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ABSTRACT

DEEP LEARNING IN FINGERPRINT ANALYSIS

Fingerprints are one of the most widely used personal identification traits. They
play a crucial role in forensics because they are considered to be unique to each person.
For many years, the identification of individuals had been carried out by human operators.
However, with technological developments, automated fingerprint recognition systems
have arisen, and the growth in the population has increased the importance of their
robustness.

On the other hand, deep learning has led to many impressive developments in the
area of computer vision. Fingerprint analysis is indeed in the scope of image processing
and computer vision; however, the usage of deep learning in fingerprint analysis is rather
limited. This study focuses on using deep learning techniques on two different stages of
the automated fingerprint recognition pipeline: Fingerprint classification and fingerprint
minutiae extraction. Deep learning systems are developed for those two selected stages
and analysed with respect to several aspects such as dataset size and different network

architectures.
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OZET

PARMAK iZI ANALIZINDE DERIN OGRENME

Parmak izleri, en yaygin kullanilan kisisel kimlik saptama 6zelliklerinden biridir.
Kisiye 0zgii olduklari i¢in, adli vakalarda 6nemli bir rol oynarlar. Uzun yillar boyunca,
kimlik tespit islemleri insan operatorler tarafindan gerceklestirilmistir. Ancak, teknolojik
gelismelerle birlikte, otomatik parmak izi tanima sistemleri ortaya ¢ikmis ve niifustaki
artig, bu sistemlerin saglamliklarinin 6nemini artirmastir.

Diger yandan, derin 6grenme, bilgisayarla gorii alaninda bir¢ok etkileyici gelism-
eye yol agcmistir. Parmak izi analizi aslinda goriintii isleme ve bilgisayarla gorii kap-
samindadir; ancak, parmak izi analizinde derin 6grenmenin kullanimi oldukg¢a sinirhdir.
Bu calisma, otomatik parmak izi tanima siirecinin iki farkli asamasinda derin 6grenme
tekniklerinin kullanilmasina odaklanmaktadir: Parmak izlerinin siniflandirmasi ve par-
mak izi 0zellik noktalarinin ¢ikarilmasi. Segilen iki asama i¢in derin 6grenme sistemleri
gelistirilmis ve bu sistemler veri kiimesi boyutu, farkli ag§ mimarileri gibi ¢esitli yonlere

gore analiz edilmistir.
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CHAPTER 1

INTRODUCTION

Identification of people is a requirement for both personal and property security.
Naturally, people recognize and identify each other by some distinctive characteristics
such as face and gait. These and many other cues are also used in automated systems to
identify people and they are called biometric traits.

Biometric traits are reliable identifiers because they cannot be easily lost, stolen,
or forgotten like knowledge or possession-based authentication mechanisms [1]. There
are many kinds of biometric traits, and in general, they are grouped into two categories:
physical and behavioural traits. While physical traits include fingerprint, face, and iris;
behavioural traits include gait, signature, and writing behaviour.

In order to use a trait as a means of identification, it has to have several properties.
Uniqueness, permanence, universality, and collectability are some of them. Fingerprints
have all the necessary properties to be used for reliable and high-scale identification. They
are unique to each person in the world, even identical twins have different fingerprints.
Unless some certain damage is taken, they are permanent and do not change much as
people get older. Except for some anomalies and disabilities, everyone has fingers and
thus fingerprints. Ridges and valleys on the fingers can be easily captured by using various
imaging techniques and sensors. Due to the sweat and the oil surface on the finger skin,
they are left on the surfaces and can even be collected from where they make physical
contact.

Due to those properties of the fingerprints mentioned above, they have earned a
crucial role in various areas of usage, primarily in forensics and security. Before automated
systems, fingerprint experts were matching the fingerprints collected from persons to be
identified or found on the crime scenes with the ones in the database manually. However,
with the increasingly large and mobile populations, the manual work required for matching
has also increased and even become impossible. As a result, with the guidance of the
approach that the experts use, automated fingerprint recognition systems are developed.
Nowadays, almost every forensics and law enforcement agency uses automated fingerprint
identification systems(AFIS). Besides forensics, fingerprints are widely accepted in other
areas such as biometric passports, phone locks, attendance and entrance systems, etc.

In fact, automated fingerprint systems have been actively used for decades now.

However, more robust and accurate systems are always needed because fingerprint recog-



nition is still a challenging pattern recognition problem with high intra-class variability
and high inter-class similarity [[1].

Deep learning is proven to perform well on many pattern recognition and computer
vision tasks. Since fingerprint analysis is a sub-domain of computer vision and it is
actually a pattern recognition problem, deep learning is a good candidate for improving
robustness and accuracy in fingerprint analysis, while spending less or even no effort on
the intermediate tasks such as feature extraction and image enhancement. Traditionally,
various machine learning approaches have already been adopted for different stages of
fingerprint recognition. However, those require extra pre-processing effort prior to using
machine learning algorithms for the task at hand. For instance, for fingerprint classification
and minutiae extraction, orientation fields should be extracted and only then they are fed
to a machine learning algorithm for better performance. In contrast, when deep learning
is adopted, the network is expected to automatically learn the important features from the
data and use them to make necessary decisions.

As mentioned previously, fingerprint recognition is a very challenging task because
of high intraclass variance and interclass similarity. In order to cope with this challenging
problem, it is broken down into several steps such as fingerprint classification, orientation
extraction, minutiae extraction, and fingerprint matching(Figure [I.T]). This study focuses
on fingerprint classification and minutiae extraction since they are the two most funda-
mental steps for accurate matching. Without manual feature extraction and preprocessing,
deep learning models are developed for these two tasks and different architectures and
different dataset sizes are used for training. The objective of this study is to observe the
effect of dataset sizes and different deep learning architectures on the success rates of the
models and in the meantime, to achieve state-of-the-art results without human-engineered

feature extraction and preprocessing steps, and integrating domain knowledge.

Fmgerpnpt . Orlentat}on ' Fingerprint .
Segmentation | ' Extraction ; +  Enhancement

L : Fin gerp.rint E
Matching {

Figure 1.1: Fingerprint recognition pipeline. This study focuses on the orange parts:
fingerprint classification and minutiae extraction.



1.1 Outline of Thesis

This thesis is organized as follows: Chapter 1 gives an introduction to the area of
fingerprint analysis, and the scope of this thesis. Chapter 2 provides background infor-
mation about the fingerprint structure, and the fingerprint analysis process. In Chapter 3,
literature is reviewed in detail in terms of fingerprint classification and minutiae extraction.
Chapter 4 provides details of the study on fingerprint classification with explanations of
the dataset, model architectures, experiments, and their results. Chapter 5 gives the details
of our approach for minutiae extraction, the conducted experiments, and their results.

Finally, Chapter 6 concludes the thesis and provides direction of future research.



CHAPTER 2

BACKGROUND

The skin at the fingertips has a wavy, indented structure. It contains protruded lines
with different curvatures and dented areas between those lines which are called ridges
and valleys, respectively. Fingerprints are the imprints of those ridges and valleys at the
fingertip and they transmit that on surfaces. The form of the ridges and valleys, and the
pattern they create cause fingerprints to have different and distinctive details. In general,

those details are grouped into three levels at different scales [[1]:

* Level 1 features are global features that the ridge lines shape. These features are
called singular points and there are two types of singular points: delta and loop. As
seen in Figure [2.1] loop is the inflection point of the parallel ridge lines and delta
is the triangular area where different ridge lines meet. In addition, the upper-most
singular point is called the core. The shape and location of these are not unique to
each fingerprint, rather they help to describe coarse level shapes which are useful

for grouping fingerprints.

* Level 2 features are local features where the ridge line characteristics change at a finer
level. These features are called minutiae points, and they provide the fingerprints
the bulk of their distinctiveness. There are many types of minutiae points however
the two most important and mostly used are ridge ending and bifurcation. A ridge
ending is as the name implicates where a ridge ends, and a bifurcation is where
ridge lines split into two ridges like a fork. Those two types of minutiae points are
illustrated in Figure[2.2]

* Level 3 features are observed at the finest level, and they mainly consist of very
tiny details such as sweat pores (Figure 2.3). These features also make a high
contribution to the uniqueness of the fingerprints. Although their distinctiveness is
very high, they may be misleading because they are so small and hence very difficult
to locate accurately. The image resolution should be very high to use these features

as a proper means of identification.

These characteristics of fingerprints are used in various steps of fingerprint recog-
nition which are previously mentioned in Chapter[I] For instance, for fingerprint classifi-
cation, Level 1 features and for fingerprint matching mostly Level 2 and Level 3 features

are used.



(a) Left Loop (b) Right Loop (c) Whorl

(d) Arch (e) Tented Arch

Figure 2.1: Level 1 Features: Singular Points and Fingerprint Classes. The colors and
shapes indicate singular points: red triangle for delta, yellow circle for loop.
Green squares show the cores. Note that Arch class has no singular points,
thus its core is where the curvature is highest.

P

(a) Bifurcation (b) Ridge ending

Figure 2.2: Level 2 Features: Minutiae Points.

-

Figure 2.3: Level 3 Features: Sweat Pores as an example of Level 3 Features.



2.1 Fingerprint Classification

For automated fingerprint identification, most of the time, a large number of com-
parisons is needed where the query fingerprint is compared with all existing fingerprints in
the database. Because fingerprints are used mostly in forensics, the number of fingerprints
in the database is counted by millions most of the time. Reducing the search space is
critical for both reducing search time and increasing the matching accuracy. Fingerprint
classification has an important role in automated fingerprint identification systems since
it aims at reducing the search space by assigning predefined classes to fingerprints.

According to Henry classification system [2], there are 5 classes of fingerprints:

e Arch

Tented Arch
* Left Loop

* Right Loop
* Whorl

These classes are determined by the singular points in the fingerprint. According to the
location and amount of the singular points, and the ridge flow orientation, fingerprint
classes can be assigned. In detail, the Arch class has no singular points. It has a smoother
curvature and nearly parallel ridge lines that are a little bit curved around the center of
the fingerprint. Tented Arch class is similar to Arch class visually, but its curvature is
higher and it has one delta and one loop. The delta is located directly below the loop and
is vertically aligned with it. Left Loop and Right Loop also have one delta and one loop
however they differ from each other and the Tented Arch class in the location of deltas
and loops, and in the curvature orientation around the loops. In Left Loop class, delta
is located below and to the left of the loop and the orientation of the curvature around
the loop is towards right. Vice versa, in the Right Loop, delta is located below and to
the right of the loop and the curvature is towards left. Whorl class, unlike other classes,
may have two deltas and two loops. Additionally, the ridge curvatures make a 360° tour
around the center. In Figure [2.T]an example for each fingerprint class is also shown with
the corresponding singular points.

Once the fingerprint class is determined, search for the matching fingerprint may
be conducted in a smaller database that only includes the fingerprints that belong to
the assigned class. Smaller database favours less search time and increased matching
accuracy. Moreover, in some cases, the search space gets very small because of the natural

distribution of the classes among people. Only 3.7% of the people have Arch and 2.9%
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have Tented Arch class while the majority have Left Loop, Right Loop and Whorl(33.8%,
31.7%, and 27.9% respectively) [3]]. For instance, if the query fingerprint is determined
as a member of the Arch or the Tented Arch class, the search space will be much smaller
compared to the initial one.

To sum up, fingerprint classification is a coarse level matching. Since the features
that it relies on are global and not distinctive, it cannot be directly used for accurate
matching. However, it is useful for determining which fingerprints can be eliminated from
the dataset(pruning) due to having different classes. Thus, it helps to reduce the search

space.

2.2 Fingerprint Matching and Minutiae Extraction

Fingerprint matching is the core stage of fingerprint recognition. The main ob-
jective is to match the input fingerprint with the enrolled fingerprints in the database and
detect or confirm the identity of the person. However, this is a challenging task since
fingerprints have large intraclass variance, i.e. same fingers may create very different

impressions. This is mainly due to he following are the main reasons [1]]:

* Displacement: Fingerprints may be located in different places in the paper/sensor.
Even though some sensors guide strict placement into a specific area, very small

displacements may cause large differences pixel-wise.

* Rotation: Similar to displacement, fingerprints may be rotated while transferring

to paper or obtaining via sensor.

* Partial Overlap: Because of displacement, rotation, or other factors, some parts of
the fingerprint may not be visible. When the obtained impressions are not containing

the fingerprint fully, it may cause fingerprints to look very differently.

* Non-linear Distortion: Because of the 3D shape and elasticity(rubber-like struc-
ture)of fingers, fingerprints may be distorted when pressed against a 2D surface like

paper or sensor.

* Variable pressure: When pressing the finger to the sensor or paper, the pressure

may vary. This causes variations in the fingerprint impressions.

* Changing skin conditions: While capturing the fingerprint via ink and paper or a
sensor, the finger skin may be wet, dry, or oily. These factors affect the ridge line

thickness in the impressions. For instance, wet skin’s impressions look darker.



* Noise: While obtaining the fingerprint via sensors, there may be internal noise
caused by the sensor. Also, the paper might be noisy or while taking the photo of

the paper or scanning it, some noise might be introduced to the fingerprint.

* Feature extraction errors: Prior to fingerprint matching, some features are ex-
tracted such as ridge orientation field, singular points, and minutiae points or some
preprocessing is applied to the fingerprint. During those steps, different errors and

noise may be introduced that hinders the matching accuracy.

In order to get accurate matching, many different approaches are developed and
they are mainly grouped into 3 categories [1]]: correlation-based matching, minutiae-based
matching, and non-minutiae feature-based matching. In correlation-based matching, fin-
gerprints are aligned and compared according to their pixel correspondences. In minutiae-
based matching, minutiae points are extracted and matched with the templates that are
extracted during the enrolment. In non-minutiae feature-based matching, the features
other than minutiae are used for matching because minutiae extraction may be erroneous
especially in low-quality fingerprints. In this category, the main idea is basically to use
the features of the ridge pattern. However, ridge pattern distinctiveness is not very high.

Most widely accepted method for matching is minutiae-based matching [1]]. Thus,
obtaining an accurate list of minutiae points has become crucial. However, this task is
not easy, especially in low-quality images. Even though the actual minutiae points can be
extracted correctly, many spurious minutia points are usually also detected or algorithms
even fail to detect all of the existing minutia points correctly. In order to increase the
accuracy of minutiae extraction, some preprocessing and enhancement steps are required.
For instance, in many minutiae extraction algorithms, binarized images are used instead of
grayscale fingerprint images. Sometimes, the intensity values are normalized according
to predefined parameters. Some filtering techniques are used to increase the contrast of
the invisible parts on the fingerprint. In short, there are many different enhancement
techniques used to increase the quality of the fingerprint image and thus, to increase the
accuracy of minutiae extraction. Once the minutiae points are accurately extracted, the

matching step gives better results.

2.3 Advantages of Deep Learning

Deep learning is famous for achieving great performances in the computer vision
domain with less or no effort spent on manual feature extraction or image enhancement. in
its traditional methodology, the fingerprint analysis contains many applications of manual

feature extraction and image enhancement, and these algorithms mostly rely on domain



knowledge. Deep learning is expected to reduce that need in different stages of the
fingerprint recognition pipeline with its strong representation ability.

Moreover, the intraclass variance of fingerprints also poses a big problem for
traditional methods. However, deep learning methods are able to learn the image variations
due to various factors such as rotation, translation, and distortions from the training data.
For this reason, it is expected that deep learning can overcome the generalization problems

without any need of manual optimization.



CHAPTER 3

RELATED WORK

3.1 Fingerprint Classification

Many approaches have been developed to classify fingerprints and in most of
them, the fingerprint classification is divided into two main tasks: feature extraction
and classification. The features mostly used for fingerprint classification are the global
features(Level 1 features). The majority of the methods focus on ridge-line flow, orientation
image, singular points, and Gabor filter responses (Figure 3.1). Ridge-line flow is the
global trace of the ridges, they give intuition about the orientation and curvature of the
ridges. Orientation image is a representation of the local ridge flow. Most of the time, they
are calculated block-wise on the fingerprint image and called as the orientation map(OM).
Singular points are, as mentioned before, the areas where a large change in the curvature
occurs(the loop, in some researches referred as the core [4, 5, 6], and delta). Finally, the
Gabor filter responses are obtained by applying Gabor Filters to the fingerprint image or

orientation image. They are good at detecting ridges and valleys.

Singular
points

Gabor-filter
responses

i
i
i
i
i
i
;
i
Orientation
image

Ridge line \
flow

Figure 3.1: Some features of fingerprints that are used for fingerprint classification [[1]].
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Classification methodologies are coarsely classified into six categories according
to [1]: rule-based approaches, syntactic approaches, structural approaches, statistical
approaches, neural network-based approaches, and multi-classifier based approaches.

Rule-based approaches are based on singular points. Because singular points differ
in number and location among fingerprint classes, the classes can be assigned according
to their relative positioning. As mentioned in Section 2.1, the Arch class has no singular
points; the Tented Arch, the Left Loop, and the Right Loop have one delta and one loop;
the Whorl has two loops and two deltas. The delta locations in Tented Arch, Left Loop, and
Right Loop also differ. In [7], Kawagoe and Tojo use Poincare index for detecting singular
points. Using singular points and the rules given above, first, a coarse classification is
obtained and next, a fine classification is applied it by tracing the ridge line flow. However,
using singular points may introduce some errors, especially on noisy images. In [4],
Karu and Jain adopt an iterative smoothing approach in order to reduce the noise. After
computing the orientation image, they apply smoothing, detect singular points, and classify
fingerprints. The algorihtm is shown in Figure [3.2] They also use Poincare index as in
[7] in order to determine the singularity type of a point (delta, core, or no singularity) in
the orientation image by looking at the changes in the direction angles in a closed curve
around that point. If the sum of orientation angles, while iterating counter clock-wise
around the point, make 180°, the point is stated as a core. If the sum is -180°, the point is
stated as a delta, and if the sum of the angles is O it means there is no singular point. In
order to determine the classes according to the given rules, they use the number and the
location of the singular points. For instance, to discriminate Arch from other classes they
use the number of singular points i.e Arch has no singular points. In order to discriminate
Tented Arch, Left Loop, or Right Loop, they connect delta and core with a line and look at
its intersection with the orientation lines. In a more recent research [8], a fuzzy rule-based
classification system is proposed which considers the uncertainty in classifying Tented
Arch, Left Loop, and Right Loop. In that study, the authors also propose a coherence
method in order to correctly classify the fingerprints that have singular points but could
not be classified accurately because the singular points are not detected by the algorithm.
In rule-based approaches, the focus is more on correctly detecting singular points rather
than assigning the classes. If the singular point detection algorithm makes errors, the
classification fails. For singular point detection, there are other methods than Poincare
index such as complex filter [3 9] and zero-pole model [10]. However, singular point
detection is very error-prone especially in noisy and partially imperceptible fingerprints.
Thus, rule-based methods can easily fail to detect the correct fingerprint classes.

In syntactic approaches, the patterns are represented with symbols and a grammar
over the symbols. Using the grammar, fingerprint classes are assigned. In [11], Moayer
and Fu used a symbol set obtained from orientation image patches. With a class of

context-free grammars, they describe fingerprint patterns and this allows classification. In
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Figure 3.2: The algorihtm diagram of Karu and Jain [4]].

the approach which Rao and Balck use in [12], a string is generated from the direction
changes in the ridge line flow. Then using a context-free grammar, classes are assigned
according to the generated strings. Examples of strings are shown in Figure[3.3] However,
syntactic approaches require complex grammars, thus there are not many publications
using this method anymore. In a relatively recent research, Chang and Fan [13]] used ridge
patterns to determine the classes. They argue that there are 10 basic ridge patterns and
using ridge shapes and the ridge distribution sequence, those patterns can be detected and
used in classification.

Structural approaches are based on higher-level representations of features such as
graphs or trees. In [14], Maio and Maltoni propose an approach that segments orientation
image into similarly oriented partitions and constructs a relational graph by making each
region a node and connecting those nodes. Using inexact graph matching techniques,
the graph and the model graphs of the classes are compared. In Figure [3.4] the steps of
the algorithm are shown. Capelli et al. [15] use template-based graph matching instead
of relational graphs. In order to create homogeneous regions as in [14]], they extract a
set of dynamic masks obtained from fingerprint classes and they use them to guide the
segmentation. Those dynamic masks are used to calculate a cost function and the cost

function is used for classification. Their approach can handle translation and rotation
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In [5], Lui proposes a method that uses adaboosted decision trees for fingerprint

classification. His approach is based on singular points that are detected at different
scales using complex filters. Then, a feature vector is created with different specifications
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ization

Cost computation and
normali

determining classes, adaboosted decision trees are used.

feature vectors are extracted from the images and used

In statistical approaches,

in statistical classifiers such as SVM or k-nearest neighbour(k-NN) algorithm. In [16],

Luo et al. used k-NN to classify the feature vectors obtained by using Curvelet transform

(CT) and gray-

level cooccurrence matrix (GLCM). They achieved 94.6% accuracy for

five-class classification problem and 96.8% accuracy for four-class classification problem

with 1.8% rejection. In [17], Yao, Frasconi, and Pontil propose to use SVM for fingerprint

classification. They use FingerCode [18] as the feature vector and train different SVMs

for classification experiments.

In multi-classifier approaches, in order to improve performances, multiple classi-
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fiers are combined. In [18]], Jain, Prabhakar, and Hong propose FingerCode which is a
192-dimensional representation of fingerprints derived from local ridge structures. Using
the FingerCode the fingerprints are classified with a two-stage classifier. They use k-NN in
the first stage and multiple neural networks in the second stage. In [6], Cao, Pang, Liang,
and Tian use combinations of rule-based, k-NN, and SVM classifier hierarchically. Their
algorithm consists of five stages: First, they detect Arch classes using complex filters.
Then, they detect Whorl classes using core points and ridge line flow classifier. In the
third stage, using feature vector obtained by complex filter responses and the orientation
map, k-NN classifier detects the top two probable classes. Using the ridge line classifier
they distinguish Loops from other classes except for Whorl class in the fourth stage. Lastly,
they use SVM to determine the final class. They achieved 95.9% accuracy for five-class
classification and 97.2% accuracy for four-class classification.

In neural network-based approaches, earlier applications consist of using multilayer
perceptrons and small fast forward neural networks. With the emerge of deep learning, a
plethora of studies that adopt deep neural networks are published. Wang, Han, Wu, and
Guo [[19] use orientation field as the input for a deep neural network and use stacked sparse
autoencoders for the classification of fingerprints. In [20]], Conic Radon Transform is used
as a feature extractor. CRT is applied on the fingerprint images and the original images are
used as inputs for the CNN. They achieved 96.5% accuracy on 4-class classification. In
[21], Tang, Li, Liu, and Feng combined domain knowledge and a small network architec-
ture. They integrated orientation fields into their network(FClassNet) which contains three
modules: first is the backbone network whose hidden layers represent texture, orientation
and quality characteristics of the fingerprints, second is for extracting the orientation field
and segmentation using the orientation and quality layers from the first module, and the
third is to perform a hybrid classification which combines the 4-dimensional feature vector
obtained by a convolutional network which uses orientation field and singular points that
are extracted using the orientation field. They performed only 4-class classification and
achieved 95.1% accuracy on NIST SD4 database by using the whole dataset for testing.
In [22]], Listyalina and Mustiadi propose an approach that uses transfer learning with
GooglLeNet which is pretrained on the ImageNet database. They freeze the first 10 layers
of the network and trained the rest with the adoption of the last layer for fingerprint clas-
sification task. They achieved 94.7% and 96.2% accuracy results on 5-class and 4-class
classification, respectively. In [23], Michelsanti et al. also apply transfer learning on
fingerprint classification but without any frozen layers. They fine-tune two VGG networks
which are pretrained on ImageNet. They perform only four-class classification and the

best accuracy they report is 95.05%.
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3.2 Minutiae Extraction

Many different approaches have been developed for minutiae extraction for many
years. These will be coarsely analysed into two groups as traditional methods and deep
learning-based methods. Traditional methods mostly extract features manually which re-
quire domain knowledge. Additionally, most methods perform on preprocessed(binarized
and skeletonized) fingerprint images.

In [24], Farina et al. propose an approach that uses binarized and then skeletonized
fingerprintimages. In their method, they clean ridge bridges using a novel method in which
ridge positions are used instead of directional maps. Then, the reliability of the extracted
minutiae points is assessed for matching. Their algorithm performs the following steps
for the extraction of minutiae points: Pixel codification where minutiae classification
is performed and unclassified configurations are removed, pre-filtering where spurious
minutiae points are removed as much as possible, skeleton enhancement where ridge breaks
are repaired and bridges, spurs, and short ridges are eliminated, minutiae invalidation
where close minutiae points, bridges and spurs are invalidated, and topological validation
where island removal, bifurcation and endpoint validation is performed according to
neighbouring ridge layout.

In [25]], Zhao and Tang use a three-step algorithm which are preprocessing, minu-
tiae extraction and post-processing. In the preprocessing step, before thinning the bi-
narized fingerprint image, they eliminate misconnections and isolated regions such as
islands, holes, and dots. They apply morphological operations on the binarized image
so that spurious bridges and spurs do not appear on the skeletonized image. Then, they
detect and fill the small holes and remove small dots from the binary image. In minutiae
extraction step, they use Rutovitz Crossing Number concept. They state that the skeleton
should be one pixel wide, however, this is not always achieved. They detect those pix-
els(called "bug pixels" by the authors) and eliminate them without disturbing the skeleton
connectivity at fork regions. At the end of this process, they obtain minutiae points. The
elimination of spurious minutiae points is performed at the post-processing step. They use
the duality property of the minutiae points which means if there is a ridge ending in the
fingerprint image, there is a bifurcation in the valley structure. (In other words, if there is
a ridge ending in the positive image, there is a bifurcation in the negative image.) They
observe that for spurious minutiae points, there is a bridge structure. They define a bridge
structure and its dual break as an H-point and eliminate those H-points.

In [26]], Jiang, Yau, and Ser propose an algorithm that traces gray-level ridges by
using piece-wise linear lines of different lengths. In some selected points, they smooth
the fingerprint image with an adaptive-oriented smoothing filter. They detect minutiae

points while tracing the ridges and forming skeleton. In the skeleton image, each ridge
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gets a number and the ridge numbers are associated with minutiae points. This helps in the
post-processing step to eliminate spurious minutiae points according to spatial, structural,
and ridge relationships.

With the emergence of deep neural networks, researchers shifted their focus to
using deep learning on minutiae extraction. In [27], Jiang et al. propose using deep
convolutional neural networks with a patch-based approach. They train two sequential
networks: the first one is JudgeNet which detects candidate minutiae patches and the
second one is LocateNet which detects the precise location of the minutiae points in
the candidate patches detected by JudgeNet. They use 45x45 and 63x63 sized patches
with minutiae and non-minutiae labels determined according to center 27x27 pixels. In
LocateNet, the center 27x27 pixels area is divided into 9x9 pixels areas. The location
label is assigned as one of the 9x9 areas that contain the minutiae point. They use Chinese
criminal investigation fingerprint database for their experiments and they achieve 94.59%
precision, 91.63% recall, and 93.08% F1 score.

Darlow and Rosman [28], propose a similar architecture to [27], but instead of
using two networks, they use one network(MeNet) for classifying the patch center as
minutiae and non-minutiae and by post-processing, they get the precise locations of the
minutiae points. They obtain the input for MeNet by sliding 30x30 window on the full-size
fingerprint images. They get a probability map over the full-size image by using MeNet
and use median filter to smooth the output probability map. After applying iterative
thresholding to the probability map, they obtain final minutiae points and locations. They
test their results on combinations of FVC databases(FVC2000, FVC2002, and FVC2004).
They label the fingerprint images in those databases using an automated process that
they constructed with several commercial minutiae extractors. They combine the results
of each extractor, post-process the combined results using morphological operations and
thresholding and label the responses of this process as positive class and the background
black regions as negative classes. For minutiae extraction performance of MeNet, they
sample the FVC databases that they combined, perform their minutiae extraction test on it
and achieve 14.2% miss rate.

In [29], Tang, Gao, Feng, and Liu proposed an approach that combines the domain
knowledge and the representative power of deep learning to obtain better results on latent
fingerprints. They use the traditional pipeline of minutiae extraction such as orientation
estimation, segmentation, enhancement, and minutiae extraction as convolutional kernels
with fixed weights. They expand these layers with additional convolutional layers with
released weights so that the network also learns the background details. They call their
architecture FingerNet and apply Non-maximum suppression(NMS) as a post-processing
step. They perform their tests using FVC2004 and NIST SD27(latent) databases. How-

ever, their results strongly depend on the quality of the enhancement and segmentation.
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In [30], Nguyen, Cao, and Cain also combine the domain knowledge and the
deep learning approach with two networks: CoarseNet and FineNet. They use CoarseNet
to extract the orientation image, enhanced image, and segmentation map and to obtain
candidate minutiae patches. After, they use the FineNet to detect more reliable minutiae
points in the candidate patches. They extract 45x45 sized patches using CoarseNet and
resize them to 160x160 to train the FineNet to decide if the 10x10 center area of the 45x45
sized patch contains minutiae point or not. They also evaluate their results on FVC2004
and NIST SD27. They obtain 85.9% precision, 84.8% recall on FVC2004 and 71.2%
precision, 75.7% recall on NIST SD27 databases.

Recently, Zhou et al. [31] propose a two-stage algorithm with two networks that
share a fully convolutional network. In the first stage, the fingerprint image is divided into
small cells that may contain only one minutiae and using the shared feature map generated
from the shared convolutional network, the candidate patches are selected. Each cell gets
a probability of being minutiae and higher scored cells are selected as candidate patches.
The network finds the coarse location of the minutiae point in the patch, thus the patch is
not necessarily the center of the cell. In the second network, by using the shared feature
map, they obtain the probability, the location, and the direction of the minutiae point which
is at the center of the patch. They perform their tests on FVC2002 and FVC2004 databases.
They achieve 87.90% precision, recall and F1 score on FVC2002 DB1-A database.

For minutiae extraction, unfortunately, there is not a common benchmark dataset
as we have for fingerprint classification. The only dataset that was available with ground
truth minutiae points is FVC2002. Therefore, the results of this study are only comparable
with [31]. It is a difficult process to obtain a database with manually marked minutiae
points. This problem is also stated by many researchers and some authors either come
up with some solutions such as extracting ground truth with several commercial minutiae

extractors or used obtained small databases like this study.
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CHAPTER 4

FINGERPRINT CLASSIFICATION

4.1 Dataset

For fingerprint classification, one of the most important benchmark databases is
National Institute of Standards and Technology’s Special Database 4(NIST SD4) [32]. It
contains 4000 fingerprint images taken from 2000 fingers with 2 impressions(named as
F for first and S for second). The fingerprint images are the scanned versions of rolled
fingerprint impressions which are imprinted with ink on cards. Each fingerprint image is
512x512 pixel and labelled with at least one of the following 5 classes: Arch(A), Tented
Arch(T), Left Loop(L), Right Loop(R), and Whorl(W). In the database, there are 400
fingerprint images of each class.

Moreover, 350 fingerprints(17.5% of the database) are labelled with two classes
due to the fact that they are difficult to differentiate even for the fingerprint experts. In
the literature, there are two different approaches for those two-class fingerprint images.
First one is eliminating the ambiguous fingerprints and using only the ones that have one
class as in [33]]. Second approach is using only one label for the algorithm development
stage(generally for training machine learning systems) and using both labels as correct
in the testing stage, like [4} 5, 16} [18, 23]. In this study, the second approach is adopted
since it is more common in the literature. The first label is used for training and, in the
testing stage, the prediction is assumed to be correct if the predicted class is one of the
two classes.

In order to partition the data, for training and testing, the common approach in
the literature is dividing the dataset into two parts in such a way that the impressions of
the same fingers will not be in train and test partitions separately. Otherwise, it would
introduce bias by training with one and testing with another impression of the same fin-
ger. In this study, the mentioned approach is followed for getting comparable results with
the literature. The database is divided into two parts in a way that training set contains
both impressions of the first 1000 fingers i.e 2000 images(F1-1000 and S1-1000), test set
contains impressions of the remaining 1000 fingers(F1001-F2000 and S1001-S2000).
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For performance calculation, there are mainly two metrics in the literature which
basically address the same intuition: accuracy and error rate. In addition, some authors
also shared their results using confusion matrices. In this study, the main performance
calculation metric is chosen as accuracy. Additionally, confusion matrices of the best
performing models are also shared.

Lastly, because Tented Arch and Arch class are very similar to each other, al-
gorithms sometimes fail to discriminate them. In many publications, the Tented Arch
class is merged with Arch class and four-class classification(A, L, R, T) is performed. In
this study, in order to have comparable with the literature, four-class classification is also

performed.

4.2 Model Training

In fingerprint classification, deep learning is a good candidate to achieve accurate
results because fingerprints consist of typical patterns and the problem is a classical multi-
class image classification problem. Earlier methodologies of fingerprint classification
mostly rely on feature extraction and therefore, the classification accuracy highly depends
on the quality of the extracted features. In this study, the main aim is to train deep learning
systems which do not require feature extraction step for accurate classification and instead
extracts important abstract features internally. Additionally, with the use of deep learning,
the need for preprocessing and image enhancement will be eliminated compared to the
traditional approach.

In this study, in order to observe the effect of model architectures and achieve
state-of-the-art results, different models are trained for fingerprint classification. PyTorch
Framework [34] is used in training of the models and there are many model architectures
that PyTorch supplies to developers. The experiments are conducted with two of them:
VGG [35]], and ResNet [36]].

In the model training stage, the effect of transfer learning, a popular technique used
in deep learning especially when the dataset size for training is small, is also analysed.
The main idea behind transfer learning is using the knowledge stored in the weights of
the previously trained models for the problems where less data is available. Although the
dataset size of NIST SD4 is not that insufficient for classification, the effect of injecting
knowledge from other datasets is observed in this study.

Additionally, the models are trained with different numbers of training images
in order to observe the effect of training set size. Because deep learning systems are

data-hungry, the expectation is that more data yields better performance results.
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The details of the model architectures and experiments are explained in the fol-

lowing sections.

4.2.1 Model Architectures

In this study using VGG, and ResNet architectures, 3 different models are trained
on NIST SD4 dataset: VGG16, VGG19, and ResNet18. The performance results of these
models on NIST SD4 database are shared in Section [4.3]

4.2.1.1 VGG

In [35], Simonyan and Zisserman propose a new Convolutional Neural Net-
work(CNN) architecture named as VGG. Mainly, what they propose is simplicity in filter
sizes. Instead of using large convolution filters such as 7x7, 3x3 filters are used, but the
depth of the network is increased up to 19 layers. They argue that this approach reduces
the number of parameters compared to using less but larger filters and increases discrimi-
nation power by introducing more non-linear layers. They prepared 6 configurations with
different layer depths but with the same generic design. The configurations are shown in
Figure 4. 1]

In spite of their powerful structure, there are some drawbacks of VGG networks.
Although it is stated that the number of parameters is less than the previous network
architectures, still the amount is not sufficiently small. There are 138 million parameters
in configuration D(16 layers) and 144 million parameters in configuration E(19 layers).
The networks take up more than 500 MB storage space. Additionally, because they are
deep i.e. the network has many layers, and have many parameters, training these networks
may take a very long time. However, they can achieve good results in many tasks thus,
they are still preferable.

In this study, adopted configurations of VGG architecture are VGG16 and VGG19
(configuration D and E respectively) with batch normalization layers.
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FC-4096

FC-4096

FC-1000
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Figure 4.1: Configurations of VGG networks [335].

4.2.1.2 ResNet

In [36], He et al.

model accuracy should also increase. However, in practice, they observed that when the

argued that theoretically, when the layer size increases, the

layers get deeper, the accuracy degrades. When identity networks are added to a simple
network, normally it is expected that the accuracy should be the same with the simple
network because there is no effect of identity networks, they simply output what the input
is. However, when the layers get deeper, the accuracy decreases compared to the simple
network. In order to overcome this problem, authors hypothesized that instead of learning
underlying mapping of directly stacked layers(H (x)), it is easier to learn the residual
mapping(F(x)). According to that hypothesis, identity shortcut connections are added to
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the network and several layers are skipped. With that model instead of optimizing H (x)
function, F(x) = H(x) —x is used and thus residual mapping is fitted as F'(x) +x. (Figure
4.2). With this approach, very deep networks (for instance 152 layers) become trainable.

weight layer
‘F(X) lrem

weight layer

X

identity

Figure 4.2: A Residual block [36].

The constructed architecture is similar to VGG and mostly 3x3 convolutional filters
are used. When the architecture is compared to plain networks with the same layer size, it
is shown that the residual network performs better. However, when shallower versions of
the networks are used, residual networks achieve similar results, on the other hand, they
take less time to train. The proposed configurations are shown in Figure[.3]as it is in [36].

The advantage of ResNet architecture is the ability to train very deep networks
while keeping the number of parameters very low. For example, ResNet50 has about 23
million parameters which are very low compared to VGG networks even though VGG
networks are shallower. Thus, the memory they take is much less than VGG networks, e.g
ResNet18 takes up only about 45 MB storage space. Due to these reasons, it is much faster
to train ResNet networks. Because they are faster in training and capable of training much
more layers with high accuracy results, they are preferred to be used for many different
tasks.

In this study, ResNet18 architecture is selected because the depth of that network
would be enough for the fingerprint classification problem and the training would take a

shorter time.
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L 28 e LA : 1x1,1024 1x1,1024 | 1x1,1024 |
- ; 1x1,512 1x1,512 1x1,512
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FLOPs 18x10° [ 36x10° | 3.8x10° | 7.6x10° | 11.3x10°

Figure 4.3: Configurations of ResNet architectures. Brackets indicate that they are residual
blocks and the number beside them indicate the number of blocks used [36].

4.2.2 Transfer Learning

Deep learning systems can achieve good results when they are trained with large
amounts of data. However, it is not always easy to obtain sufficient data for many tasks.
Transfer learning aims at reducing the need for huge amounts of data. The main idea is
transferring the knowledge obtained while solving one problem to another. This approach
is feasible thanks to the structure of neural networks. Neural networks learn basic general
information such as edges and corners in the first layers and towards last layers, they learn
more problem-specific information. For many problems, the basic information that is
required is the same i.e. the network should first learn to detect edges, etc. For similar
tasks with similar datasets, even more information can be shared and the previously
trained network is suitable for reuse with more layers. If the previous task/dataset is not
very similar to the task at hand, transfer learning is still applicable if there is a sufficiently
large dataset for a smaller training. Moreover, even if there is enough data(e.g millions of
images) to train the network from scratch, applying transfer learning may reduce the time
required for training. Since it may take weeks to train a large network with a huge amount
of data, transferring the common knowledge allows the researchers to spend more time on
problem-specific knowledge.

There are two widely used techniques to apply transfer learning: Fine-Tuning the

pretrained network and using the pretrained network as a Feature Extractor.

» Feature Extractor: Using the pretrained network as a feature extractor means only
the last layer of the pretrained network is removed. The weights of remaining layers

are frozen in order not to get affected from the new training process and this frozen
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part serves as feature extractor. The output of the remaining, frozen network is
used as a feature vector. In order to adapt the network to the new problem, the
only remaining task is training a new fully connected layer on top of the network
to replace the last fully connected layer or training another linear classifier such as
SVM.

Fine-Tuning: Fine-tuning is generally applied in two ways: partially training some
layers of the network or fully training all layers. Because more general features are
learned in the earlier layers, freezing weights of those layers and training several
latter layers may be preferred. However, if there is enough data for training, the
network may be fully trained with the initialization of a previously trained network’s

weights.

The choice of using a network as a feature extractor or fine-tuning the network

depends on some concerns. In Table transfer learning scenarios in terms of dataset

similarities and dataset sizes are explained.

Table 4.1: Transfer Learning scenarios in terms of dataset similarity and sizes.

Similar Datasets

Different Datasets

Small
Dataset
Size

Using the pretrained network as a feature
extractor might be suitable due to the
similarity of the datasets. It is expected
that the network previously learned the
characteristics of the dataset and that in-
formation can be successfully shared.

This is the most difficult case where
both feature extractor and fine-tuning ap-
proaches might not be beneficial. How-
ever, a feature extractor can be obtained
from the network by removing not only
the last layer but also the earlier layers
and a linear classifier can be trained us-
ing the extracted features.

Large
Dataset
Size

Fine-tuning the network is preferable be-
cause there is enough data to train some
layers and introduce more variance re-
lated to the specific characteristics of the
new dataset.

Fine-tuning the network is preferable
with training many or, maybe, all of the
layers. The data may even be enough for
training the network from scratch, but
initialization of the weights with a pre-
trained model’s weights can be benefi-
cial.

The models pretrained on the ImageNet [377]] database are used in many cases when

applying transfer learning. ImageNet project is a very important milestone and aims to

provide a large database for researches in the computer vision field. It contains about 14

million images of approximately 22000 object categories. ImageNet project organizes a

competition every year, ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[38]] which is one of the largest and most popular competitions on object recognition
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and image classification. In ILSVRC, a subset of ImageNet dataset is used which has
approximately 1.2 million training images, 50000 validation images, and 100000 testing
images and, 1000 object categories [35,36]. Many famous Convolutional Neural Network
architectures are actually developed in the scope of this competition.

In this study, with the three aforementioned deep neural network models(VGG16,
VGG19, and ResNet18), two techniques of transfer learning are applied using the networks
previously trained on the ImageNet dataset. In the fine-tuning case, all layers of the network
are trained with initialization of the pretrained network’s weights. This is because the
fingerprint data is quite different compared to data in ImageNet. In the feature extractor
case, only the last fully connected layers of each network are removed and replaced with
new, randomly initialized fully connected layers. The weights of the convolutional parts
of the networks are frozen and only the last newly added fully connected layer is trained
for performing classification. In this approach, none of the layers are fine-tuned and the

convolutional parts of the networks act as a feature extractor.

4.2.3 Dataset Sizes

Deep learning systems are data-hungry systems. In order to train deep and accurate
networks, the dataset size should be sufficiently large. Although "sufficiently large" differs
from case to case(Sometimes millions of data points are needed.), generally more data
means better performance results and better generalization abilities because more complex
model architectures can be trained if there is enough data and, in this way, the variations
of the data can be captured in more detail.

In this study, in order to observe the effect of dataset sizes, the models are trained
using different number of training samples. The expectation is that increasing the dataset
size also increases model performances. However, there might be a maximum point in
the model performances that the models reach and after that point increasing the amount
of data would not make improvements. This situation is also tried to be observed in this

study.

4.2.4 Summary

In this study, several training setups are implemented. Three model types are

trained with two transfer learning techniques and without any applying transfer learning.
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(For the sake of completeness, not pretrained models will also be mentioned in the transfer
learning title). Additionally, the training subset of NIST SD4 is split further into 5 different
partitions of different sizes and all the previously mentioned models with different transfer
learning setups are trained on these datasets.

In detail, in the experiments {Model Types x Transfer Learning Setups x Dataset
Sizes} models i.e. 3 model types (VGG16, VGG19 and ResNet18) x 3 transfer learning se-
tups (Fine-tuning, Feature extractor and not pretrained) x 5 dataset sizes (125,250,500,1000
and 2000) = 45 models are trained. These steps are also repeated for the the four-class
version of the problem. Thus, in total, 90 models are trained for the experiments.

For performance calculation, all tests are performed on NIST SD4 test dataset, as

mentioned in Section &.1]

4.3 Experimental Results

In this section, performances of the models are reported in terms of accuracies, and
confusion matrices. Results are shared under separate sections for each experiment context
(Model Types, Transfer Learning, and Dataset Sizes) in terms of maximum performances
they can achieve. In the summary section, the results are interpreted all together, and a

more detailed analysis is performed in terms of the fingerprint classification domain.

4.3.1 Results for Different Model Types

Models are trained with VGG16, VGG19, and ResNet18 architectures in this study.
Accuracy results of the models are shown in Figure[d.4] These are the highest accuracies
that the models achieve in different setups which are explained before in Section[4.2] The
aim of this section is to compare the maximum performances that the models can achieve
regardless of transfer learning types and dataset sizes. In this context, the best performing
model is, not surprisingly, VGG19 due to its complexity. VGG16 follows VGG19 and
the worst performance belongs to ResNetl18. However, the accuracy of ResNet18 is still
remarkably close to VGG models. The results show that both architectures are really
powerful. As expected, training of ResNetl8 took much less time compared to VGG
networks yet, it achieved similar results to VGG networks.

These results show that using deep learning for fingerprint classification is practical

and yields to highly accurate results. Without the need of any feature engineering, and
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any complicated preprocessing (except for normalization using the mean and standard
deviation of the dataset), deep learning systems achieve high results that is comparable

with the literature in both four-class and five-class classification.
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Figure 4.4: Accuracies of models with different architectures.

4.3.2 Results for Different Transfer Learning Setups

All models are trained using two types of transfer learning and once with no
pretraining networks. As in the model types comparison, the most accurate models are
chosen to compare transfer learning setups because the intention is to see the maximum
accuracy point that they can achieve. The accuracy results are shown in Figure [{.3]
In this setup, fine-tuned models take the lead which is not surprising. Although the
fingerprint dataset is not very similar to the ImageNet dataset, initializing the networks
with the weights of the pretrained networks contributes to the performances as it kind
of introduces more data to the networks. However, again because the dataset is different
from ImageNet data, in the feature extractor seyup, the networks cannot achieve good
results. The information learnt in the previous network seems not enough to describe the
fingerprint data.

As a result, it is observed that if the networks are trained with sufficient amount
of problem-specific data, transfer learning can achieve very good and even state-of-the-art
results for fingerprint classification.

Additionally, another observation obtained while training the networks is that the
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convergence of the models with fine-tuning are easier. Not pretrained networks sometimes
fail to converge and training process is required to be restarted especially for VGG networks.

However, this is not the case for fine-tuned networks since they are already well initialized.
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Figure 4.5: Accuracies of models with transfer learning methodologies.

4.3.3 Results for Different Dataset Sizes

In this experiment, all models are trained with 5 different training set sizes: 125,
250, 500, 1000, and 2000. The test dataset size remains the same i.e. 2000 image. The
proportion between classes are also kept the same in differently sized training sets in order
to have the same uniform distribution among the classes and not to affect accuracies with
classimbalance. The expectation is that with the growth in dataset size, the models perform
better. The results are shown in Figure 4.6] The figure shows the maximum accuracies
achieved by the models trained with mentioned dataset sizes in various experiments, they
may be again interpreted as they are the highest accuracies that those dataset sizes can
achieve in the experimental setups designed for this study.

The results show that, as expected, the increase in dataset sizes improves model
performances. Therefore, it may be stated that with larger number of training samples the
deep learning models can perform better. However, accuracies begin to saturate after a
point. The accuracy increase between the models with 1000 dataset size and 2000 dataset
size is lower than the increase between the models with 125 dataset size and 250 dataset

size. With this observation, it may be stated that even though the model performances
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improve with more training samples, it is very probable that there is a maximum point
that the improvement will stop. However, with 2000 data, it is not possible to state the
amount of data where that maximum point definitely is. Nevertheless, in both four-class
and five-class classification, the improvement in accuracies is remarkable with increasing

dataset sizes.
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Figure 4.6: Accuracies of models trained with different dataset sizes.

4.4 Summary

The results for all experiments conducted in the scope of this thesis for fingerprint
classification are shown in Figure {.7] (for five-class classification) and Figure [4.8] (for
four-class classification) as accuracies calculated at every 5 epochs. It can be clearly seen
that as the dataset size increases, in all cases, model performances improve. In a similar
fashion, transfer Learning via fine-tuning achieves the highest results compared to other
techniques, and the feature extractor method fails in classification of fingerprints (because
the datasets are not similar). Additionally, for the networks that are not pretrained, training
dataset size is very important. They cannot learn the underlying structure of the data when
the number of training samples is too small. However, with the help of transfer learning,
the accuracies increase significantly in especially VGG models. According to the results,
ResNet model is able to extract more information with fewer data without overfitting. This
is mainly due to the identity block architecture. The VGG models generally require more
data. VGG19 model performs worst when the dataset is too small (such as 125), this may
be mainly because the architecture is deeper and more complex, and with less data it is
more prone to overfitting and hence cannot generalize well. However, when enough data

is supplied, it gives the best performance among all other setups. Basically, fine-tuning
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the network, kind of supplies more data by transferring knowledge to the networks, so

VGG19 reaches the maximum performance with fine-tuning.
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Figure 4.7: Accuracy results of all experiments with 5 classes. Test set accuracies are
calculated at every 5 epoch.

In fingerprint classification, confusion matrices are also acommon way to show the

system performances. The confusion matrices obtained by the best performing models for
five-class and four-class classification are shown in Table 4.2 and Table [4.3] respectively.

The aim of this analysis is mainly to be comparable with the literature. Best performing

models in both four-class and five-class classification are fine-tuned VGG19 networks
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Figure 4.8: Accuracy results of all experiments with 4 classes. Test set accuracies are
calculated at every 5 epoch.

trained with of 2000 samples. In the confusion matrices, the rows do not sum up to 400
because of the multiple labelled images mentioned in Section .1} The predictions for
the images that have two classes are assumed as correct if the predicted label is one of
the two labels. In five-class classification, the model shows the worst performance in the
Tented Arch class with 93.54% accuracy. It mostly predicts the Tented Arch class as the
Arch class as expected. For the Arch class, the only mistake that the model makes is
to confuse 5 images for the Tented Arch class. When the Tented Arch and Arch classes
are combined, this confusion is removed and the accuracy for both classes increases to
99.13%. Additionally, this model also seems to confuse Tented Arch and Loop classes
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Table 4.2: Confusion matrix for five-class classification of fine-tuned VGG19 model
trained with 2000 samples.

Predicted label
True Label 96.8% | A L R T | W | Accuracy
A 428 | O 0 5 0 98.84%
L 1 |383| O 9 1 97.20%
R 2 0O [380] 18 | O 95%
T 17 | 4 348 | 0 93.54%
W 1 2 1 0 | 397 99%

Table 4.3: Confusion matrix for four-class classification of fine-tuned VGG19 model
trained with 2000 samples.

Predicted label
True Label 97.95% | A L R | W | Accuracy
A 801 | 4 3 0 99.13%
L 11 |387| O 0 97.23%
R 17 1 [376| O 95.43%
A% 3 1 1 | 395 | 98.75%

in five-class classification. In four-class classification, merging the two classes obviously
shifts the confusion of Tented Arch and Loop classes to Arch and Loop classes. The main
reason for this problem might be the rotation of fingerprint images. The only difference
between Tented Arch and Loop classes is the delta locations, in other words, the curvature
directions. If the delta points are close to the center, the model may find it difficult to
differentiate between the Loops and Tented Arch classes.

The results show that the performances outperform many systems proposed in
the literature such as [21, 22| 23] and show that with minimal effort, training deep
learning systems can achieve very good results in fingerprint classification. In Table

4.4l comparison of the results between the proposed method and the literature is shown.

Table 4.4: Comparison between the accuracies of the proposed method and the literature
for fingerprint classification.

Method 5 class | 4 class

Tang et.al [23] - 95.1%
Listyalina and Mustiadi [24] | 94.7% | 96.2%
Michelsanti et.al. [25] - 95.05%
Proposed method 96.8% | 97.95%
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CHAPTER 5

MINUTIAE EXTRACTION

5.1 Dataset

Fingerprint Verification Challenge is a large international competition in the fin-
gerprint research area which was first held in 2000. The aim is to create a benchmark
for the fingerprint verification task and evaluate the recent advances in the academy and
industry. In this study, the database published for FVC2002 competition is used for our
minutiae extraction study. The FVC2002 database is composed of four different databases,
two of them are obtained using different optical sensors (DB1, DB2), one is obtained us-
ing a capacitive sensor (DB3), and the last one is synthetically generated (DB4). These
databases are split into two parts Set A and Set B, for parameter tuning and performance
evaluation, respectively. In this study,DB1-A database is used because the hand-labelled
ground-truth minutiae data is available for that database. The FVC2002 DB1-A database
contains 8 impressions of 100 fingers, in total 800 fingerprint images of size 388x374
pixel .

Training and test split is performed in accordance with the common approach
adopted in the machine learning community: 80% for training, 20% testing. While
splitting the dataset, it is made sure that training and test sets do not share the different
impressions of the same finger. In other words, the split process is based on fingers, not

impressions.

5.2 Model Training

In the minutiae extraction phase, generally, patch-based systems are adopted in the
literature. We develop a similar in this study. However, in many studies, there is a pre-
processing step prior to minutiae extraction. In traditional methods, the fingerprint image
is enhanced and in deep learning methods, the features that require domain knowledge is

used. (There may be more than one network to detect minutiae points and their precise
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locations.) The aim of this study is to eliminate these preliminary steps and to analyse if the
networks would still be able to detect minutiae points accurately with no pre-processing
using a single minutiae extractor network. Additionally, the effects of patch sizes, network
architectures, and simple data augmentation on the accuracies are also observed.

In order to do this, again a classification system is adopted. Minutiae and non-
minutia patches are extracted from fingerprint images for training and query patches from
test set are classified into classes as they are minutia or not.

The adopted methodology can be coarsely described as following:
1. FVC2002 DB1-A dataset is split into training and test sets.
2. Training and test patches are extracted from both sets.

3. Using extracted minutia patches, which contain minutiae, and non-minutiae patches,
which do not contain minutiae, classifier networks are trained. The performance
of the networks is measured on test patches to analyse the performance of the

patch-based binary classification networks.

4. After the training step is completed, the network is tested over full-sized test images
in a sliding window fashion in order to extract the true performance of the model in

terms of the minutia extraction problem.

Because there are two types of minutiae points, normally this problem requires a
three-class classifier with bifurcation, ridge ending, and non-minutiae classes. However,
the main aim of the minutiae extraction stage is to detect minutiae points regardless of
their type and many matching algorithms do not discriminate between the types of the
minutiae points. Thus, minutiae classes are merged into one class and classification is
performed with 2 classes which are "minutiae" and "non-minutiae".

In the patch extraction part, minutiae patches are extracted with the minutiae point
at the center of the patch. Equal number of non-minutiae patches are extracted randomly
in two different ways. First approach is the naive one, it is guaranteed that the patch
will not contain any minutia points at all. However, this approach might be problematic
because there are minutiae points which are very close to each other in fingerprints. When
the randomly taken patches are filtered not to contain any minutiae points, it may cause
loss of many informative patches, especially in larger patch sizes. In the second approach,
non-minutiae patches are extracted so that 10x10 square at the center of the image does not
contain any minutiae points. With this approach, it is intended to overcome the problem
mentioned in the first approach. However, this might also be problematic because the
network may extract irrelevant information from the minutiae points which are in the
non-minutiae patches. For both methods for non-minutiae patch extraction, the number
of flat regions that contain all white areas are also limited so that they do not suppress the

number of patches that contain ridge information. Additionally, two different patch sizes
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are adopted in order to analyse the effect of the patch sizes: 30x30 and 50x50. For both
patch sizes, the two patch extraction approaches explained above are adopted.

Because the patch-based binary classification problem is not very complex and
the patch sizes are small, a complex network architecture such as VGG is not required.
For this reason, two types of networks are used in this study: A custom small network

designed for this task and ResNet18. The custom network architecture is shown in Figure

5.1
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Figure 5.1: Custom network architecture used for minutiae extraction.

Additionally, the effect of simple data augmentation is observed by applying ran-
dom horizontal and vertical flip to the patches. Data augmentation introduces more
variability to the network, thus its logic is similar to introducing more data. However,
because it would take too long to train all the training setups with and without data aug-
mentation, unlike to fingerprint classification experiments, it is not applied for all model
training setups. The effect is observed in both patch sizes and patch extraction approaches
only with the custom network.

In total, 12 networks are trained for minutiae extraction experiments: 8 models
with data augmentation (2 Patch sizes x 2 Patch extraction approaches x 2 Model types)
and 4 models without data augmentation (2 Patch sizes x 2 Patch extraction approaches x
1 Model Type).

The predictions over the whole test images are made using a sliding window
approach. A window with the same size as the patches is slid over the test images pixel
by pixel and the class of each window is predicted by the model with a probability. With

this approach, all pixels are scanned if they contain minutiae or not.
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After the predictions are completed on whole test images, response images are
constructed using prediction probabilities. However as a drawback of pixel by pixel slid-
ing window approach, the network may detect too many spurious minutiae points because
there are too many pixels that are not minutiae. The response images are post-processed in
order to get more accurate results and get rid of spurious responses. As post-processing,
hard thresholds on the probabilities, morphological operations, and Non-maximum Sup-
pression(NMS) are applied to the response images. The thresholded response image is
firstly opened and then skeletonized. The aim of using these morphological operations
is to get rid of tiny response regions that result in spurious minutiae points and to merge
close responses that gather around genuine minutiae points and get a more confident re-
sponse. After applying morphological operations, NMS is applied to the image. NMS is
commonly used for post-processing in object detection. The aim is to reduce the number
of responses by applying intersection over union strategy. This strategy eliminates the
prediction boxes that have lower probabilities if the intersection of the boxes divided by
their union is larger than a threshold. After applying NMS, the remaining boxes are taken
as the resultant predictions of the system. The precise location of the minutiae points is
taken as the center of the prediction boxes. True positive(TP), false positive(FP) and false
negative(FN) predictions are calculated using the boxes in a way that minutiae points in
the remaining boxes are calculated as TP, boxes that do not contain minutiae points as FP,
and minutiae points that are not enclosed by any boxes as FN. Because the predictions
are made pixel by pixel, true negatives(TN) are not calculated since the amount of correct
non-minutiae predictions are huge. In these calculations, it is guaranteed that if there are
multiple minutiae points in prediction boxes, they are not counted in true positives more
than once.

The performances are evaluated in terms of precision, recall, and f-measure using
the calculated TP, FP, and FN values. Accuracy is not preferred since it is not a proper
measurement in the constructed methodology. Due to the pixel-wise sliding window
approach, predicted non-minutiae and minutiae points are highly imbalanced. Accuracy
would be positively affected by the number of true negative predictions thus using it might

be misleading.

5.3 Experimental Results

The experimental setup is constructed with 12 models, as mentioned previously:
50x50, and 30x30 patch sizes, two non-minutiae patch extraction approaches(no minutiae

at all, and no minutiae in 10x10 center window) with two model types(the custom network
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and ResNetl18) and applying data augmentation or not (only in the custom network).

Examples of patches used in training are shown in Figure[5.2]
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Figure 5.2: Patch examples of 30x30 and 50x50, respectively.

When the first approach (no minutiae at all) is adopted in 50x50 patch size, it is
observed that the patches are generally taken from the sides and areas in the fingerprint
images with very few minutiae points. More informative parts, i.e. core areas of the
images and the parts where the minutiae points are close and frequent, are not sampled.
The center core areas of the fingerprints carry important information because ridges are
more intense at those parts and the curvature changes are also high. Due to this fact,
more minutiae points are observed in those areas. Eliminating them in training might
cause the network to fail on those parts in testing because in the training step the network
does not learn that kind of information. In 50x50 patch size and the first approach shown
in [5.3(c), it can be seen that non-minutiae patches are not taken from the center of the
fingerprint image where many minutiae points are observed. However, by applying the
second approach (no minutiae in 10x10 center window), also shown in Figure [5.3(d),
this problem is alleviated. The samples are more uniformly distributed over the full-size
image. Additionally, even though the second approach is also helpful for a more uniform
patch extraction for 30x30 sized patches, the first approach does not seem to cause that
much problem as in 50x50 patch size (Figure[5.3|a,b)).
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(a) 30x30 patches with non-minutiae patches that do not contain any minutiae points(first
approach).

at

(b) 30x30 patches with non-minutiae patches that do not contain minutiae points at 10x10
center square(second approach).
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(c) 50x50 patches with non-minutiae patches that do not contain any minutiae points(first
approach).
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(d) 50x50 patches with non-minutiae patches that do not contain minutiae points at 10x10
center square(second approach).

Figure 5.3: Different patch sizes and patch extraction approaches applied on an example
image. Green squares indicate minutiae patches, red squares indicate non-
minutiae patches.

For post-processing, it is observed that applying only NMS is not sufficient to
eliminate spurious minutiae points. Applying morphological operations prior to NMS,
eliminates more spurious minutiae points and helps the system make more precise predic-
tions. The effect of applying morphological operations before NMS is shown in Figure
[5.4 with images where both operations are applied and only NMS applied to the thresh-
olded response image. It is observed that especially for low-quality images, even though
small values are used for the intersection over union threshold, the number of remaining
prediction boxes is still too many. Additionally, applying a hard threshold to the response
images before both morphological operations and NMS helps to reduce the number of
weak responses by preserving only very confident predictions for further processing. In all
training setups, same post-processing steps are applied in a way that: probability threshold
is 0.9, structuring element for opening is a disk with a radius of 2, NMS threshold for
intersection over union is 0.5 and the prediction boxes are 20x20 pixels. An example pre-
diction process in which the response image is post-processed using probability threshold,

morphological operations, and NMS is shown in Figure[5.5]
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Response Image Morphological Prediction
Operations

Figure 5.4: Effect of morphological operations. The first row shows morphological oper-
ations applied on the thresholded response image, the second row shows only
NMS applied on the same image.
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Figure 5.5: Prediction process on an example image. Purple dots show the ground truth
minutiae points.

Performances of the 8 models trained for different patch sizes, patch extraction
approaches, and model types are shown in Table[5.1] (In this table, data augmentation is
applied for all models .) The results show that the custom small network performs better in
all setups compared to the ResNet18 architecture. This supports the idea of not using very
deep architectures because the problem is not that complex and patch sizes are small. A
small network with 3 convolutional and 3 fully connected layers are capable of capturing
the underlying structure of the data better. Additionally, 30x30 patch sized models with the
first non-minutiae patch extraction approach(no minutiae at all) are observed to perform
better than all other setups with both custom and ResNetl8 architectures. They even
achieve the best results with 82.62% precision, 92.24% recall, and 87.18% F1 score with
the custom network architecture which is very close to [31] (Table [5.2). Because the
patch size is small, the strict discrimination between minutiae and non-minutiae patches
might have affected the network positively. When the 30x30 and 50x50 patches are
compared, it is observed that 50x50 patch size has remarkably worse performance than

30x30 patch size in both model architectures. The main reason for this might be extracting
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Table 5.1: Performances of the 8 models. C: custom network, RN18: ResNet18. 30x30
(1) and 50x50 (1) indicate the performance of the model which the patches
are extracted with the first approach(not minutiae points at all). 30x30 (2) and
50x50 (2) indicate the second patch extraction approach (no minutiae in 10x10
center window).

30x30 (1) 30x30 (2) 50x50 (1) 50x50 (2)

C |RN18| C |RN18| C |RN18| C | RNIS8
TP 5800 | 5912 | 5674 | 5718 | 6222 | 6131 | 5847 | 3461
FP 1220 | 2552 | 1565 | 2684 | 3299 | 5307 | 3288 | 1850
FN 488 376 620 576 488 579 398 | 2784

Precision (%) | 82.62 | 69.85 | 78.38 | 68.06 | 65.35 | 53.60 | 64.01 | 65.17
Recall (%) | 92.24 | 94.02 | 90.15 | 90.85 | 92.73 | 91.37 | 93.63 | 55.42
F1 Score (%) | 87.17 | 80.15 | 83.85 | 77.82 | 76.67 | 67.57 | 76.03 | 59.90

Table 5.2: Comparison between the proposed method and [31]].

Precision(%) | Recall(%) | F1 Score(%)
Zhou et al.[33] 87.9 87.9 87.9
Proposed method 82.62 92.24 87.17

insufficiently informative patches, especially in the first approach. However, it is seen that
applying the second approach is also not helpful to overcome this problem for both patch
sizes. The reason might be that the network gets confused when it sees minutiae points
in non-minutiae patches. However, the results indicate that 30x30 patch sized custom
network with the first patch extraction approach which strictly discriminates minutiae and
non-minutiae patches, performs sufficiently good for a patch-based approach which does
not include any preprocessing and feature extraction step.

Another observation is that, when the image qualities are low, patches might
contain misleading information. This is mainly caused by the fact that low-quality images
contain many disconnected ridge lines which are normally not minutiae. However, when
small patches are taken from the image, they may look like ridge endings. This confuses
the network during both training and testing. In training, the network sees non-minutiae
patches which are very similar to minutiae patches. At test time, the network detects
many spurious minutiae points on the disconnected ridges. In many patches, the network
actually makes sensible predictions because even humans may fail to classify those patches
correctly. Because all in all, the whole sight of the image is lost due to the patch-based
approach, and those patches look like minutiae points. Patch examples of some low-quality

images are shown in Figure[5.6]
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(b) 50x50 patches.

Figure 5.6: Low quality image and patch examples. Red squares on the left images
show extracted non-minutiae patches, green squares on the right images show
minutiae patches of the same fingerprint image.
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Due to the fact that low-quality images may cause problems, the performances of
the models are also analysed with respect to the image qualities using the custom network.
Precision, recall, and F1 Score metrics are shown in Table @ for each quality level: high,
medium, and low. It is observed that the models perform very well on high-quality images.
The results are very satisfactory in especially in high-quality 30x30 patches with the first
approach (88.09% precision, 93.90% recall, and 90.91% F1 Score). However, as expected,
in medium and low-quality images, the model performances decrease especially in terms
of precision. Although most of the genuine minutiae points are correctly detected, the
spurious minutiae points suppress the performance. These results show the importance of

preprocessing prior to training especially in low-quality images.

Table 5.3: Performance results of the custom network architectures according to the quality
of the images.

(a) 30x30 (1)
Precision(%) | Recall(%) | F1 Score(%)
High 88.09 93.90 90.91
Medium 80.63 92.38 86.10
Low 73.53 87.75 80.02
Overall 82.62 92.24 87.17
(b) 30x30 (2)
Precision(%) | Recall(%) | F1 Score(%)
High 86.62 93.90 90.11
Medium 80.22 90.35 84.98
Low 67.32 85.18 75.20
Overall 78.38 90.15 83.85
(c) 50x50 (1)
Precision(%) | Recall(%) | F1 Score(%)
High 77.16 92.88 84.30
Medium 63.72 93.51 75.79
Low 48.34 90.20 62.95
Overall 65.35 92.73 76.67
(d) 50x50 (2)
Precision(%) | Recall(%) | F1 Score(%)
High 72.44 94.40 81.97
Medium 63.99 93.30 7591
Low 50.55 92.57 65.39
Overall 64.01 93.63 76.03
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In addition to the above analysis, the effect of simple data augmentation is also
observed again using the custom network. The results with and without data augmentation
are shown in Table [5.4] By applying data augmentation to the same sized data, the
performances are boosted remarkably. In all cases, F1 Scores are boosted up to nearly
10%. This result can be interpreted also as the effect of dataset size because increasing
the dataset size and using data augmentation favours the same goal: introducing more
variability to the model in order to increase its generalization ability to perform well on

unseen data.

Table 5.4: Performances of the data augmentation applied and not applied models. 30:
30x30 and 50:50x50 patch sizes. (1) indicates the first non-minutiae patch
extraction approach. (2) indicates the second patch extraction approach.

No data augmentation Data augmentation
30(1) | 30(2) | 50(1) | 50(2) | 30(1) | 30(2) | 50(1) | 50(2)
TP 5474 | 5441 | 5853 | 5441 | 5800 | 5674 | 6222 | 5847
FP 1917 | 2469 | 5326 | 4777 | 1220 | 1565 | 3299 | 3288
FN 814 | 853 857 | 804 | 488 | 620 | 488 | 398

Precision(%) | 74.06 | 68.79 | 52.36 | 53.25 | 82.62 | 78.38 | 65.35 | 64.01
Recall(%) | 87.05 | 86.45 | 87.23 | 87.13 | 92.24 | 90.15 | 92.73 | 93.63
F1 Score(%) | 80.04 | 76.61 | 65.44 | 66.1 | 87.17 | 83.85 | 76.67 | 76.03

All in all, all the networks perform well in terms of recall metric which means
that they can all detect genuine minutiae points accurately(except for one model). Where
they differentiate is the number of spurious minutiae points that they detect. However, the
models show promising results although no preprocessing and quality enhancement steps
are applied. Increasing the amount of non-minutiae patches in training or an alternative
approach to the pixel by pixel sliding window approach in testing may help to decrease

the number of spurious minutiae points detected.

5.4 Summary

To sum up, in this study, a patch-based approach is adopted for minutiae extraction
and models are trained using different patch sizes. The main aim is again to eliminate
the preprocessing and feature extraction steps and trying to achieve accurate results using

deep learning. The trained networks are tested over whole test images for performance
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calculation in pixel by pixel sliding window fashion. By applying different post-processing
techniques, the performances of the minutiae extraction models are enhanced and systems
that perform very well on high-quality images and perform satisfactorily on medium and
low-quality images are obtained. However, the importance of preprocessing, in low-quality
images for getting highly accurate results in overall performance is also observed.

The results show that the performances of the systems are very high in terms of
recall, but need improvements in precision because they detect too many spurious minutiae
points. However, in general, without any preprocessing and feature extraction steps, the

models achieve promising and even state-of-the-art results.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this study, deep learning systems are developed for fingerprint classification and
minutiae extraction. The main aim is to analyse performances of deep learning systems
under different conditions. Deep learning reduces the need for manual work and domain
knowledge required before training fingerprint systems. Analysis are done on the effects
of different model architectures, dataset sizes, transfer learning setups and simple data
augmentation.

For fingerprint classification, different deep learning architectures are deployed to
analyse the effect of model complexity. Additionally, transfer learning approach is adopted
and different types of transfer learning are deployed to observe performance differences
for all models. The models are trained with different dataset sizes in order to observe the
impact of number of training samples. The results showed that deep learning is a good
method for fingerprint classification and the models can achieve state-of-the-art results. In
addition, even the dataset from which the knowledge is transferred is different, fine-tuned
networks help to increase model performances. The experiment for different dataset sizes
showed that when the dataset sizes increase the model performances also increase. As a
result of all experiments, the best performing model for fingerprint classification is showed
up as a fine-tuned VGG19 network with maximum number of training samples both for
four-class and five-class classification. However, the results also show that ResNet18
networks can also achieve good and even better results in smaller dataset sizes. The
performance results are shared in terms of accuracy and confusion matrices for fingerprint
classification. The highest accuracies for 5-class and 4-class models are observed to be
96.8% and 97.95%, respectively.

For minutiae extraction, a patch-based classification approach is adopted. For
different patch sizes, a small custom neural network architecture and ResNet18 are used
in model training. Additionally, different approaches are adopted for patch extraction.
The results are shared in terms of precision, recall and F1 Score for 2 different patch

sizes(30x30 and 50x50), two different non-minutiae patch extraction approaches(non-
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minutiae patch does not contain any minutiae points at all or the 10x10 square around the
center points does not contain any minutiae points) and two model architectures(custom,
simple architecture and ResNet18). The custom architecture is observed to perform better
on minutiae extraction problem compared to ResNet18. Additionally, because the dataset
has different quality images, the results are also discussed with respect to the qualities of
the fingerprint images using the custom network architecture with different patch sizes and
patch extraction approaches. The performances of the networks are very good in high-
quality images. However, when the quality decreases, the network makes more mistakes
by introducing spurious minutiae points. The best performance achieved by the models
is 82.62% precision, 92.24% recall, and 87.17% F1 Score. The results show that without
the need for binarizing or thinning, which is a common and essential step in many studies,
the models are able to detect minutiae points with acceptable and promising performance.

All in all, for both fingerprint classification and minutiae extraction, it is observed
that deep learning is a good methodology. Experiment results show that with the adoption
of deep learning, very satisfactory results can be achieved. These results are also promising

for applying deep learning for other steps of the fingerprint recognition pipeline.

6.2 Future Work

In minutiae extraction, extracting minutiae angles are also important for accurate
matching. In order to find the angles, another network can be developed or the developed
networks can be broadened to cover also the angle estimation. In the developed system,
the number of minutiae and non-minutiae patches are equal, however they are highly
imbalanced in whole images. The ratio of the patch data size can be changed to mimic
the imbalanced ratio. Additionally, for different quality images, different systems can be
trained with different patch sizes and then ensembled. For example, larger patch sizes can
be used for low-quality images to gain insight into the underlying ridge continuity.

Last but not least, this study shows that deep learning is useful and practical for
fingerprint analysis, thus it can be used in other stages of the fingerprint recognition

pipeline such as orientation extraction, or end to end minutiae detection and matching.
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