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ABSTRACT

GAUGED AND GEOMETRIC VECTOR FIELDS AT THE MeV
SCALE

In this thesis, we have studied gauged and geometric vector fields at the MeV
scale in two main parts. The basic framework of these two parts are given briefly as
follows.

In the first part (Chapter 2), we have built a family-nonuniversal U(1)" model
populated by an MeV-scale sector with a minimal new field content which explains the
recent anomalous beryllium decays. Excited beryllium has been observed to decay into
electron-positron pairs with a 6.8 o anomaly. The process is properly explained by a 17
MeV proto-phobic vector boson. In this thesis, we consider a family-nonuniversal U (1)’
that is populated by the U(1)" gauge boson Z’ and a scalar field S. The kinetic mixing
of Z' with the hypercharge gauge boson, as we show by a detailed analysis, generates the
observed beryllium anomaly. We show that beryllium anomaly can be explained by an
MeV-scale sector with a minimal new field content.

In the second part (Chapter 3), we have shown how a light vector particle can arise
from metric-affine gravity and how this particle fits the current data and constraints on the
dark matter. We show that, metric-affine gravity , which involves metric tensor and affine
connection as two independent fields, dynamically reduces, in its minimal form, to the
usual gravity plus a massive vector field. The vector Y, is neutral and long-living when
its mass range lies in the range 9.4 MeV < My < 28.4 MeV. Its scattering cross section
from nucleons, which is some 60 orders of magnitude below the current bounds, is too
small to facilitate direct detection of the dark matter. This property provides an expla-
nation for whys and hows of dark matter searches. We show that due to its geometrical
origin the Y}, couples only to fermions. This very feature of the Y}, makes it fundamentally
different than all the other vector dark matter candidates in the literature. The geometri-
cal dark matter we present is minimal and self-consistent not only theoretically but also

astrophysically in that its feebly interacting nature is all that is needed for its longevity.
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OZET

MeV OLCEGINDE AYARLI VE GEOMETRIK VEKTOR ALANLAR

Bu tezde MeV olgeginde ayarli ve geometrik vektor alanlart iki ana boliimde
calistik. Bu iki boliimiin ana hatlar1 kisaca asagidaki gibidir.

Ik kisimda (Béliim 2) , yakin zamandaki olagan dis1 berilyum bozunumlarini her
yonilyle aciklayan, minimum yeni alan iceren MeV 06lcegindeki bir sektor ile destek-
lemis bir model olusturduk. Uyarilmig berilyumun elektron-positron ¢iftine olagan dis1
bozunumu 6.8 o diizeyinde gozlemlendi. Bu proses 17-MeV’lik proto-phobic bir vektor
bozonla agiklanmigtir. Bu tezde, bir U(1)’ ayar bozonu Z’ ve U(1)" altinda yiiklii Stan-
dard Model (SM) ayar simetrisi altinda singlet olan bir S skaler alanindan olusan, fermion
ailelerinde evrensel olmayan bir U(1)" ele aliyoruz. SM kiral fermiyon ve skaler alalari
U(1)" alinda yiikliidiir ve biz bu yiiklerin anomaliden ari olmalarini sagliyoruz. Cabibbo-
Kobayashi-Maskawa (CKM) matrisi, .S tarafindan saglanan yiiksek boyutlu Yukawa etk-
ilesimleri ile dogru bir sekilde iiretilmektedir. Z’’1n birinci fermiyon jenerasyonuna olan
vektor ve aksiyal-vektor akim kuplajlari ¢esitli deneylerden gelen tiim kisitlamalari sagla-
maktadir. Z’ bozonu hiperyiik ayar bozonu ile kinetik karigim yapabilir ve S SM benz-
eri Higgs alanina dogrudan kuplaj yapabilir. Detayli bir analiz ile gostercegimiz iizere,
Z"1n hiperyiik ayar bozonu ile kinetik karisimi gozlemlenmis olan berilyum anomalisini
meydana getirir. Buldugumuz o ki, berilyum anomalisi minimal yeni alan igceren MeV
Olcegindeki bir sektor ile her yoniiyle aciklanabilir. Olusturdugumuz bu minimal model
cesitli olagan dis1t SM bozunumlarinin tartisilabilecegi bir yapidadir.

Ikinci kistmda (Boliim 3), hafif bir vektor parcacigin metrik-afin kiitlegekiminden
nasil elde edilebilecegini ve eldeki karanlik madde verilerine ve kisitlamalarina nasil fit
ettigini gosterdik. Diiz rotasyon egrilerinden yap1 olusumuna kadar cesitli olaylar i¢in
gerekli olan karanlik madde sadece notral ve uzun Omiirlii degil aym1 zamanda bilinen
maddeden oldukca izole gibi goriiniiyor. Burada gosteriyoruz ki metrik tensorii ve afin
baglantisini iki bagimsiz alan olarak iceren minimal formdaki metrik-afin kiitlecekimi di-
namik olarak bilinen kiitlecekim art1 kiitleli bir vektor alana indirgenir. Yalnizca quark,
lepton ve kiitlegekimle etkilesen Y), vektorii kiitle arali1 9.4 MeV < My < 28.4 MeV
aralifinda iken notral ve uzun omiirliidiir (evrenin yasindan daha uzun). Karanlik mad-

denin giintimiiz kistlamalarindan 60 mertebe daha asagida olan niikleonlardan sa¢ilma
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tesir kesiti dogrudan kesfedilmeye olanak saglamasi icin ¢ok fazla kiigiiktiir. Bu ozel-
lik karanlik madde arastirmalarinin nedenleri ve nasillarina bir agiklama saglamaktadir.
Gosteriyoruz ki geometrik dogasindan dolay: Y), skaler ve bozonlara kuplaj yapmamak-
tadir. Y, yalmzca fermiyonlara kuplaj yapmaktadir. Y, niin bu belirgin 6zelligi kendisini
litertiirdeki diger tiim vektor karanlik madde adaylarindan farkli kilar. Sundugumuz ge-
ometrik karanlik madde sadece teorik agidan minimal ve kendi icinde uyumlu degil ayni
zamanda astrofiziksel olarak da dyledir, dyle ki zay1f etkilesen dogasi uzun omiirlii olmasi

icin gerekli olan tek seydir.
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CHAPTER 1

INTRODUCTION

We have studied gauged and geometric vector fields at the MeV scale in this thesis.
The light, weakly-coupled new particles have been in consideration especially for the dark
matter conundrum. They have been considered as the mediators between the visible and
the dark sectors or the dark matter itself. The possible existence of these kinds of light
new particles have provided motivation to probe the new physics at the intensity frontier.

One of the low energy experiments, the Atomki experiment, has recently observed
anomolous decays of the beryllium which leads to existence of a new light particle. The
Atomki experiment has recently observed a 6.8 ¢ anomaly (Krasznahorkay et al. (2016))
(see also (Krasznahorkay, A. J. et al. (2017); Krasznahorkay, A.J. et al. (2017); Krasz-
nahorkay et al. (2018))) in excited ® Be nuclear decays, ®*Be” — ®Be ete™, in both the
distributions of the opening angles and the invariant masses of the electron-positron pairs
(IPC). The SM predicts the angular correlation between the emitted e*e™ pairs to drop
rapidly with the seperation angle. However, the experiment observed a bump with a high
significance at a large angle of ~ 140° which is consistent with creation and subsequent
decay of a new particle with an invariant mass of m.+.- = 16.7 £ 0.35(stat) £ 0.5(sys)
MeV. In (Krasznahorkay et al. (2019)), they observed also a peak in e~ e angular corre-
lations at 115° with 7.2 o in 21.01 MeV 0~ — 07 transition of * He and it is described
with a light particle with a mass of m,c* = 16.84 & 0.16(stat) & 0.20(sys). It is likely the
same particle with the one that is observed in (Krasznahorkay et al. (2016)).

In recent interpretations of the experiment (Feng et al. (2016, 2017)), possible par-
ticle physics interpretations of the ® Be anomalous decays are examined and concluded
that a proto-phobic, spin-1 boson with a mass of ~ 17 MeV fit the anomaly. They de-
termine the bounds on the vector current couplings of the new gauge boson to the first
generation of the SM fermions via combination of the relevant experimental data. They
propose two particle physics models, U(1)p and U(1)_; models, that are not initially
anomaly-free therefore they add a new matter content to cancel the anomalies. Another

recent interpretation (Gu and He (2017)) makes an extension of the SM with two gauge



groups, U(1)y: x U(1)x, and they add a new matter content to get rid of the Z — Z’
mass mixing. In (Delle Rose et al. (2017)), they present a U (1)’ extended 2-Higgs dou-
blet model for ® Be anomalous decays. In Ellwanger and Moretti (2016) a pseudoscalar
and in (Kozaczuk et al. (2017)) an axial vector candidates are presented. The extension
of the minimal supersymmetric standard model (MSSM) by an extra U(1)" is discussed
(Demir et al. (2005)) with U (1)’ charges of the fields to be family-dependent and satisfy
the anomaly-free conditions.

In this thesis, we extend the standard model (SM) with a family-nonuniversal
U(1)" with its associated light gauge boson Z’ and a singlet scalar S charged under U (1)’
and singlet under the SM gauge symmetry. In the model, there are two mixings with
the SM: the gauge kinetic mixing of the hypercharge gauge boson and the Z' boson, and
the quartic scalar mixing of the SM-like Higgs and the extra scalar. The masses of the
gauge bosons are generated dynamically through spontaneous symmetry breaking (SSB)
via vacuum expectation values (vev) of the scalar fields.

Our intention in the first part of this thesis is to construct the framework of an
anomaly-free, family-nonuniversal U (1)’ model that fits the Atomki signal with a minimal
field content. The model we present is able to explain the Atomki signal with a proto-
phobic gauge boson with a mass of ~ 17 MeV. We find the couplings of the Z' boson to
the first generation of the SM fermions via the family-nonuniversal charges of the chiral
fields that satisfy the anomaly-free conditions. We show that with these couplings we are
able to explain the Atomki signal. The vector and axial-vector current couplings of the
Z' boson to the first generation of fermions do satisfy all the bounds from the various
experimental data. The minimal model we construct forms a framework in which various
anomalous SM decays can be discussed.

In Chapter 3, we have studied a vector particle as a dark matter candidate. This
vector particle is originally different from all the known dark matter candidates, such
that it is generated from metric-affine gravity and due to the geometrical feutures of the
vector particle its interactions provide it to be a viable dark matter candidate that satisfy
all the constraints and bounds on dark matter. We introduced the notion of "geometric
dark matter". We have shown that it is a viable dark matter candidate when its mass range
is at the MeV scale. The geometry of the model provides it to be the true minimal dark

matter model as we will show in detail in Chapter 3.



Dark matter, needed for various phenomena ranging from flat rotation curves to
structure formation, seems to be not only neutral and long-living but also highly secluded
from the ordinary matter. Dark matter, which is roughly 5 times more than the bary-
onic matter (Aghanim et al. (2018)), has been under intense theoretical (Lin (2019); Feng
(2010)) and experimental (Schumann (2019); Liu et al. (2017)) studies since its first in-
ference (Rubin et al. (1976)). The particle dark matter which weighs around the weak
scale and which has electroweak-size couplings to the known particles (WIMP) has al-
ways been the core of the dark matter paradigm. It has been modeled in supersymmetry
(Baer et al. (2009); Peskin (2014)), extra dimensions (Arrenberg et al. (2013); Hooper
and Profumo (2007)), and various other contexts. It has, however, revealed itself neither
in direct searches (Schumann (2019); Liu et al. (2017)) nor in collider searches (Boveia
and Doglioni (2018)). This negative result possibly means that dark matter falls outside
the WIMP domain in that it interacts with known matter (proton, neutron and leptons, for
instance) exceedingly weakly.

It is known that among the well-motivated candidates for vector dark matter are
also hidden sector U(1) gauge bosons. They have been studied in a variety of scenarios as
hidden vector dark matter which interacts with the standard model fields through kinetic
mixing with the photon (Chen et al. (2009); Redondo and Postma (2009); Arias et al.
(2012); Ringwald (2012)) and through Higgs portal (Lebedev et al. (2012); Djouadi et al.
(2012); Farzan and Akbarieh (2012); Baek et al. (2013); Choi et al. (2013); Baek et al.
(2014); Ko et al. (2014); Chao (2015); Duch et al. (2015); DiFranzo et al. (2016); Belyaev
et al. (2017)). In view of these interactions, those vector dark matter models face stringent
constraints from their stability (their lifetimes must be longer than the age of the Universe
and their annihilation to the standard model particles must be consistent with experimental
data).

In an attempt to understand such a dark matter scheme, we explore geometrical
fields beyond the general relativity (GR). To this end, we exercise the metric-affine gravity
(MAG) (Vitagliano et al. (2011); Vitagliano (2014)) — an extension of GR in which the
metric g, and connection F,Aw are independent geometrodynamical variables. One reason
for this choice is that MAG is known to admit decomposition into scalars, vectors and
tensors (Karahan et al. (2013)). Another reason is that attempts to understand electroweak

stability via gravitational completion leads to MAG (Demir (2019)), showing that MAG



could be the gravity sector necessitated by a UV-safe quantum field theory. Our analysis
shows that MAG, in its simplest ghost-free form, decomposes into GR plus a massive
vector field Y),, which couples only to fermions (quarks and leptons) such that lighter
the Y), smaller the couplings. This geometric vector acquires a lifetime longer than that
of the Universe if its mass range is 9.4 MeV < My < 28.4 MeV and its scattering
cross section from nucleons is some 60 orders of magnitude below the current bounds
(Schumann (2019); Liu et al. (2017)). The Y, qualifies therefore a viable dark matter
candidate, well satisfying the existing bounds.

In the recent paper (Jiménez and Maldonado Torralba (2020)), a pseudoscalar dark
matter candidate is studied in MAG such that its derivative couplings to fermions arise
through its couplings to the axial vector part of the torsion. The properties of the scalar
depends on various model parameters due to the decomposition of the full connection.
It is claimed that the coherent oscillations of the pseudoscalar can give rise to an ultra
light dark matter of mass ~ 10722 V. In the present work, we study MAG in the Palatini
formalism (torsion is zero) in which decomposition of the full connection into the Levi-
Civita connection plus arank (1,2) tensor field leads to the massive vector Y),. Our torsion-
free minimal framework leads to the geometric dark matter Y, which depends on a single
parameter. The coupling of Y), to fermions follows from spin connection and is universal
with the same coupling parameter. The vector dark matter (geometric dark matter) Y, in
the present work is entirely different than the candidates (Chen et al. (2009); Redondo and
Postma (2009); Arias et al. (2012); Ringwald (2012)) and (Lebedev et al. (2012); Djouadi
et al. (2012); Farzan and Akbarieh (2012); Baek et al. (2013); Choi et al. (2013); Baek
et al. (2014); Ko et al. (2014); Chao (2015); Duch et al. (2015); DiFranzo et al. (2016);
Belyaev et al. (2017)) as well as the the approach in (Jiménez and Maldonado Torralba
(2020)). In particular, the geometric dark matter is not a U (1) gauge boson; it stems from
geometry of the spacetime. It does not couple to scalars and gauge bosons. It couples only
to fermions. These features stem from its geometrical origin, and make it fundamentally
different than the other known vector dark matter candidates. We show that due to the
geometric nature of our dark matter, there is no interaction with the photon (or any other
gauge boson). Therefore, we do not need to impose any selection rule (like the well-
known Z, symmetry) to prevent the decay of the Y), into photons. Moreover, we show

that the Y), is a geometric vector which is generated by the affine connection as a massive



vector. We do not therefore need to deal with interactions due to Higgs or Stueckelberg
mechanisms. It is easy to see that this keeps the present model minimal as there is no need
for additional scalars which would lead to some constraints due to annihilation of vector
dark matter into standard model particles through the Higgs portal or invisible decays of

the standard model Higgs.



CHAPTER 2

A FAMILY-NONUNIVERSAL U(1) MODEL FOR
EXCITED BERYLLIUM DECAYS

In this chapter, we construct a family-nonuniversal U(1)" model,with a minimal
field content, which is able to explain the Atomki signal. The model is populated with a
17 MeV Z' and a scalar S which is charged under U(1)’ and singlet under the SM gauge
symmetry. The minimality of the model is provided by the family-nonuniversality of the
SM charges under U (1)’. This feature makes it different from all the other models for the
beryllium decay as we will show in a detailed analysis. We present a model that explains
the Atomki signal with a proto-phobic 17 MeV Z’ with couplings to the first generation
of the SM fermions which satisfy all the experimental data.

Chapter 2 is organized as follows. We give the basic structure of the scalar and
gauge sectors of the SM in Section 2.1. In Section 2.2 we construct the framework of
the family-nonuniversal U (1)’ model. We summarize the experimental bounds in Section
2.3. We give the vector and axial-vector current couplings of the Z' boson to the first
generation of the SM fermions in Section 2.4. We show that the CKM matrix is properly
obtained in the model in Section 2.5. In Section 2.6, we consider the LHC bound on the
decays of the SM Higgs. We summarize the model and discuss future prospects in Section

2.7.

2.1. The Scalar and Gauge Sectors of the Standard Model

In the family-nonuniversal U (1)’ model, there is an extra scalar S and a Z’ gauge
boson hence in this section, we give briefly the scalar and gauge sectors of the SM. As
it will be analyzed in detail in the family-nonuniversal U (1)’ model, here we give basic
structures of the relevant SM gauge and scalar sectors.

The SM is based on a Ggyy = SU(3). x SU(2) x U(1)y gauge symmetry. The



SM scalar Lagrangian reads as

L3 = D HP + 2 H” — A H|* 2.1)

where the Higgs field is parametrized as

- 1 1+ 1 . 2.2)
\/é v+ h+ Z¢3

The covariant derivative in (2.1) is given by
Dy = 0+ +igst* G + igT'W,, 4+ ig'Qy By, (2.3)

where G,(a = 1,...,8) are the eight gluon fields, g, is the QCD coupling constant and
t* = % where \* are the Gell-Mann matrices; 7" = % ¢ is the third component of
isospin where o’ (i = 1,2, 3) are the Pauli spin matrices; W, (i = 1,2,3) and By, are the
SU(2)r, and the U(1)y gauge fields with the corresponding couplings constants g and ¢/,
respectively. The weak hypercharge is denoted by Qy .

For 12, A > 0, the Higgs potential is minimized at a nonvanishing vev

v=-FH (2.4)

VA

and the Higgs mass reads as
m; = 2 0% (2.5)
The SM gauge kinetic Lagrangian is given by
1 a apurv 1
Egauge = _ZLG/J,Z/G i Z

where the field strength tensors are given by

. ) 1
Wi, W™ — 2By, B, (2.6)

G, = 0,G5 — 0,G% + g, f*°GEGe,
W = W, — O,W, + ge " WIW],
B,, = d,B, —9,B, (2.7)

where f%¢ and €% are the structure constants.
The mass eigenstates of the gauge bosons are obtained by the following redefini-

tions of the fields

—— W, FiW;
o N
Z, cosfy —sin Oy w3

= a (2.8)
A, sinfy,  cos Oy B,



where 6y is the Weinberg angle. The masses of the gauge bosons read as

1
M2 i 2.2
W 4g v )
1
Mz = 1(92+gl2)v2,

My =0. (2.9)

We have given briefly the basic structure of the SM scalar and gauge sectors which
are relevant to the family-nonuniversal U(1)" model which in Section 2.2 we will study
its every sector in detail. The model involves a new Z’ gauge boson and an extra scalar

field S and there are mixings with the SM fields.
2.2. The Family-nonuniversal U (1) Model

In this section, we present the framework of the family-nonuniversal U (1) model.

We extend the SM gauge symmetry by an extra U(1)" symmetry
Gsy x U(1). (2.10)

The U(1)’ quantum number assignment to chiral fermion and scalar fields is given

in Tab. 2.1.

Table 2.1. The gauge quantum numbers of the fields in the family-nonuniversal U (1)’
model for 7 = 1, 2, 3 which refers to the three generations of matter.

SU®). | SU@2), [UQ)y |UQY)
Qi 3 2 1/6 | Qq
Ug, 3 1 2/3 | Qu,,
dp, 3 1 —1/3 | Qu,,
L; 1 2 ~1/2 | Qy,
cn 1 1 —1 | Qep,
H 1 2 1/2 | Qu
S 1 1 0 Qs




2.2.1. Mixing of Higgs Bosons

The Lagrangian of the scalars in the family-nonuniversal U(1)" model is given by

Litiggs = Litngs + Liiggs + Ll s; 2.11)
Lites = D HP + (2| H|* — N HI, (2.12)
Liiggs = DS + 12|81 = A|SI*, (2.13)
Ly = —rlHP|SP (2.14)

where the last equation contains a mixing term with a scalar mixing parameter ~. The
hatted fields are used since we will use the fields without hat in the mass-basis.

We parametrize the SM-like Higgs H and the extra scalar S, respectively as

- 1 o1+ i N 1
H —_ R , S = — Vs _|_ §+Z¢s (2.15)
V2 \ vt htios \/§< )

where ¢1, @2, @3 and ¢, are the Goldstone bosons; v and v, are vevs of the scalar fields
that are real and positive.

The scalar potential is bounded from below provided that
A>0, A>0 and 4\, —x*>0. (2.16)

For both nonvanishing values of vevs, the minimum of the potential occurs at

v 207 — Kl

2 A k2 &1
v 20l — R
2 4, — K2 (2.18)

These solutions are physical for v > 0 and v? > 0 which leads to Agu? > rku% /2
and A\u% > kp?/2 if (2.16) is satisfied. One can realize that for both nonvanishing vevs

there are solutions for

e 12, u2 > 0 for both signs of ,
o (u?>>0,pu2<0)or (u? <0,u?>0)foronly x < 0.

e There are not any solutions for p?, u? < 0.



The scalar mass Lagrangian is given by

s 1 /. 2202 Kow, h
scalar - _‘/SCCLZCLT = -3 (h/ §) (2'19)
2 Kvvs  2A\02 3
We go to the mass basis, (h, s), via transformation
h cosa  sina h
= (2.20)
8 —sina  cosa s
where the mixing angle is given by
KUV
tan20 = —————. 221
an<a A2 — A2 2:21)
The masses of the SM-like Higgs i and the extra scalar s are given by
mp, . = Ao + A2 £ /(A2 — A\02)? + k20202 (2.22)

where \v? > /\Svg. In the limit of no scalar mixing, x — 0, the masses of the scalars in

(2.22) reduce to

mio = 2\0%, mZ = 2\07. (2.23)

2.2.2. Mixing of Gauge Bosons

The U(1)" symmetry couples to the SM hypercharge symmetry U(1)y through the

kinetic mixing which leads to the most general gauge Lagrangian of U(1)y x U(1)

Loonge = LM 4 27 4 priz (2.24)
Lo = —%BWBW, (2.25)
Lz .= —%ZA’,WZ’W, (2.26)
o = —% sinx B, 2" (2.27)

where B, and ZAA’W are the field strength tensors of U(1)y and U(1)’, respectively. The

last equation contains a mixing term with a gauge kinetic mixing parameter Y.
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We diagonalize the field strength terms via a GL(2, R) transformation

A

VA 1—sin®x 0 Z!
= X K (2.28)
B, sin y 1 B,
where Z ;/t and BM are not the mass eigenstates yet.
In this basis, the general covariant derivative is given by
D, = 0, +igT'W! +ig'Qy B, +i(egQ +ng'Qy)Z, (2.29)

where T = %ai is the third component of isospin in which ¢ are the Pauli spin matrices
withi = 1,2,3; W, is the SU(2), gauge field; g and ¢’ are the SU(2);, and U(1)y gauge
couplings, respectively.

In (2.29), we have introduced

g= -2 p=_tany (2.30)
CoS Y

where g is the normalized U (1)’ gauge coupling

qu)
p—

g (2.31)

The mass squared matrix of the gauge bosons in the (BM, Z ') gauge-basis is given

by
mass 1 ® 3 ~!
‘Cgauge:§<BM WeH Z,u)
}lvzg/Q _ivzgg/ %g/UQ(% ‘f‘@f]QH)
—vad’ Ve —39v* (5! + €gQn)
110209 5 12209 P 2(9'n ~ 2 2.2 2~2
2005 +egQn) —39v° (% +egQu) v*(%! +edQn)® + Qvie’y
By
Wj’ . (2.32)
Z,
The mass eigenstates of the neutral gauge bosons are obtained via the transforma-
tion

P cosfy, —sinfy cosp  sinfy sinp A

n
W2 [ =] sinfy cosfycosp —cosbysing Z, (2.33)
Z, 0 sin ¢ coSs Z,
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where 6, is the Weinberg angle and and ¢ is the gauge mixing angle which is given by

2(g'n +2egQu)\/ 9* + g (234)
(9'n +2egQn)* + 4(%)*Q%€*F* — g* — g% '

The masses of the physical gauge bosons read as

tan 2¢p =

My =0,

1
M3 5 = 5{Mgo + Mo+ A% £ \/ (MZ, — M2, — A?)2 + 4M§,0A2} (2.35)

where

1
M%O = 1(92 + %),

2 2-9,9 9
M7 = e“g°Qgvy,

/
A= v(% +egQn). (2.36)
It is clear that if
!
(% + egQH> —0, (2.37)

the gauge mixing angle in (2.34) vanishes identically. This ensures zero mixing between

the Z and the Z bosons so that the Z' mass is set by the vev v, of the extra scalar
Mz, = 25 Q%v?. (2.38)

The condition in (2.37) can be relaxed. We know that the mixing of the Z and the

7' can be at most at the level of the Z mass

1, g
597 (% n egQH> < M2, (2.39)
which gives
/
(% n egQH> <1078 (2.40)

for a Z’ mass of Mz = 17 MeV which implies tan 2¢ < 1078. The current limit on the
Z — 7' mixing angle from the LEP data is about |¢| = 1073 — 10~ (Erler et al. (2009)).
It is thus clear that the Z — Z’ mixing angle in our family-nonuniversal U (1)’ model is

well below the limit from the electroweak precision data.
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2.2.3. Leptons and Quarks

The kinetic Lagrangian of the fermions is given by
chinete = iQn"DuQ; + itgiy Dyups + idgiv" Dyudpi + iLiy"* Dy L; + i€giv" Dyers
(2.41)
where ¢ = 1,2,3 is the family index, @); is for the left-handed quark doublets and

(ug;, dg;) are for the right-handed quark singlets

UL
Q = » URi, dRi7 (242)
dri

and L is for the left-handed lepton doublet and ep; is for the right-handed lepton singlet

L= , €R;.- (2.43)
€Li
The Yukawa Lagrangian is
Lyukews — Y, QHup — Y,QHdp — Y.LHeg + h.c. (2.44)

where (Y,,, Yy, Y,) are the Yukawa matrices and H = ia2]:I *. The gauge invariance con-

ditions from the diagonal elements of the Yukawa interactions in (2.44) are given by

QUR,L- = QQZ + QHu
QdRi = QQZ - QH7
Qep, = Qr, — Qu. (2.45)

It is clear that the conditions in (2.45) involve only the diagonal elements of the
Yukawa interactions. Actually, they are general enough to cover also conditions coming
from off-diagonal Yukawa entries. One will realize in Sec.(2.4) that the U(1)" charges
give rise to a specific mass matrix structure. The first two families of the up and down-
type quarks have the same U(1)" charges while the third family has a different charge,
which implies that (M,,)13, (My)s1, (My)2s, (M,)32 and (My)13,

(Mga)s1, (Mg)2s, (Mg)s2 all vanish. These zeroes leave no Yukawa interactions between

the first two families and the third family of the up and down-type quarks. There can arise
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thus no non-trivial gauge invariance conditions in these sectors. The general Yukawa
interactions between the first two families are trivial in that their U(1)" charges are uni-
versal. Moreover, leptons have family-universal U (1)’ charges. It therefore is clear that

(2.45) covers all cases.
2.3. Constraints from Experiments

It is argued that the new boson is likely a vector boson (Feng et al. (2016, 2017))
that couples to the SM fermion currents as
LOiZ g =iZ, Y eledl, J'=fy'fi (2.46)
i=u,d,e,Ve,...
where €V is the vector current couplings of the Z’ with superscript "o’ referring to ’vec-

b

tor’. It is showed that the vector current couplings of the Z’ to the SM fermions are
constrained by several experimental data (Feng et al. (2016, 2017)). The Atomki signal
(Krasznahorkay et al. (2016)), the neutral pion decay, IT° — X, by NA48/2 experiment
(Batley et al. (2015); Raggi (2016)), the SLAC E141 experiment (Riordan et al. (1987);
Bjorken et al. (2009); Essig et al. (2013)), constraint via the electron anomalous magnetic
dipole moment (g — 2). (Davoudiasl et al. (2014)) and the 7, — e scattering by TEXONO

(Deniz et al. (2010)) put constraints on the vector current couplings of the Z’ to the first

generation of the SM fermions

ler] S 1.2x107%,
le!| = (2 —10) x 1077,
|e¥] = (0.2 — 1.4) x 1072,

vy, ST x 1070 (2.47)

The constraints on the couplings of the Z’ from the neutral pion decay (Feng et al. (2016,
2017)) require it to be proto-phobic, i.e. it has a suppressed coupling to the proton com-

pared with the neutron

v

5
—0.067 < —i < 0.078 (2.48)

n

where the nucleon couplings are explicitly given by



v o_ v v
£, = 26, &4,

g = €, + 2ey. (2.49)

2.4. Z Couplings

In this section, we find the vector and axial-vector current couplings of the 7’
that are able to explain the Atomki anomaly. First, we show the vector and axial-vector
current couplings of the Z’ to the first generation of the fermions in terms of the model

parameters including the U (1)’ charges of the related chiral fermions in Tab. 2.2.

Table 2.2. The Z’ couplings to the first generation of fermions in terms of the model
parameters including the U (1)’ charges of the related chiral fermions.

E —€+ 5+COS@9<M 5 _—E‘I—COSQOg(M
€a=— 6 - ‘5 + cos pg <—QQ1+QdR1 €4 = ——e + cos g <—Ql Qde)
el = —3€— 0+ cospg <—L1+QER1> £l = —1e+ cospg <—Q : QeRl)
gy = 3€+ cos gogQLl €l = 3€+ Cos g (QL1>
In Tab. 2.2, we have introduced
1 cos ¢
e = ——| (cot by + tan by, ) sin p + n (2.50)
2 cos Oy,
§ = tan By sin o + —2F . 2.51)
cos 0,

The SM chiral fermion and scalar fields are charged under U(1)". We determine
the couplings by providing the charges to satisfy the anomaly-free and the gauge invari-
ance conditions. In order to avoid gauge and gravitational anomalies, the U(1)’ charges

of the chiral fields must satisfy the following anomaly-free conditions
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UL —SUB)=SUB): 0 = Y (2Qq, — Qua, — Qua,):

(2

U(L) = SU@2) - SU@2): 0 = (3Qq +Qr),

7

UOY U0y U0y s 0 = Y (500 — 5@, — 5 @ur, + 5Qb, — Qun),

7

U(1)" — graviton - graviton: 0 = Z(GQQi = 3Qup, — 3Qap, +2Q1, — Qep),

7

U —U1) Uy : 0 = > (@b +QF, —2Q5, —Q1, +Q2,),

(2

U —U1) =U@1): 0 = ) (6Q% —3Q5, —3Q1, +2Q7, — Q352

7

There are 16 charges and 6 anomaly-free conditions with additional conditions
from Yukawa interactions such that as we show in Tab. 2.3 one could express 12 charges

in terms of 4 free charges

QH? QQ27 QQg and QL?,‘

Table 2.3. The U(1)’ charge solutions of the chiral SM fermions by the gauge invari-
ance and the anomaly-free conditions.

Qo = Q@ — Qg, — Qo QuRl =2Qn — Qq, — Qqs Qde = —Qq, — Qqs
Qup, = Q. + Qu Qup, = Qq, — Qn
QUR3 — QQs + QH QdR3 - QQs - QH

Qr, = —Qnu Qep, = —2Qm
Qr, = —2Qu — Q4 Qep, = —3Qu — Qry
Q€R3 - QL3 - QH

We parametrize the vector current coupling of the Z’ boson to the proton as
el =2l +ey =0 (2.53)
where we introduce parameter ¢’ which obeys the bound
[0 < 1077, (2.54)
Then, by (2.53), we get

1 7
§=108— 3¢ + cos g (SQQ2 +3Qq, — §QH) (2.55)
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which together with the charge solutions in Tab. 2.3 lead to the couplings in Tab. 2.4 with
a vanishing gauge mixing angle, cos ¢ — 1. We apply the zero Z — Z’ mixing limit from

now on.

Table 2.4. The Z’ couplings after using the charge solutions in Tab. 2.3 and
parametrization of the vector current coupling of the Z’ boson to the proton
as e} = 2e} + ¢ = ¢’ with |¢'| < 107°. Consideration of other constraints
reduce the couplings in this table to the couplings in Tab. 2.5.

eh = g€+ 30+ 9(Qq, + Qo; — 2Qu) s = 2e—39Qu
ey =—ze— 30 — §(2Qq, +2Qq, — 2Qu) | 5 = —3¢+ 19Qu
52 = _5, _ §(3QQ2 + 3@@3 _ QQH) 5? = _%6 + %gQH
ey, = 3¢ — 39Qm s =1e—19Qn

The Lagrangian of the axial-vector current interaction of the Z’ boson is given by

LDiZ, Y elefA'yfi

i=u,d,e,Ve

(2.56)

where € is the axial-vector current coupling with superscript 'a’ referring to ’axial-
vector’.

We obtain the solutions of the free charges (), , Qq,, @m and )1, as follows.

e In the limit of minimal flavor violation there holds the relation €} = ¢}, by which

we obtain the solution

Qos = Qn — 2Qq,- (2.57)

e Next, we parametrize the vector current coupling of the Z’ boson to the neutron

er=¢el + 2 =€ (2.58)
where parameter ¢’ satisfies
|€'| = (2 —10) x 1073, (2.59)
Then, by (2.57) and (2.58), we obtain the solutions of ()¢, and Q¢,
1 /
QQz = 3_§ (6 T € ) )
1
Qs = 3% (e —2¢€). (2.60)
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e The axial-vector coupling to the electron vanishes, € = 0, identically via the zero
7 — 7' mixing condition in (2.37) as well as the the axial-vector current couplings to
the up and down quarks €, = € = 0; the vector and axial-vector current couplings
to the electron neutrino, €;, = ¢, = 0 with the following U(1)" charge of the

SM-like Higgs boson

Qu = (2.61)

NaYH NG Y

Using the solution of Qy in 2.61, we get n < 10~%, which well agrees with the

bounds.

e The axial-vector current coupling of the Z’ boson to the electron is constrained via
the neutral pion decay process, II° — eTe~ (Abouzaid et al. (2007)). The matrix
element of this process is proportional to %(c% —¢%) (Kahn et al. (2008)). However,
in our model the axial-vector current coupling of the Z’ to the electron vanishes,
e? = 0, as well as the axial-vector current couplings to the up and down quarks

ey, = €4 = 0. Therefore this rare process imposes no constraints on the axial-

vector current coupling of the Z’. The axial-vector current coupling of the Z’ to the
electron is constrained also by the atomic parity violation (Porsev et al. (2009)) and
the parity-violating Moller scattering (Anthony et al. (2005)) which constrain the

products ege; and egeg, respectively. It is obvious that due to vanishing &g, there

arise no constraints from these processes.

As a result of these, the vector and axial-vector current couplings of the Z’ to the

first generation of the SM fermions take the forms in Tab. 2.5.

Table 2.5. The Z’ couplings to the first generation of the SM fermions that fit the
Atomki signal with e}, = 2¢¥+¢) = 0/, [0'] 107 and €}, = £}, +2¢) = €,
|€'| ~ (2 — 10) x 10~3. The couplings of the Z  are proto-phobic, (2.48),
and satisfy the experimental constraints in (2.47).

v __ 2%/ 1 a __
5u—§6—§e el =0
=_1 2 a _
ey=—20+2¢ [e5=0
ag:e’—é’ e? =0
v a __
g, =0 e, =0




Table

In Tab. 2.5, we present the Z’ couplings to the first generation of the SM fermions
that fit the Atomki signal. The couplings of the Z  are proto-phobic, (2.48), and
| <1073

satisfy the experimental constraints in (2.47) with £) = 2¢) + ¢ =

ande! =¥ + 2y =¢, || = (2 —10) x 1073,

As one can realize, our model is proto-phobic in both vector and axial-vector cur-
rent interactions. The axial-vector current couplings to up and down quarks vanish
identically via the zero Z — Z’ mixing condition in (2.37) so the Z’ has purely vector

current interactions with up and down quarks.

The vector current coupling to the electron does not vanish as it should not for the
IPC and it is able take value satisfying the experimental constraints. The axial-
vector current coupling to the electron vanishes identically via the zero Z — Z’

mixing condition in (2.37).

The experimental constraints require the vector current coupling to the electron neu-
trino to be significantly below the vector current coupling to the neutron. The vector
and axial-vector current couplings to the electron neutrino vanish identically with
zero Z — Z' mixing condition in (2.37) and this obviously satisfies the experimental

data.

In order to have universal charges in the lepton sector, we assume
Qr, = —Qu- (2.62)

As aresult of these, the first two families of the quarks have the same U (1) charges
which are different from the third family charge and the leptons have universal

U(1)’ charges, as we show in Tab. 2.6.

2.6. The U(1)’ charges of the chiral SM fermions. One obtains the Z’ couplings
in Tab. 2.5 if these charge solutions are put into the couplings in Tab. 2.4.

Qo = QQz = 3:(c + ) | Qup, = Qug, = 5:(4¢ +¢) | Quyy, = Quy, = 3:(—26 +¢)
QQ& (E —2¢ ) QUR3 35,( E — € ) QdRS = _325(6 + 6/)
Q Ly QLQ QLg - g QeRl QeR2 Q€R3 = _%
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2.5. CKM Matrix

There are several texture-specific quark mass matrices in the literature (Rasin
(1998); Branco et al. (2000); Fritzsch and Xing (2000); Xing and Zhang (2004); Branco
et al. (2009); Gupta and Ahuja (2011, 2012)). The goal has always been avoiding the
large number of parameters in these mass matrices. Some elements of these matrices are
assumed to be zero and they are generally referred to as ’texture zero matrices’. These
kind of matrices provide a viable framework to obtain the flavor mixing matrix, the CKM
matrix, which is compatible with the current data (Patrignani et al. (2016)).

For definiteness, we focus here on the texture-specific quark mass matrices in

(Fritzsch and Xing (1997, 2000))

x x 0
M, 4= X X X (2.63)
0 x X

which are known to reproduce the CKM matrix. The viability of these mass matrices are
analyzed in (Ahuja (2016)) by showing the compatibility with the CKM matrix.

In our model the Higgs field leads to (M, 4)13 = 0, (M,.4)31 = 0 and (M, 4)23 =
0, (M., q)32 = 0. In order to match to (2.63), we need to induce matrix elements (M, ;)23 #
0 and (M, 4)s32 # 0. One way to do this is by higher-dimensional operators (Buchmuller
and Wyler (1986); Barger et al. (2003); Grzadkowski et al. (2010); Murdock et al. (2011)).
Then, as a minimal approach that fits to our U (1)’ set up, we introduce the Yukawa inter-
actions

g 523 o~ SG* 533/ IS 523 o
LN (K) Q2HtR+A33( AZ) <K) QoHbg + h.c. (2.64)

where \23 is the Yukawa coupling, A is the mass scale for flavor physics, 512351 and 533'
are parameters that will be determined below. From (2.64), we get the gauge invariance

conditions

~Qq, — Qu + Quy, +67.Qs =0, (2.65)

—Q@, + Qu + Qap, +07°.Qs =0

which lead to

E/

Qsg

63 =63 = (2.66)
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after using the solutions of the charges in Tab. 2.6. This method of generating the hierar-
chy can be extended to the other Yukawa entries (in terms of their 33 entries or few other
entries) (Buchmuller and Wyler (1986); Barger et al. (2003); Grzadkowski et al. (2010);
Murdock et al. (2011)).

The parameters 02% and 42 are positive integers so that we adopt Qs = % to obtain
628 = §23 = 1. This solution of Qg leads to v, ~ O(10) GeV for a 17 MeV Z’ boson.
The charge of the extra scalar S is Qg ~ O(10~2) for the coupling § ~ O(107"). If we
use the optimized values of the matrix elements of (1, ;)23 from (Ahuja (2016)), we find
that 05% ~ 2 for A ~ O(10) GeV and A2, = 1.

The solutions via (2.64) are not necessarily specific to the texture in (2.63). One
can consider different textures and generate the same CKM structure by modifications or
extensions of (2.64).

In the present model in the interaction basis the couplings of the Z’ to the SM
quarks are diagonal but nonuniversal. This nonuniversality gives rise to flavor changing
neutral currents (FCNCs). From B° — B° mixing there arise stringent constraints for these

FCNCs (Bedirevic et al. (2016); Kumar and London (2019))

LB <1076 (2.67)

R)

where €“(®) are the chiral couplings of the Z’ to the 57*b current.

In the present model the chiral couplings in the down quark sector are given by

94, = diag(gy, . 94,94, ); (2.68)
9ar = diag(9in, Gan> 9ip) (2.69)
where gj =g} =%,95 = g3, = —Z.If we introduce the CKM matrix, in the quark

mass eigenstate basis the chiral couplings become

6sLb = (Vexm9ay, VCTKM)23, (2.70)

el = (Vign9anVerar)2s. @2.71)
Then one obtains the following condition from both of the chiral couplings above

€| =2 x 107%. (2.72)
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2.6. LHC bound

In our family-nonuniversal U(1)" model, the SM-like Higgs boson is charged un-
der U(1)" which leads to decay of (h — Z Z') that should be sufficiently small such that
the branching fraction of the SM-like Higgs to the Z’ boson pairs has to be BR(h —
Z'Z") < 10% (Curtin et al. (2014); Lee and Sher (2013)).

The decay rate of this process is given by

1/2
3 4AM?2 m?2 mi
T(h— Z2'7) = 21 - —£ 1——»h h 2.73
( ) 327Tmh5 ( m32 ) ( 3MZ, + 12M3, @.73)

where we have introduced

M?2 M2,
¢ = 4| cosasin® yn*—Z — sina—% — ey, g — ¢ en’|. (2.74)
v Vg 2 cos Oy 2 cos Oy

In Fig.(2.6), we show the region where the partial decay width I'(h — Z'7’) is
less than 10% of the SM Higgs total decay width

I'(h—Z'Z")
BR(h~ 22 = tsr 1 o 77y S OV (2.75)

total

where I'2Y (h) = 4.07 x 1072 GeV (Andersen et al. (2013)).

The scalar mixing angle is sina ~ O(1073) and accordingly the scalar mixing
parameter is £ ~ O(1073) required for BR(h — Z'Z") < 10% for the SM Higgs boson
mass of m;, = 125.09 GeV (Patrignani et al. (2016)) and = 10~*. The scalar mixing
remains at the same order for different values of the kinetic mixing 7 = 107>, 107°,

The decay process of (h — ZZ') would also be relevant however, the (hZZ')

vertex factor, which is given by

/
hzz . —L0¢ ve(ﬂ + egQH> (2.76)
sin 20y 2

is proportional to the left-hand side of the zero Z — Z’ mixing condition in (2.37). There-

fore this vertex is zero and there arise no constraints from this decay.
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Figure 2.1. We show the region where the partial decay width I'(h — Z'Z’) is less
than 10% of the SM Higgs total decay width BR(h — Z'7Z') < 10%.
The Higgs mixing angle is sina ~ O(1073) for m;, = 125.09 GeV and
n = 10~*. The vertical red line is for the Z’ boson mass M, determined
via the experimental data.

2.7. Summary and Outlook

In Chapter 2, we have constructed the framework of a family-nonuniversal U(1)’
model, which is a minimal, anomaly-free extension of the SM that is able to explain the
6.8 o anomaly in ® Be nuclear decays at the Atomki pair spectrometer experiment.

One possible interpretation of the Atomki signal is a spin-1, proto-phobic gauge
boson with a mass of ~ 17 MeV. We present a family-nonuniversal U(1)" model with its
associated 7’ boson with a mass of ~ 17 MeV which fullfills all the experimental con-
straints on its vector and axial-vector current couplings to the first generation of fermions
that are necessary to explain the ® Be anomalous decays.

The previously proposed models have a large new field content. However, we have

a minimal field content with the Z’ boson and the extra scalar. Our family-nonuniversal
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U(1)" model is an anomaly-free extension of the SM with a minimum field content that
can explain the observed beryllium anomaly.

The CKM matrix is reproduced correctly by higher-dimensional Yukawa interac-
tions facilitated by S. The model provides new couplings to probe new physics at low
energies. It may provide framework for anomalous SM decays and forms a framework
in which various low-energy phenomena can be addressed. The low-energy phenomena
such as ss* — ff and Z'Z" — ff can be relevant for phenomenological as well as

astrophysical (dark matter) purposes.
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CHAPTER 3

GEOMETRIC DARK MATTER

A

pv

In this chapter, we exercise the MAG in which the metric g,,,, and connection I'
are independent geometrodynamical variables. We show that the MAG, in its minimal
form, decomposes into GR plus a massive vector field Y),, which couples only to fermions
(quarks and leptons) and gravity. It does not couple to scalars and gauge bosons. This
interaction feature of the Y), stems from the geometric nature of it and it is generated from
the affine connection as a massive vector. These very features of the Y, provide to keep the
model minimal. The model involves only one free parameter and the Y, feebly interacts
with the fermions. This interaction feature of the Y, is the only thing necessary for its
longetivity as a dark matter candidate. We show in detail that the Y}, qualifies a viable
dark matter candidate, well satisfying the existing bounds. We introduced the notion of
"geometric dark matter" and under all these aspects we have shown that this Y,, geometric
dark matter is the true dark matter model which differs from all the known dark matter
candidates.

In Chapter 3, Section 3.1 gives brief introduction of the metric and Palatini for-
mulations. Section 3.2 explains the physical necessity of affine connection, and Section
3.3 builds on it by structuring the most minimal ghost-free MAG. Section 3.4 quantizes
Y, in the flat metric limit. Section 3.5 shows that Y, possesses all the features required of

a dark matter particle. Section 3.6 concludes.

3.1. Notes on Metric and Palatini Formulations

In this section we give introductory notes on the metric and Palatini formulations
briefly as it will be detailed within the concept in the next section.

The GR is based on metric formulation (or second-order formalism). The metric
g, measures distances between points of the manifold and angles between vectors in
the tangent space. In pure metric gravity the connection is the Levi-Civita connection

with components ¢ Fﬁy and it defines parallel transport of tensor fields along a given curve
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in spacetime. It is characterised such that the connection is compatible with the metric
V9 = 0 and has no torsion ¢ Ffw =9 Ff,u. The curvature of the spacetime is determined

by the Riemann tensor given by

R, (°T) = 9,°T, — 0,°T, + 9T 910, — 9T 917 (3.1)

puov oW

and its dynamics is described by the principle of minimal action. Riemann and Ricci
tensors are directly given in terms of the metric tensor. As will be detailed in the next
section, the curvature tensor involves second derivatives of the metric tensor and it re-
quires adding an extrinsic curvature to cancel the surface terms (York (1972); Gibbons
and Hawking (1977)).

In the Palatini formulation (Palatini (1919); Einstein (1925); Deser (2006)) (or
first-order formalism) the metric tensor g,,, and the connection coefficients Ffw are a priori
independent geometrical variables. In this formalism the connection is not necessarily
the Levi-Civita connection, it is not a predetermined quantity; its form is determined
through the requirement of dynamics. Riemann and Ricci tensors do depend only on the
connection and the curvature tensor involves only first derivatives of the connection which
requires no extrinsic curvature. We will discuss the two formalisms in the next section
such that one will see clearly that the Palatini formalism is the right generalized form of

the GR to obtain the Einstein field equations.
3.2. Necessity of Affine Connection

The GR, whose geometry is based on the metric tensor g, and its Levi-Civita

connection

1
" = 59" (Do + Do = Op) (3:2)

is defined by the Einstein-Hilbert action
4 ME,
Slgl = [ d'a =51 Ru((T) (3

as a purely metrical theory of gravity. The problem is that this action is known not to lead

to the Einstein field equations. It needs be supplemented with exterior curvature (York
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(1972); Gibbons and Hawking (1977)) because the Ricci curvature of the Levi-Civita

connection

R, (°T) = 03T, — 8,°T,, + T0,9T), — 910, 9T (3.4)

pr

obtained from the Riemann tensor as R, (‘") = R}

" (7T), involves second derivatives

of the metric. The need to exterior curvature disrupts the action principle for GR.
The remedy, long known to be the Palatini formalism (Palatini (1919); Einstein
(1925); Deser (20006)), is to replace the Levi-Civita connection gFﬁy with a (symmetric)

affine connection F;}V = Fﬁu and restructure the Einstein-Hilbert action (3.3) accordingly

2
Slg.T) = [ dto 5> R (D) 35

>\ )\ . . .
to find that I';,, reduces to I';, dynamically because S [g, I'] can stay stationary against
variations in T}, only if the nonmetricity vanishes, that is, only if 'V,g,, = 0. This
ensures that the Palatini action (3.5) is the right framework for getting the Einstein field

equations.
3.3. Metric-Affine Gravity

The Palatini formalism, a signpost showing the way beyond the purely metrical
geometry of the GR, evolves into a dynamical theory if the affine connection Ff\w acquires
components beyond the Levi-Civita connection. In this context, spread of F;}V into the
curvature (Karahan et al. (2013)) and matter (Bauer and Demir (2008, 2011)) sectors, for
instance, leads to the MAG. The MAG is described by the action

Slg, T, F] :/d4x\/—_g{ ‘R

M2 -y
i SR (DR() + LT, F) } +AS

B QWRW@) -
(3.6)

in which R,,,(I") is the Ricci curvature obtained from (3.4) by replacing 9I" with I', £
is the Lagrangian of the matter fields f with I kinetics, and R,,,,(I") is the second Ricci

curvature
R, (T) = 8,I%, — 9,3, (3.7)

obtained from the Riemann tensor as R ,,,(I') = R?

A (D). It equals the antisymmetric part

of R,,, ('), and vanishes identically in the metrical geometry, R, (I") = 0.
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The AS in (3.6), containing two— and higher-derivative terms, has the structure

88 [g.T)= [t V=g {A (" RyulD)* + BRyu (DR(T) + CRyoaDR(D) + -}
(3.8)

in which the leading terms, weighted by dimensionless coefficients A, B, C, are of similar
size as the £ term in (3.6). These terms, excepting A, are, however, dangerous in that they
give ghosts in the metrical part. This is so because AS involves at least four derivatives
of the metric. (The £ term in (3.6) has no metrical contribution and remains always two-
derivative.) We will hereon drop B, C and all higher-order terms on the danger of ghosts.
The A term and terms containing higher powers of ¢*'R,,, (I') are known to lead collec-
tively to a scalar degree of freedom in excess of the GR (Sotiriou and Faraoni (2010)).
In principle, there is no harm in keeping them but we drop them as they do not have any
distinctive effect on the vector dark matter we shall construct. They can be included to
study vector dark matter in scalar-tensor theories (Quiros (2019)), and this can indeed be
an interesting route.

Now, we continue with (3.6) with AS completely dropped. The Palatini formalism

implies that MAG can always be analyzed via the decomposition
A _gpA A
F,ul/ - gruy + AMV (39)

where Al’)y = Aﬁu is a symmetric tensor field. Under (3.9), the two Ricci curvatures split

as

Ruw(T) = Ru(T) + VoA, — VAL, + A;Afw — AP AN

pr

Ruw(D) = 0,43, — 9,43, (3.10)
to put the MAG action in (3.6) (with AS dropped) into the form

M2
S[ga A? F} = /d4x \% _g{%gij,ﬂu(gr)

1
— ng“ag”ﬂ (8MAj\\V — ((LAj\\“) (E)aAzﬁ — QﬁAza)
2

M
+ S (A, — ALAYL) + L(g, T, A F) } 3.11)

where V,, is the covariant derivative with respect to the Levi-Civita connection (V g, =

0).
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In the action (3.11), the kinetic term, proportional to £, pertains only to the vector
field Aﬁu but the quadratic term, proportional to M#%,, involves all components of Afw.
In fact, it shrinks to a consistent vector field theory if the quadratic term reduces to mass

term of A?

\.» and this happens only if Aﬁy enjoys the decomposition

AN, = = (AL 8+ AL, — 397 AL g,,) (3.12)

ppv

DO | —

under which the action (3.11) takes the form

1 302
Slg,Y,F] = /d‘w_ { PZR( 9) = YY" = 4§”Y yr
_ \/_fy“fY 4 L(g,°T F)} (3.13)

where R(g) = ¢"'R,,,(9T) is the metrical curvature scalar, Y, = /& Aj\\u is a vector field
generated by the affine connection, and £ (g, 9T, F ) is part of the matter Lagrangian that
does not involve Y),. This action exhibits two crucial facts about the geometrical vector

Y .

e

1. First, it is obliged to be massive if gravity is to attract with the observed strength.
Indeed, the Newton’s constant (G = (87 M32,)~!) and the Y, mass (M3 = 2 le)
are both set by the Planck scale Mp;. This action represents a rather rare case that

Planck’s constant sets both the gravitational scale and a particle mass.

2. Second, it couples only to fermions f C f. And its couplings, originating from
the spin connection through the decomposition in (3.12), are necessarily flavor-
universal. It couples to the known (leptons and quarks in the SM) and any hypo-
thetical (say, the dark matter particle y) fermion in the same way, with the same

strength.

3.4. Quantization

The classical setup in (3.13) involves two distinct fields: The metric tensor g,
which leads to gravity as is the GR, and the geometrical vector Y,, which gives rise to
a fifth force that affects fermions universally. These two may well be quantized but,

given the difficulties with the quantization of gravity, it would be reasonable to keep g¢,..,
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classical yet let Y, be quantized. In the flat limit, for which g,, nears the flat metric
Nuw» quantum field theory is full force and effect so that Y),, along with the other fields
in £ (g,9T', F), changes to the field operator (see, for instance, Ramond (1981, 1989);
Peskin and Schroeder (1995))

3
N d?’_’ )
n — ,u —ipT A) el At
x) /\50/ 2 ) {a Yt (P, A +a' (g, \)e™ (P, Ne }
(3.14)

in which the operator a(p, A), with the commutator [a(p, \), a (', N)] = i6* (p — p') Sa,
annihilates a spin-1 boson of momentum , energy w(p) = (M2 + - p)'/?, polarization
direction \, and polarization sum Y7 _ e*(5, \)e”* (7, \) = n* — p“p . The Y),-quanta
can be converted into or created from any fermion f and its anti—fermlon f¢, as will be

analyzed in the next section.
3.5. Geometric Dark Matter

In this section we will study Y), to determine if it can qualify as dark matter. (The
vector dark matter, as an Abelian gauge field, has been studied in (Chen et al. (2015)).)
To this end, the crucial factor is its lifetime. The rate of Y}, into a fermion f and its

anti-particle f¢ decay is obtained from the following differential rate

’pl ’

1
dl' = N/ — < |M}* > A2

o 9 (3.15)

for the following amplitude

3 s S o
M = —i——=u(p))y"v(P2)eu(P1 + P2). (3.16)

2VE

In fact, as follows from (3.13) with (3.14), it decays into a fermion f and its anti-

particle f¢ with a rate

3 1 3

NS/ 3\2 4§mfc 8§mfc 2 emi<My NI (32

Yy I 1 1-— Mp ——— === | M
=5 (o) () () e i (5e)

(3.17)

where m; is the mass of the fermion and N/ is the number of its colors. Then, summing

over SM quarks (up and down) and leptons (electrons and neutrinos) its lifetime turns out
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to be

Ty

3/2
I S 7 / £3/2 3.18)
B I‘tot B 5 3 MPZ .

which is larger than the age of the Universe t;; = 13.8 x 10° years (Ade et al. (2016))
if £ > 1.1 x 10%°. On the other side, the decay rate is prevented to go imaginary if

&€ <1 x 10%. These two bounds lead to the allowed mass range
9.4 MeV < My < 28.4 MeV (3.19)

across which Y, lifetime ranges from 4.4 x 10'7 s to 1.2 x 10" s. This means that Y,
exists today to contribute to galactic dynamics and other phenomena (Rubin et al. (1976);

Schumann (2019); Liu et al. (2017)). Its relic density

—Tiort
Prelic = Pprimordial € ety (320)

ranges from pp,imordial /e (for My = 28.4 MeV) to near Pprimordial (for My = 9.4 MeV).
The question of if Y}, can be detected in direct searches is a crucial one. To see
this, it is necessary to compute rate of scattering from nucleons. The relevant diagrams

are depicted in Fig. 3.1 below.

¢ ——\WW Y, Yu Y
q
\ &
Y MVW—— ¢ q q

Figure 3.1. The Y,,g — Y),q scattering. The quark ¢ belongs to the nucleon.

The two diagrams in Fig. 3.1 result in the amplitude

9 o, K=y +my K+p+tmg -
M= i (k) <7 G i +7“(k+f)—2_mgv >u<k>eu<p Jeu ()

(3.21)

where 1/¢ in front follows from the Y), coupling to quark ¢ in (3.13). In the nonrelativistic

limit, Y, momenta become p = p’ = (My,0,0,0). Moreover, the quark momentum
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reduces to k = (E,, 0,0, 0) after neglecting its motion in the nucleon. The total amplitude

then takes the form

u(k") (7% = 4y Ju(k)er, (') ew (p) (3.22)

= —1

46 My
after imposing £, ~ m, < My in (3.21). As aresult, the spin-dependent scattering cross
section for a vector dark matter scattering off a proton (Chen et al. (2015)) becomes

1 m?
SD p 2
=—— 3.23
T My )2 02

where m,, is the proton mass and a,, is the effective spin-spin interaction of the dark matter

Y, and the proton

9
— p
“ = Jear > A (3.24)

q=u,d,s

where AP = 0.84, Al = —0.44 and A? = —0.03 (Cheng and Chiang (2012)). We plot
the spin-dependent cross section (3.23) in Fig. 3.2 in the allowed range (3.19) of My .

1.x107109 —

5.x 107 1%

sD 2
gp” [em7]

2.x 107708

1.x107 198 . . . e
0.010 0.015 0.020 0.025

My [GeV]

Figure 3.2. The spin-dependent Y),—proton cross section as a function of My .

Direct search experiments like COUPP (Behnke et al. (2012)), SIMPLE (Felizardo
et al. (2014)), XENON100 (Aprile et al. (2016)), PICO-2L (Amole et al. (2016)), PICO-
60 (Amole et al. (2017)), PandaX-II (Fu et al. (2017)), PICASSO (Behnke et al. (2017))
and LUX (Akerib et al. (2016)) have put stringent upper limits on the spin-dependent
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cross section for scattering of dark matter off the SM particles. They mainly exclude the
WIMPs. The most stringent limit is around o5” ~ O(10~*") cm?®. It is clear that the Y,,—
proton spin-dependent cross section given in Fig. 3.2 is at most O (10719) cm?, which is
too small to be measurable by any of the current experiments. The Fig. 3.2 can be taken
as the explanation of why dark matter has so far not been detected in direct searches.
It might, however, be measured in future experiments though it is hard to imagine what
future technology can provide access to such tiny cross section. One possibility, specu-
latively speaking, would be variants of the (laser, SQUID, etc) technology that led to the

detection of gravitational waves.

3.6. Conclusion

In this second part of the thesis, we have set forth a new dark matter candidate,
which seems to agree with all the existing bounds. In accordance with its signatures, it
reveals itself only gravitationally. Our candidate particle, a genuinely geometrical field
provided by the metric-affine gravity, is a viable dark matter candidate, and explains the
current conundrum by its exceedingly small scattering cross section from nucleons. It
can be difficult to detect it with today’s technology but future experiments (plausibly
extensions of gravitational wave detection technology) might reach the required accuracy.

We propose a fundamentally different vector dark matter candidate from all the
other vector dark matter candidates in the literature. We show that due to its geomet-
rical origin the geometric vector dark matter Y, does not couple to scalars and gauge
bosons. It couples only to fermions. It must be emphasized that there is no need to im-
pose any Z, symmetry to prevent the gauge kinetic interaction in the vector portal. Its
feebly interacting nature is all that is needed for its longevity. Morover, we should note
that since the Y}, is generated by the affine connection as a massive vector, we do not
need to deal with interactions due to Higgs or Stueckelberg mechanisms. This keeps the
present model minimal as there is no need for additional scalars conceptually. On the
basis of the above-mentioned basic features it is obvious that the geometric dark matter
Y, is the truly minimal model of dark matter.

The model can be extended in various ways. As already mentioned in the text, one

possibility is to include quadratic and higher-order terms in curvature tensor. This kind
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of terms, even after discarding the ghosty terms, can cause, among other things, the rank-
3 tensor to be fully dynamical. The theory is then a tensor theory involving dynamical
fields beyond Y),, where the excess degrees of freedom may contribute to dark energy and
inflation.

Before closing, it proves useful to emphasize that quantization of Y, is actually
quantization of the geometry. But, what is done here is a partial quantization in that metric
tensor is kept classical. This is certainly not the long-sought quantum gravity but it might
be a glimpse of the fact that what is to be quantized may not be the metric (measurement

toolbox) but the connection (the source of curvature and dark matter).
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CHAPTER 4

CONCLUDING REMARKS AND OUTLOOK

Here, we give a brief summary of the thesis as well as some future prospects that
may be relevant for a future study.

As for the astrophysical implications, it is worth to mention the Big Bang nu-
cleosynthesis (BBN). It is known that the BBN, which is based on the standard model
physics (Wagoner et al. (1967)) in which the spacetime is described by the GR, cosmol-
ogy is based on the ACDM model and the particle physics is based on the SM. The BBN
gives predictions of the abundances of the light elements D> He,* He and " Li which
depend only on one parameter namely the baryon-to-photon ratio = n,/n., (or equiv-
alently the baryon density 2,h? = wj). The baryon-to-photon ratio has been determined
to be n = 6.10 & 0.004 (or w, = 0.002225 + 0.00016) via measurements of the mi-
crowave background anisotropies by Planck (Ade et al. (2016)). The BBN takes place
from ~ 1 s to ~ 3 min after the Big Bang and roughly at the end of the three minutes the
abovementioned light elements were synthesized. The BBN-predicted abundances are in
good agreement with the observational data except the lithium abundance (Schramm and
Turner (1998); Steigman (2007); Iocco et al. (2009); Cyburt et al. (2016)). The BBN-
predicted lithium abundance is about a factor of 3 higher than the abundance determined
in low-metalicity halo stars. There is no solution to the problem from nuclear aspects
hence it is yet a possibility that new physics during or after the nucleosynthesis might
explain it. However, the BBN as a probe of the early universe puts stringent constraints
on physics beyond the SM (Sarkar (1996); Jedamzik and Pospelov (2009); Pospelov and
Pradler (2010); Fields (2011)). Morover, it is important to note that all the known forces;
strong, weak, electroweak and gravitational, are effective during the synthesis of the light
elements hence the precise determinations of light element abundances in the early Uni-
verse put constraints on the possible new physics in gravity and particle physics. There-
fore there may be some astrophysical implications of this picture for our work which is
out of scope of this thesis. However, it may be a future work study to analyze the effects

of such MeV-scale particles in the early Universe.
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In the first part (Chapter 2) of the thesis, we have constructed a family-nonuniversal
U(1)" model which explains the recent anomalous beryllium decays. The beryllium de-
cays can be explained by a neutral, proto-phobic gauge boson. It is exciting that the new
neutral gauge boson might refer to the fifth force. The model we construct is populated
with the 17 MeV Z’ and the scalar field S which is singlet under the SM and charged under
U(1)'. Itis worth to mention that the framework represents a minimal model with its mini-
mal field content which makes it different from all the other models in the literature for the
beryllium decays. This minimality is provided by the nonuniversality of the U (1)’ charges
of the SM chiral fermions that satisfy the anomaly-free conditions. It is shown that the
CKM matrix is reproduced correctly by higher-dimension Yukawa interactions facilitated
by the S. It is presented by a detailed analysis that the vector and axial-vector coupligs of
the Z' to the first generation of the fermions satisfy all the experimental constraints. The
S scalar couples directly to the SM-like Higgs; and the Z’ has a kinetic mixing with the
hypercharge gauge boson which generates the observed beryllium anomaly as we have
shown by a detailed analysis. We have constructed a family-nonuniversal U(1)" model,
with a minimal field content, and show that the beryllium anomaly can be explained by
an MeV-scale sector. Under all these aspects, one can see clearly that the model we have
constructed explains the beryllium anomalous decays properly and it differs from all the
other models.

In the second part (Chapter 3) of the thesis , we have introduced the notion of
"geometric dark matter". It is basically a light vector particle Y, that arises from the
MAG. In this set up, we have shown that the MAG dynamically reduces to the usual
gravity plus a massive vector field Y,. The Y, interacts with only quarks, leptons and
gravity due to the decomposition of the affine connection. It is neutral and long-living
when its mass range lies in the range 9.4 MeV < My < 28.4 MeV. As we have explained
in detail its longevity is already provided by its interaction nature and it is generated by
the affine conection as a massive vector. These very futures of the Y, keeps the present
model minimal, self-consistent and different from all the other dark matter models in the
literature. It is remarkable under all these features that the geometric dark matter Y), is
the minimal model of dark matter. Its spin-dependent scattering cross section in Fig. 3.2,
which corresponds to the diagrams in Fig. 3.1, is at most O (1071%) cm? which is too

small to be measurable by any of the current experiments. The most stringent bound
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is around 0P ~ O(107*") cm?®. This small scattering cross section of the Y, gives an
explanation of why dark matter has not been detected in direct search experiments yet. We
have shown that Y, is a viable dark matter candidate that satisfies all the experimental data
and constraints on the dark matter and it differs from all the other dark matter candidates.

We have studied vector fields at the MeV scale and after all it is clearly realized
that the physics at the low energy is the frontier worth to probe; as it seems the recent
experimental results as well as the geometric dark matter model that we have constructed

point the low energy physics. The new physics needed might be at low energies.
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