to make a single forecast (Williams, 1994).   

According to Shane et al. (2009), this is largely a problem because it is not easy 

to accurately estimate construction costs due to the volatility and uncertainty in factors 

such as general construction material costs that directly affect the construction market. 

Macroeconomic conditions and socioeconomic factors are also effective in this. 

In addition, there are great difficulties in forecasting the costs of construction that will 

continue for several months or several years in the planning process, because the time interval 

between the project planning process and the actual construction time is quite large.  

The data used in the time series analysis were observed for a relatively long time. 

These data are calculated with the assumption that the system will be developed in the 

future and the forecasted values will be maintained in the future based on these time series 

data. In case of uncontrollable factors such as political changes, terrorism or wars, the 

time series data may have different patterns at different times due to the time-specific 

nature of such factors over a long period of time. 

To achieve this goal, great efforts must be made to manage the construction 

process and cannot be done without a plan and cost control system. A control system 
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periodically collects actual cost and scheduling data and then contradicts the schedule 

planned to measure work progress if it is ahead or behind the schedule and highlights 

potential problems (Teicholz, 1993).  

Cost and schedule are two important parameters that play an important role in 

construction project management, and research on these parameters has been consistently 

proposed for the construction manager to provide appropriate methods and tools to 

achieve a project that will achieve its pre-construction goal. To achieve this goal, great 

efforts must be made to manage the construction process and cannot be done without a 

plan and cost control system. A control system periodically collects actual cost and 

scheduling data and then contradicts the schedule planned to measure work progress if it 

is ahead or behind the schedule and highlights potential problems (Teicholz, 1993). Cost 

and time are two important parameters that play an important role in construction project 

management, and research on these parameters has been consistently proposed for the 

construction manager to provide appropriate methods and tools to achieve a project that 

will achieve its pre-construction goal (Pewdum et al., 2009).  

Many studies have focused on the rapidly changing construction material market 

and have attempted to address cost escalation factors to make cost planning more feasible. 

The main issues here are identifying escalation factors and estimating project costs 

accurately and simply (Hwang et al., 2012). 

 
3.2. Used Forecasting Models in Construction Industry 
 

There are several univariate-multivariate estimation methods that use condition-

based or time series literary. Although not all of them are covered in the study, they are 

listed below with their descriptions: 

 

• Artificial Neural Network Model: 

Artificial Neural Networks (ANNs), usually simply called neural networks (NNs), 

are computing systems vaguely inspired by the biological neural networks that constitute 

animal brains. 

An ANN is based on a collection of connected units or nodes called artificial 

neurons, which loosely model the neurons in a biological brain. Each connection, like the 

synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron 
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that receives a signal then processes it and can signal neurons connected to it. The "signal" 

at a connection is a real number, and the output of each neuron is computed by some non-

linear function of the sum of its inputs. The connections are called edges. Neurons and 

edges typically have a weight that adjusts as learning proceeds. The weight increases or 

decreases the strength of the signal at a connection. Neurons may have a threshold such 

that a signal is sent only if the aggregate signal crosses that threshold. Typically, neurons 

are aggregated into layers. Different layers may perform different transformations on their 

inputs. Signals travel from the first layer (the input layer), to the last layer (the output 

layer), possibly after  traversing the layers multiple times (Chen et al., 2019).  

 

• Linear Regression Model: 

In statistics, linear regression is a linear approach to modeling the relationship 

between a scalar response (or dependent variable) and one or more explanatory variables 

(or independent variables). The case of one explanatory variable is called simple linear 

regression. For more than one explanatory variable, the process is called multiple linear 

regression. This term is distinct from multivariate linear regression, where multiple 

correlated dependent variables are forecasted, rather than a single scalar variable 

(Freedman, 2009).  

In linear regression, the relationships are modeled using linear forecaster functions 

whose unknown model parameters are estimated from the data. Such models are called 

linear models. Most commonly, the conditional mean of the response given the values of 

the explanatory variables (or forecasters) is assumed to be an affine function of those 

values; less commonly, the conditional median or some other quantile is used. Like all 

forms of regression analysis, linear regression focuses on the conditional probability 

distribution of the response given the values of the forecasters, rather than on the joint 

probability distribution of all of these variables, which is the domain of multivariate 

analysis (Rencher and Christensen, 2012).  

 

• GM(1,1) Model: 

GM (1,1) type grey model is the most widely used in the literature and is referred 

to as "Grey Model First Rank One Variable". This model is a time series forecasting 

model. The differential equations of GM (1,1) model have coefficients that vary with 

time. In other words, the model is refreshed when new data is available in the forecasting 

model. 
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The GM (1,1) model can only be used in positive data series (Deng, 1989). In 

studies using GM (1,1), grey models can be used to forecast future values of primitive 

data points when all primitive data points are positive. 

 

• Grey Verhulst Model: 

The Verhulst model was first introduced in 1837 by a German biologist, Pierre 

Franois Verhulst. The main purpose of the Velhulst model is to limit the entire system to 

a real system and is effective in defining some incremental operations such as the S curve 

with saturation zone (Kayacan et al.,2010). 

 Verhulst proposed the Verhulst model when studying the law of biological 

reproduction.The main idea of Verhulst model is that the number of organism grows 

exponentially, but the growth rate of individual organism gradually slows down due to 

the environmental constraints, and it finally stabilizes at a fixed value; it is mainly used 

to describe the S-shaped process with saturation state (Fu et al., 2019). 

 

• Fourier Residual Modification Model: 

In mathematics, a Fourier Transform (FT) is a mathematical transform that 

decomposes a function (often a function of time, or a signal) into its constituent 

frequencies, such as the expression of a musical chord in terms of the volumes and 

frequencies of its constituent notes. The term Fourier Transform refers to both the 

frequency domain representation and the mathematical operation that associates the 

frequency domain representation to a function of time. 

In order to improve the modeling accuracy of grey models, several remedies have 

been discussed in the literature (Tan & Chang, 1996; Tan & Lu, 1996; Guo, Song, & Ye, 

2005). For example, in this study, fourier series was used to modify and improve the grey 

models’ results used to forecast construction costs. 

 

• AutoRegressive Integrated Moving Average (ARIMA): 

In statistics and econometrics, and in particular in time series analysis, an 

autoregressive integrated moving average (ARIMA) model is a generalization of an 

autoregressive moving average (ARMA) model. Both of these models are fitted to time 

series data either to better understand the data or to forecast future points in the series 

(forecasting). ARIMA models are applied in some cases where data show evidence of 

non-stationarity, where an initial differencing step (corresponding to the "integrated" part 
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of the model) can be applied one or more times to eliminate the non-stationarity (Box et 

al., 2016). 

 

• Vector AutoRegression (VAR): 

Vector autoregression (VAR) is a stochastic process model used to capture the 

linear interdependencies among multiple time series. VAR models generalize the 

univariate autoregressive model (AR model) by allowing for more than one evolving 

variable. All variables in a VAR enter the model in the same way: each variable has an 

equation explaining its evolution based on its own lagged values, the lagged values of the 

other model variables, and an error term. VAR modeling does not require as much 

knowledge about the forces influencing a variable as do structural models with 

simultaneous equations: The only prior knowledge required is a list of variables which 

can be hypothesized to affect each other intertemporally (Hatemi-J, 2004). 

 

• Vector Error Correction (VEC): 

An error correction model (ECM) belongs to a category of multiple time series 

models most commonly used for data where the underlying variables have a long-run 

stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach 

useful for estimating both short-term and long-term effects of one time series on another. 

The term error-correction relates to the fact that last-period's deviation from a long-run 

equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate 

the speed at which a dependent variable returns to equilibrium after a change in other 

variables (Phillips, 1985). 

 

• AutoRegressive Conditional Heteroskedasticity (ARCH): 

In econometrics, the autoregressive conditional heteroscedasticity (ARCH) model 

is a statistical model for time series data that describes the variance of the current error 

term or innovation as a function of the actual sizes of the previous time periods' error 

terms;[1] often the variance is related to the squares of the previous innovations. The 

ARCH model is appropriate when the error variance in a time series follows an 

autoregressive (AR) model; if an autoregressive moving average (ARMA) model is 

assumed for the error variance, the model is a generalized autoregressive conditional 

heteroskedasticity (GARCH) model (Engle, 1982). 
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• Genetic Algorithm (GA): 

In computer science and operations research, a genetic algorithm (GA) is a 

metaheuristic inspired by the process of natural selection that belongs to the larger class 

of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate 

high-quality solutions to optimization and search problems by relying on biologically 

inspired operators such as mutation, crossover and selection (Mitchell, 1996). John 

Holland introduced genetic algorithms in 1960 based on the concept of Darwin’s theory 

of evolution, and his student David E. Goldberg further extended GA in 1989. 

  

• Fixed Weights Model (FWM): 

In statistics, a fixed effects model is a statistical model in which the model 

parameters are fixed or non-random quantities. This is in contrast to random effects 

models and mixed models in which all or some of the model parameters are random 

variables. In many applications including econometrics and biostatistics a fixed effects 

model refers to a regression model in which the group means are fixed (non-random) as 

opposed to a random effects model in which the group means are a random sample from 

a population. (Gardiner et al., 2009). 

Generally, data can be grouped according to several observed factors. The group 

means could be modeled as fixed or random effects for each grouping. In a fixed effects 

model each group mean is a group-specific fixed quantity. (Ramsey and Schafer, 2002). 

 

• Moving Weights Model (MWM): 

A weighted average is an average that has multiplying factors to give different 

weights to data at different positions in the sample window. Mathematically, the weighted 

moving average is the convolution of the datum points with a fixed weighting function. 

The application is removing pixelisation(unfuzziness from a digital graphical image. In 

technical analysis of financial data, a weighted moving average (WMA) has the specific 

meaning of weights that decrease in arithmetical progression (Devcic, 2010). 
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As a result of the literature review, as a statement to the above authors and groups 

to the studies; the subject is summarized by standardizing the causal or time series 

categories, models, countries, time spans and evaluation methods. 

Chau et al. (2005-2007), causal based models were investigated and calculations 

were made over a 360-day period in China using Regression Analysis. RMSE and CC 

were used as evaluation method. 

In the studies of Thomas Ng et al., (2004), causal and time series based models 

were investigated and calculations were made over an 8-year period in UK using 

Regression Analysis. MSE and RMSE were used as the evaluation method. 

In the studies of Hwang et al., (2012), time series based models were investigated 

and calculations were made over an 12-month period in USA using ARIMA. And MAPE 

was used as the evaluation method. 

Hyung-Keun Park (2004), causal based models were investigated and calculations 

were made over a 12-month period in South Korea using FWM and MWM. MAD were 

used as evaluation method. 

In the studies of Seokyon Hwang (2009), causal based models were investigated 

and calculations were made over an 12 and 24-month period in USA using Regression 

Analysis. And MRSS was used as the evaluation method. 

J. Scott Armstrong (1992), compared the performance criteria with GMRAE and 

MAPE by evaluating the data calculated in the USA. 

In the studies of Moon et al. (2017), time series based models were investigated 

and calculations were made over an 12-month period in USA using ARIMA. MAE, 

MAPE and RMSE were used as the evaluation method. 

Paul H. K. Ho (2010), time series based models were investigated and calculations 

were made over a 64-quarter period in China using GM (1,1). MAPE was used as 

evaluation method. 

In the studies of Faghih et al. (2018), time series based models were investigated 

and calculations were made over an 36-month period in USA using ARIMA and VAR. 

MAE, MAPE and RMSE were used as the evaluation method. 

Shahandashti et al. (2013), time series based models were investigated and 

calculations were made over an 36-month period in USA using VEC. MAPE and MSE 

were used as the evaluation method. 
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In the studies of Ashuri et al. (2010), time series based models were investigated 

and calculations were made over an 12-month period in USA using SARIMA. MAPE, 

MSE and RMSE were used as the evaluation method. 

Nogales et al. (2002), causal based models were investigated and calculations 

were made over an 168-week period in Spain and USA using Dynamic Regression. MWE 

and FMSE were used as the evaluation method. 

In the studies of Sing et al. (2015), time series based models were investigated and 

calculations were made over an 14-quarter period in China using VAR. MAPE was used 

as the evaluation method. 

Ilbeigi et al. (2016), causal based models were investigated and calculations were 

made over an 12-month period in USA using ARCH and GARCH. MAE, MAPE and 

MSE were used as the evaluation method. 

In the studies of Sonmez (2008), causal based models were investigated and 

calculations were made over an 20-parameter period in Turkey using Regression Models. 

MAPE was used as the evaluation method. 

Sonmez et al. (2007), time series based models were investigated and calculations 

were made over an 14-parameter period in 21 Countries using Linear Regression. MAE 

was used as the evaluation method. 

In the studies of Lowe et al. (2006), causal based models were investigated and 

calculations were made over an 8-parameter period in UK using Regression Models. 

MAPE was used as the evaluation method. 

Taylor et al. (2008), time series based models were investigated and calculations 

were made over an 24-hour period in 10 EU Countries using SARIMA. MAE  and MAPE 

were used as the evaluation method. 
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CHAPTER 4 

 

RESEARCH METHOD 

 
4.1. Use of Time Series Forecasting Models in the Models 

 

In line with various types forecating strategies and evaluation methods discussed 

in the previous section, on the basis of Turkey; Linear Regression Model, GM (1,1), 

Grey Verhulst Model and finally Fourier Transform with residual values will be 

applied. The application steps of these models will be presented at this chapter, 

presentation and evaluation of the resulting values will also be discussed in the next 

chapter. In the light of this method, it is aimed to test the efficiency of the models used. 

 

4.2. Time Series for Forecasting of Construction Costs Figures  
 

As noted previously in earlier chapters, statistical data is indisputably important 

for the forecasting ability. In this study, all statistical data in the country and play an 

important role for Turkey, which is responsible for creating, TurkStat datas will be used. 

The source of this data is provided from, which is Turkey's institutions engaged 

in statistical data and planning, Turkish Statistical Institute (TurkStat, TÜİK in Turkish). 

A range of these data will be taken in the near term and firstly will be subjected to Quasi-

Smoothness and Quasi-Exponentiality tests to determine their suitability for the models, 

and then these data will be processed through the models. 

As seen above, the data in the table out from Tüik, to apply the model as a data 

set with the nearest maturity and importance, exchange of the construction cost index in 

Turkey in 2019 is based. In this direction, modeling will be done on the first 9 months of 

data and the consistency of forecasting the next months or a longer period will be tested. 
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4.3. Applications of Time Series Forecasting 
 

According to the information in the Table 4.1, shows Construction Cost Index 

values for the values given above for the period between 2015-2020 year period in 

Turkey. Among these, the models will be applied by taking the Construction Cost Index 

January-December values for 2019. First, data over the first nine months (January-

September) will be modeled and forecasts for the next three months (October-December). 

At this point, the Quasi-Smoothness and Quasi-Exponentiality states of the 

referenced values will be tested and it will be seen whether they are within the standard 

limits. For this, the following methods will be used respectively. 

The time series used is as follows:  

 

 x(0) = (184.83, 186.51, 189.25, 192.27, 195.51, 193.97, 192.76, 191.35, 190.23)                    

                                                                                                                                         (1) 

 

Generate x(1) by AGO, 

 

x(1)(k) = � 𝑥𝑥(0)(𝑛𝑛)𝑘𝑘
𝑛𝑛=1  

x(1) = (184.83, 371.34, 560.59, 752.86, 948.37, 1142.34, 1335.10, 1526.45, 1716.68) 

                                                                                                                             (2) 

  

Check quasi-smoothness on x(0) 

 

ρ(k) = 𝑑𝑑(0)(𝑘𝑘)
 𝑑𝑑(1)(𝑘𝑘−1)

 ,         k = 3, 4, …, n 

 When k > 3 and  0 < ρ(k) < 0.5, 

ρ(3) = 𝑑𝑑
(0)(3)

 𝑑𝑑(1)(2)
 = 189.25

371.34
 ≅ 0.5096                                        (3) 

 

ρ(4) = 𝑑𝑑
(0)(4)

 𝑑𝑑(1)(3)
 = 192.27

560.59
 ≅ 0.3430                                         (4) 

 

ρ(5) = 𝑑𝑑
(0)(5)

 𝑑𝑑(1)(4)
 = 195.51

752.86
 ≅ 0.2597                                         (5) 
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ρ(6) = 𝑑𝑑
(0)(6)

 𝑑𝑑(1)(5)
 = 193.97

948.37
 ≅ 0.2045                                         (6) 

 

ρ(7) = 𝑑𝑑
(0)(7)

 𝑑𝑑(1)(6)
 = 192.76

1141.34
 ≅ 0.1687                                       (7) 

 

ρ(8) = 𝑑𝑑
(0)(8)

 𝑑𝑑(1)(7)
 = 191.35

1335.10
 ≅ 0.1433                                       (8) 

 

ρ(9) = 𝑑𝑑
(0)(9)

 𝑑𝑑(1)(8)
 = 190.23

1526.45
 ≅ 0.1246                                       (9) 

 

The quasi-smoothness values must be 0 < ρ(k) < 0.5, 

Looking at Equation (3) to (9), it is seen that the ρ values are in the range. Thus, 

the quasi-smoothness test was provided. 

Quasi-exponentiality must also be tested, check quasi-exponentiality on x(1) 

When k > 3,  1 < 𝜎𝜎(k) < 1.5,  

 

𝜎𝜎(3) = 𝑑𝑑
(1)(3)

 𝑑𝑑(1)(2)
 = 560.59

371.34
 ≅ 1.5096                                   (10) 

 

𝜎𝜎(4) = 𝑑𝑑
(1)(4)

 𝑑𝑑(1)(3)
 = 752.86

560.59
 ≅ 1.3430                                   (11) 

 

𝜎𝜎(5) = 𝑑𝑑
(1)(5)

 𝑑𝑑(1)(4)
 = 948.37

752.86
 ≅ 1.2597                                   (12) 

 

𝜎𝜎(6) = 𝑑𝑑
(1)(6)

 𝑑𝑑(1)(5)
 = 1142.34

948.37
 ≅ 1.2045                                  (13) 

 

𝜎𝜎(7) = 𝑑𝑑
(1)(7)

 𝑑𝑑(1)(6)
 = 1335.10

1142.34
 ≅ 1.1687                                  (14) 

 

𝜎𝜎(8) = 𝑑𝑑
(1)(8)

 𝑑𝑑(1)(7)
 = 1526.45

1335.10
 ≅ 1.1433                                  (15) 

 

𝜎𝜎(9) = 𝑑𝑑
(1)(9)

 𝑑𝑑(1)(8)
 = 1716,68

1526.45
 ≅ 1.1246                                  (16) 
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The quasi-exponentiality values must be 1 < 𝜎𝜎(k) < 1.5, 

Looking at Equation (10) to (16), it is seen that the 𝜎𝜎 values are in the range. Thus, 

the quasi-exponentiality test was provided. 

The quasi-exponentiality and quasi-smoothness of x(0) is satisfied. Therefore, x(0) 

values can be applied on models. 

 

 

Table 4.2. Quasi-smoothness and quasi-exponentiality process of the data set. 
 

 
 

 

4.3.1. Linear Regression Model Application  
 

Construction cost data for January-September 2019 are determined as fixed data. 

Linear Regression Model will be applied by calculating the received fixed data via Excel.  

The first nine months will be used as reference data for the model, and the 

remaining three months will be envisaged. In this way, the reliability of the model will 

be tested by comparing the values we have with the forecasted values.  

Linear Regression Model was applied and formulated via Excel over the first 9 

months data set. In this direction, calculations were made depending on the time variable. 

 

 

 

Months y x^1 ẑ 1 Q. Smoothness Q. Exponentiality √checked
January 1 184,83 184,83
February 2 186,51 371,34 185,67
March 3 189,25 560,59 280,30 ρ(3) = 0,5096 σ(3) =  1,5096
April 4 192,27 752,86 376,43 ρ(4) = 0,3430 σ(4) =  1,3430
May 5 195,51 948,37 474,19 ρ(5) = 0,2597 σ(5) =  1,2597
June 6 193,97 1142,34 571,17 ρ(6) = 0,2045 σ(6) =  1,2045
July 7 192,76 1335,10 667,55 ρ(7) = 0,1687 σ(7) =  1,1687

August 8 191,35 1526,45 763,23 ρ(8) = 0,1433 σ(8) =  1,1433
September 9 190,23 1716,68 858,34 ρ(9) = 0,1246 σ(9) =  1,1246
October 10 190,36 1907,04 953,52 ρ(10) = 0,1109 σ(10) =  1,1109

November 11 190,32 2097,36 1048,68 ρ(11) = 0,0998 σ(11) =  1,0998
December 12 192,25 2289,61 1144,81 ρ(12) = 0,0917 σ(12) =  1,0917

2019 0 ≤ ρ ≤0,5 1 ≤ σ ≤1,5
2015=100 in the range in the range
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Table 4.3. Application Steps of the Used Linear Regression Model. 
 

 
  

 

The necessary formula for forecasting the next months with the index of the first 

nine months based on the values based on the months has been reached and forecasts for 

the next months have been made.  

 

 

Table 4.4. Results and Evaluation Steps of the Used Linear Regression Model. 
 

 
  

 

Mape values were calculated by evaluating the forecastings reached for the first 

nine months and the output for the next three months. Mape1 represents the model's 

performance criterion in the first nine months, while Mape2 is the model's performance 

Months x^0 y Formula Forecast
January 1 184,83 y = 0,7473x + 187,01
 187,76

February 2 186,51 1,68 188,50
March 3 189,25 2,74 189,25
April 4 192,27 3,02 190,00
May 5 195,51 3,24 190,75
June 6 193,97 -1,54 191,49
July 7 192,76 -1,21 192,24

August 8 191,35 -1,41 192,99
September 9 190,23 -1,12 193,74

October 10 190,36 0,13 194,48
November 11 190,32 -0,04 195,23
December 12 192,25 1,93 195,98

2019
2015=100

Dev.1 Dev.2 Abs.Dev.Range Mape1 Abs.Dev.Range Mape2 Mse Rmse
2,93 0,0158 1,17 1,43 9,73 3,12
1,99 0,0107
0,00 0,0000
-2,27 0,0118
-4,76 0,0244
-2,48 0,0128
-0,52 0,0027
1,64 0,0086
3,51 0,0184

4,12 0,0217
4,91 0,0258
3,73 0,0194
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criterion for the results of the last three months out of sample. Mse and Rmse performance 

criterion were also calculated for the Linear Regression Model. 

 

4.3.2. GM (1,1) Model Application  

 
Construction cost data for January-September 2019 are determined as fixed data. 

GM(1,1) Model will be applied by calculating the received fixed data via Excel.  

The first nine months will be used as reference data for the model, and the 

remaining three months will be envisaged. In this way, the reliability of the model will 

be tested by comparing the values we have with the forecasted values.  

GM (1,1) Model was applied and formulated via Excel over the first nine months 

data set. In this direction, calculations were made depending on the time variable. 

 

 

Table 4.5. Application Steps of the Used GM (1,1) Model (Stage 1). 
 

 
  

 

The x(1) series was created over the x(0) values and then the z(1) series was created. 

Then, the B matrix was created and the process process of the GM (1,1) model was 

applied. 

  

Months y x^1 ẑ 1 [B]
January 1 184,83 184,83

February 2 186,51 1,68 371,34 185,67 -185,67 1
March 3 189,25 2,74 560,59 280,30 -280,30 1
April 4 192,27 3,02 752,86 376,43 -376,43 1
May 5 195,51 3,24 948,37 474,19 -474,19 1
June 6 193,97 -1,54 1142,34 571,17 -571,17 1
July 7 192,76 -1,21 1335,10 667,55 -667,55 1

August 8 191,35 -1,41 1526,45 763,23 -763,23 1
September 9 190,23 -1,12 1716,68 858,34 -858,34 1

October 10 190,36 0,13 1907,04 953,52
November 11 190,32 -0,04 2097,36 1048,68
December 12 192,25 1,93 2289,61 1144,81

2019
2015=100
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Table 4.6. Application Steps of the Used GM (1,1) Model (Stage 2). 
 

 
 

a and b coefficients were obtained by forming [BTB]T and BTy over the B matrix 

and its transpose. 

 

 

Table 4.7. Results and Evaluation Steps of the Used GM (1,1) Model. 
 

 
 

 

By applying the GM (1,1) equation on the constant values of the first referenced 

period, forecasted x(0) values were reached. 

Mape values were calculated by evaluating the forecastings reached for the first 

nine months and the output for the next three months. Mape1 represents the model's 

performance criterion in the first nine months, while Mape2 is the model's performance 

[B]T

-185,67 -280,30 -376,43 -474,19 -571,17 -667,55 -763,23 -858,34
1 1 1 1 1 1 1 1

[BTB]-1 0,00 0,00
0,00 0,82

BTy #######        (BTB)-1 BTy = (a,b)T -0,0045
1531,85 189,1249

    [BTB]-1 BTy -0,0045
189,12

xˆ(1)(k) xˆ(0)(k) Dev.1 Dev.2 Abs.Dev.Range Mape1 Abs.Dev.Range Mape2 Mse Rmse
184,83 184,83 1,24 1,88 20,63 4,54
375,22 190,39 3,88 0,0208
566,47 191,25 2,00 0,0106
758,58 192,11 -0,16 0,0008
951,57 192,98 -2,53 0,0129

1145,42 193,86 -0,11 0,0006
1340,16 194,73 1,97 0,0102
1535,77 195,61 4,26 0,0223
1732,27 196,50 6,27 0,0330
1929,66 197,39 7,03 0,0369
2127,94 198,28 7,96 0,0418
2327,12 199,18 6,93 0,0360
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criterion for the results of the last three months out of sample. Mse and Rmse performance 

criterion were also calculated for the GM (1,1) Model. 

 

4.3.3. Grey Verhulst Model Application  
 

Construction cost data for January-September 2019 are determined as fixed data. 

Grey Verhulst Model will be applied by calculating the received fixed data via Excel.  

The first nine months will be used as reference data for the model, and the 

remaining three months will be envisaged. In this way, the reliability of the model will 

be tested by comparing the values we have with the forecasted values.  

Grey Verhulst Model was applied and formulated via Excel over the first nine 

months data set. In this direction, calculations were made depending on the time variable. 

 

 

Table 4.8. Application Steps of the Used GVM (Stage 1). 
 

 
 

 

The x(1) series was created over the x(0) values and then the z(1) series was created. 

Then, the B matrix was created and the process process of the Grey Verhulst Model was 

applied. 
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Table 4.9. Application Steps of the Used GVM (Stage 2). 
 

 
  

 

The order and content of the Grey Verhulst Model enables the forecasted values 

to be reached with the a and b coefficients reached through the B matrices as described 

in the previous chapter. 

 

 

Table 4.10. Results and Evaluation Steps of the Used GVM. 
 

 
 

 

By applying the Grey Verhulst Model equation on the constant values of the first 

referenced period, x(0) forecasted values were reached.  

[B]T

-185,67 -187,88 -190,76 -193,89 -194,74 -193,37 -192,06 -190,79
34473,35 35298,89 36389,38 37593,33 37923,67 37390,02 36885,12 36400,82

[BTB]-1 0,015205 7,949E-05
7,95E-05 4,157E-07

BTy -1012,66 (a,b)T -0,30
189911,2 0,00

    [BTB]-1 BTy -0,300865
-0,0015552

xˆ(0)(k) Dev.1 Dev.2 Abs.Dev.Range Mape1 Abs.Dev.Range Mape2 Mse Rmse
184,83 0,97 0,99 5,16 2,27
187,00 -0,49 0,0026
188,63 0,62 0,0033
189,86 2,41 0,0125
190,79 4,72 0,0242
191,47 2,50 0,0129
191,98 0,78 0,0040
192,37 -1,02 0,0053
192,65 -2,42 0,0127
192,86 -2,50 0,0131
193,01 -2,69 0,0142
193,13 -0,88 0,0046
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Mape values were calculated by evaluating the forecastings reached for the first 

nine months and the output for the next three months. Mape1 represents the model's 

performance criterion in the first nine months, while Mape2 is the model's performance 

criterion for the results of the last three months out of sample. Mse and Rmse performance 

criterion were also calculated for the Grey Verhulst Model. 

 

4.3.4. Fourier Residual Modification Model Application 
 

In the previous title, the foracasting that emerged from the Grey Verhulst Model 

application was compared with the original values and the deviations were calculated. 

In this application, how to reach a more ideal forecasting by using these 

deviations. The first nine months will be used as reference data for the model, and the 

remaining three months will be envisaged. In this way, the reliability of the model will 

be tested by comparing the values we have with the forecasted values.  

 

 

Table 4.11. Application Steps of the Fourier Transform (Stage 1). 
 

 
 

 

The table above shows the stage of forming the P matrix with the Fourier 

formulation. 

 

  

Months y xˆ(0)(k) Dev.1 P (8*7)
January 1 184,83 184,83

February 2 186,51 187,00 -0,49 0,5 0,00 1,00 -1,00 0,00 0,00 -1,00
March 3 189,25 188,63 0,62 0,5 -0,71 0,71 0,00 -1,00 0,71 0,71
April 4 192,27 189,86 2,41 0,5 -1,00 0,00 1,00 0,00 -1,00 0,00
May 5 195,51 190,79 4,72 0,5 -0,71 -0,71 0,00 1,00 0,71 -0,71
June 6 193,97 191,47 2,50 0,5 0,00 -1,00 -1,00 0,00 0,00 1,00
July 7 192,76 191,98 0,78 0,5 0,71 -0,71 0,00 -1,00 -0,71 -0,71

August 8 191,35 192,37 -1,02 0,5 1,00 0,00 1,00 0,00 1,00 0,00
September 9 190,23 192,65 -2,42 0,5 0,71 0,71 0,00 1,00 -0,71 0,71

October 10 190,36 192,86
November 11 190,32 193,01
December 12 192,25 193,13

2019
2015=100
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Table 4.12. Application Steps of the Fourier Transform (Stage 2). 
 

 
 

 

 

Table 4.13. Application Steps of the Fourier Transform (Stage 3). 
 

 
 

 

By applying the Fourier equation to P matrices, the a series is calculated and 

combined with the Grey Verhulst Model outputs, resulting in more realistic results. 

 

 

Table 4.14. Application Steps of the Fourier Transform (Stage 4). 
 

 
  

P T (7*8)
0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50
0,00 -0,71 -1,00 -0,71 0,00 0,71 1,00 0,71
1,00 0,71 0,00 -0,71 -1,00 -0,71 0,00 0,71
-1,00 0,00 1,00 0,00 -1,00 0,00 1,00 0,00
0,00 -1,00 0,00 1,00 0,00 -1,00 0,00 1,00
0,00 0,71 -1,00 0,71 0,00 -0,71 1,00 -0,71
-1,00 0,71 0,00 -0,71 1,00 -0,71 0,00 0,71

(P TP )-1 P T 

0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25
0,00 -0,18 -0,25 -0,18 0,00 0,18 0,25 0,18
0,25 0,18 0,00 -0,18 -0,25 -0,18 0,00 0,18
-0,25 0,00 0,25 0,00 -0,25 0,00 0,25 0,00
0,00 -0,25 0,00 0,25 0,00 -0,25 0,00 0,25
0,00 0,18 -0,25 0,18 0,00 -0,18 0,25 -0,18
-0,25 0,18 0,00 -0,18 0,25 -0,18 0,00 0,18

C Xpf y xˆ(0)(k) Dev.1 Dev.2
184,83 184,83

1,7748 185,22 186,51 187,00 -0,49 1,29
-2,0899 190,72 189,25 188,63 0,62 -1,47
-2,0370 191,90 192,27 189,86 2,41 0,37
-0,1550 190,94 195,51 190,79 4,72 4,57
0,2288 191,24 193,97 191,47 2,50 2,73
0,3793 191,61 192,76 191,98 0,78 1,15
-0,5448 192,91 191,35 192,37 -1,02 -1,56

190,23 192,65 -2,42
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Table 4.15. Results and Evaluation Steps of the Fourier Transform. 
 

 
 

 

 

 

  

Abs.Dev. Mape1 Abs.Dev. Mape2 Mse Rmse
0,97 0,97 4,51 2,12

0,0026 0,0069
0,0033 0,0078
0,0125 0,0019
0,0242 0,0234
0,0129 0,0141
0,0040 0,0060
0,0053 0,0082
0,0127
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CHAPTER 5 

 

RESEARCH FINDINGS AND DISCUSSIONS 

 
5.1. Causal Based Forecasting Models  

 

Causal models are seen as mathematical models that make sense of causal 

relationships within some existing systems or populations. Based on statistical data, they 

derive inferences that can be made through causal relationships. It allows comment on 

the epistemology of causality and the relationship between causality and probability and 

facilitates its analysis. 

Causal models try to make predictions about the behavior of a system. In 

particular, a causal model examines the true value or probability of counterfactual claims 

about the system; predicts the effects of changes; and the probabilistic dependence or 

independence of the variables included in the model. 

With causal models, it may be easier to interpret the following: By observing the 

results of possible correlations or experimental changes between variables, it can be 

determined which causal patterns are consistent with these observations. Accordingly, the 

outputs of the model will guide what can be done "in principle". 

"Machine Learning" (ML) is the study of computer algorithms that are 

automatically developed through experience. It can be seen as a subset of artificial 

intelligence. Machine learning algorithms create a mathematical model based on sample 

data known as "training data" to make estimations or decisions without being explicitly 

programmed. While machine learning algorithms are used in a wide variety of 

applications such as email filtering and computer vision, it seems difficult or possible to 

develop traditional algorithms to perform the required tasks while providing many 

estimations. 

Connection systems, called artificial neural networks (ANNs) or often called 

neural networks (NNs), can be viewed as computational systems that ambiguously sample 

the biological neural networks that make up animal brains. The data structures and 

functionality of neural networks are designed to simulate relational memory. Neural 

networks learn by processing samples that contain a known "input" and "result" and are 
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thought to create stored probabilistic relationships between the two in the data structure 

of the network. 

In the field of computer science, the genetic algorithm (GA) is a metasismatic 

method inspired by the natural selection process of the larger evolutionary class of 

algorithms (EA). Genetic algorithms are widely used to generate high quality and stable 

solutions to optimization problems based on biologically inspired operators such as 

mutation, transition, and selection. 

Decision Tree Learning is one of the predictive modeling approaches used in 

statistics, data mining and machine learning. A decision tree (as a forecast model) can be 

used to navigate from the results about an item (represented in the branches) to the target 

value of the item (represented in the leaves). Tree models in which the target variable can 

take a separate set of values can be called classification trees; In these tree structures, 

leaves represent class tags and branches are expressed as combinations of traits that lead 

to these class tags. 

Support vector machines (SVMs and support vector networks) are represented as 

supervised learning models with corresponding learning algorithms that analyze data used 

in machine learning for classification and regression analysis. The Support Vector 

Machine (SVM) algorithm, one of the popular machine learning tools, can be deduced to 

provide solutions to both classification and regression problems. 

 

5.2. Time Series Forecasting Models 
 

A time series is a series of data points that are indexed (or listed or graphed) in 

order of time. More commonly, the time series is a consecutive sequence and preferably 

taken from equidistant points. In other words, they can be called discrete time data strings. 

Examples of time series are the intensity of earthquake waves, the number of COVID-19 

patients, and the daily closing values of the Stock Markets. 

Time series are usually expressed in line charts. It can be easily said that time 

series is widely used in architecture, project management, statistics, pattern recognition, 

communication engineering, econometrics, finance, weather forecasting, earthquake 

forecasting, control engineering, astronomy, and any applied science that includes largely 

temporal measurements. 
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Time series analysis includes consistent statistics and methods for inference by 

processing time series data to extract hidden properties of the data. Time series estimates 

are the use of a suitable model to forecast future values based on current known values. 

For example; Regression analysis is often used to test theories that current values of one 

or more independent time series affect the current value of another time series, and such 

time series analysis is not called "time series analysis". It can be said that time series 

analysis focuses on comparing the values of a single time series or different dependent 

time series at different points in time. 

Linear regression can be called a linear approach to modeling the relationship 

between a scalar response (or dependent variable) and one or more explanatory variables 

(or independent variables). The state of an explanatory variable can be called simple 

linear regression. For more than one explanatory variable, the process can be called 

multiple linear regression. This term is positioned differently from multivariate linear 

regression in which multiple associated dependent variables are forecasted instead of a 

single scalar variable. 

In system theory, a system can be identified by a color that represents a clear 

amount of information about that system. For example, if the mathematical equations 

describing the internal properties or dynamics are not known exactly, the system may be 

considered a black box. On the other hand, if the description of the system is known 

exactly, it can be called a white system. 

Similarly, a system with both known and unknown information can be defined as 

a grey system. In real life, any system can be considered a grey system because there is 

always some possibility of uncertainty. The cause of concern is the noise (and the 

limitations of cognitive abilities) that come from both inside and outside the system, so 

the knowledge we have about this system is always vague and limited in scope. 

Grey models can be said to forecast future values of a time series based only on 

the most recent data based on the estimator's window size. It is assumed that all data 

values to be used in grey models are positive and the sampling frequency of time series 

is constant. In the simplest terms, the grey models to be formulated below can be viewed 

as curve fitting approaches. The main task of the grey system theory can be said to apply 

the system's realistic management laws using available data. This process is considered 

the creation of the grey system. 

The GM (1,1) type grey model can be said to be one of the most widely used 

models in the literature and is called "Grey Pattern First Order One Variable". This model 
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is a time series forecasting model. The differential equations of the GM (1,1) model have 

time-varying coefficients. In other words, the model is refreshed when new data is 

available in the forecast model. The GM (1,1) model can only be used in positive data 

series, and when all primitive data points are positive, grey models can be used to forecast 

future values of the primitive data points. 

The main purpose of the Velhulst model can be summarized as limiting the whole 

system to a real system and defining some incremental operations such as the S-curve 

which is the saturation region. Verhulst proposed the Verhulst model while studying the 

law of biological reproduction, and the main idea of the Verhulst model is that the number 

of organisms increases exponentially, but the growth rate of the individual organism 

gradually slows down due to environmental constraints and eventually stabilizes at a 

constant value; It is mainly used to describe the saturation state and the S-shaped process. 

It is demonstrated through case analysis that traditional modeling simulation and 

forecasting accuracy are significantly improved by the Grey Verhulst model. 

Several solutions have been discussed in the literature to improve the modeling 

accuracy of grey models. In mathematics, a Fourier Transform (FT) can be expressed as 

a mathematical transformation that decomposes a function (usually a function of time or 

a signal) into its constituent frequencies, such as the expression of a music chord in terms 

of the volumes and frequencies of their sounds. constituent notes. It can be said that the 

term Fourier Transform refers to the mathematical operation that relates both the 

frequency domain representation and the frequency domain representation to a time 

function. 

Time series forecasting models have been developed with their univariate and 

residual values, and they have become more and more preferred in large areas due to their 

accuracy in forecasting. 

In the study conducted on values selected as a fixed data set, it was found that the 

most efficient time series forecasting model was Grey Verhulst Model and the results 

could be further improved by Fourier Transformation. 
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5.3. Evaluation Results Review  
 

The results of the values applied with Grey Verhulst Model in accordance with 

the applications; MSE, RMSE and MAPE, which were used in the study, were found 

reliable in the short term. 

The performance criteria of the applied models were examined with different 

evaluation methods. Three different assessment methods encountered and discussed in 

literature reviews are the subject of the study. These include Mean Square Error, Root 

Mean Square Error, and Mean Mean Percent Error. Performance criteria of the results 

during the application were evaluated by MSE, RMSE and MAPE evaluation methods. 

The MSE, RMSE and MAPE results of the forecasted values decreased gradually 

in LRM, GM (1,1), GVM and FT applications and decreased to 0.97% levels. 

MAPE values were calculated over two separate estimates, model fitting and 

posterior forecasting, and presented separately as Mape1-Mape2. In this way, the 

performance criteria between the period in which the actual data were taken as input and 

the period when forward-term forecasts made were compared. 

 

 

 
 

Figure 5.1. Model Fitting and Posterior Forecasting Chart of LRM (2019). 
 

 

In LRM Modeling, over Predecessor and Successor Modeling results, Mape1 

1,17; Mape2 is calculated as 1,43. 
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Figure 5.2. Model Fitting and Posterior Forecasting Chart of GM (1,1) (2019). 
 

 

In GM (1,1) Modeling, over Predecessor and Successor Modeling results, Mape1 

1,24; Mape2 is calculated as 1,88. 

 

 

 
 

Figure 5.3. Model Fitting and Posterior Forecasting Chart of GVM (2019). 
 

 

In GVM Modeling, over Predecessor and Successor Modeling results, Mape1 

0,97; Mape2 is calculated as 0,99. 
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Figure 5.4. Model Fitting and Posterior Forecasting Chart of FT(GVMR) (2019). 
 

 

In FT(GVMR) Modeling, over Predecessor and Successor Modeling results, 

Mape1 0,97; Mape2 is calculated as 0,97.  

 

5.4. Discussions 
 

As a result of all literature reviews and researches, it has been seen that causal 

based forecasting models are used in many areas. Same time; It was also found that 

especially multivariate ones were affected by different components and could not forecast 

the results clearly. 

On the other hand, it has been observed that time series based forecasting methods 

can be evaluated under a separate title as they become widespread as science develops. 

Generally, in forecasts made over numerical data, time series have come to the fore and 

they have clarified their usage area. 

Causal based models were researched and informed. Then, time series based 

models, which are the focus of the study, were directed. In this direction, as explained in 

detail in previous chapters, from primitive to complex; Linear Regression Model, Grey 

Model (1,1), Grey Verhulst Model and Fourier Transform Models are examined and 

followed through Turkey Construction Cost Index data in 2019 was applied. 

When the results obtained from the applied models were evaluated, the data 

determined as data set (depending on the structure of the time series) and the most realistic 

forecasting results came out of Fourier Transformation (with GVM residues). 
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In this direction, it will be beneficial to make cost estimation in future term or 

large budget projects to complete the project on time and with quality. 

The data for the models are taken from TurkStat, the 2019 Construction Cost 

Change Index is used. Firstly, the first nine-month period of the year was modeled to 

build the models (Predecessor Stage), and then the cost estimates of the last three months 

were made with the trend (Successor Stage).  

Considering the performance criteria, it can be determined that the MAPE level 

has decreased to 0.97% in the forecasting made over the FT (GVMR) and this margin of 

deviation, which is less than 1%, provides a consistent basis for short-medium term 

forecastings. In this way, based on the results of the models, both the performance criteria 

of the models and their applicability degree on this index were measured and it was seen 

that mostly consistent results were obtained in the processed data. 

 

 

Table 5.1. Out-of-Sample Forecasting Performance Criteria of the Models (2019). 
 

 
 

 

 
 

Figure 5.10. Flowchart of Grey Correlation based Forecasting Combination Analysis. 

Start

Input Original Data

Data Processing

Selection of Forecasting Model

END

Grey Correlation Analysis

Forecasting Results of
Combination Forecasting Model

Error Analysis of Forecasting Results

Model 
MAPE1 

Linear 
1.17 

GM (1,1) 
1.24 

GVM 
0.97 

Fourier Residual 
0.97 

MAPE2 1.43 1.88 0.99 0.97 
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Figure 5.5. Comparative Bar Chart of LRM (2019). 
 

 

 

 
 

Figure 5.6. Comparative Bar Chart of GM (1,1) (2019). 
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Figure 5.7. Comparative Bar Chart of GVM (2019). 
 

 

 

 
 

Figure 5.8. Comparative Bar Chart of FT(GVMR) (2019). 
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CHAPTER 6 

 

CONCLUSIONS 

 
Forecasting costs in construction projects has an important place in both design 

and implementation processes. It is very important to observe possible changes in the 

construction process, especially in large scale projects.  

Using a series of data in a functional way can be useful to make the changes that 

can be made at a later time in that field. Grey models have an important place in the time 

series forecasting model. In line with this functionality, there are a number of methods 

developed over time. In fact, when these models are examined, it is seen that they follow 

and complement each other in the developmental stages, but the levels of development 

differ with some important decompositions. Although many methods have been 

developed to support forecasts during the planning phase, early forecasts of costs as well 

as periods for construction activities and projects are still error-prone. One of the main 

factors leading to false forecasts is the change in resource prices due to changes in 

economic conditions over time. This shows the importance of monitoring and forecasting 

the construction costs trend, taking into account fluctuations in resource prices.  

The ability to model and forecast construction costs can result in more accurate 

cost forecasting and budgeting. This has been modeled using a residual Fourier model by 

analyzing the remains of the Grey Verhulst Model, conditional variability of construction 

cost prices. The results show that the developed model can forecast construction costs 

with less errors. The data used in the time series analysis were observed for a relatively 

long time. These data are calculated with the assumption that the system will be developed 

in the future and the forecasted values will be maintained in the future based on these 

time series data. In the case of uncontrollable factors such as political changes or battles, 

it is likely that over a long period of time, the time series data may have different patterns 

at different times due to the time-specific nature of these factors.  
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6.1. Limitations and Future Works 
 

• In line with research and applications, causal based forecasting models are also 

frequently used, but time series forecasting methods are widely preferred, especially in 

numerical fields such as economics and cost management. This trend can be attributed to 

the fact that models are applied more consistently and not affected by different 

components, especially depending on the single variable, ie time. 

• From another point of view, time series based forecasting methods and trends 

formed by these series are more widely used in economy and cost management. Because 

of they are based on science and computation and can also be developed with each other, 

positive results can be obtained with these methods. 

• It is seen that these models are becoming widespread and there is a need to 

deduce and benefit from big data. In this direction, studies can be carried out to develop 

more efficient results by developing models. 
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