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and Assoc. Prof. Dr. Levent Selbuz for joining to the thesis watch seminars and making

fruitful disccusions. I am also thankful to Prof. Dr. İsmail Turan and Assoc. Prof. Dr.

Fatih Erman for joining the thesis defense seminar as committee members.

I would like to express my thanks to my friends and all the people who have

provided a nice environment in the department.

I would like to thank my family for always being by my side.



ABSTRACT

GAUGED AND GEOMETRIC VECTOR FIELDS AT THE MeV
SCALE

In this thesis, we have studied gauged and geometric vector fields at the MeV

scale in two main parts. The basic framework of these two parts are given briefly as

follows.

In the first part (Chapter 2), we have built a family-nonuniversal U(1)′ model

populated by an MeV-scale sector with a minimal new field content which explains the

recent anomalous beryllium decays. Excited beryllium has been observed to decay into

electron-positron pairs with a 6.8 σ anomaly. The process is properly explained by a 17

MeV proto-phobic vector boson. In this thesis, we consider a family-nonuniversal U(1)′

that is populated by the U(1)′ gauge boson Z ′ and a scalar field S. The kinetic mixing

of Z ′ with the hypercharge gauge boson, as we show by a detailed analysis, generates the

observed beryllium anomaly. We show that beryllium anomaly can be explained by an

MeV-scale sector with a minimal new field content.

In the second part (Chapter 3), we have shown how a light vector particle can arise

from metric-affine gravity and how this particle fits the current data and constraints on the

dark matter. We show that, metric-affine gravity , which involves metric tensor and affine

connection as two independent fields, dynamically reduces, in its minimal form, to the

usual gravity plus a massive vector field. The vector Yµ is neutral and long-living when

its mass range lies in the range 9.4 MeV < MY < 28.4 MeV. Its scattering cross section

from nucleons, which is some 60 orders of magnitude below the current bounds, is too

small to facilitate direct detection of the dark matter. This property provides an expla-

nation for whys and hows of dark matter searches. We show that due to its geometrical

origin the Yµ couples only to fermions. This very feature of the Yµ makes it fundamentally

different than all the other vector dark matter candidates in the literature. The geometri-

cal dark matter we present is minimal and self-consistent not only theoretically but also

astrophysically in that its feebly interacting nature is all that is needed for its longevity.
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ÖZET

MeV ÖLÇEĞİNDE AYARLI VE GEOMETRİK VEKTÖR ALANLAR

Bu tezde MeV ölçeğinde ayarlı ve geometrik vektör alanları iki ana bölümde

çalıştık. Bu iki bölümün ana hatları kısaca aşağıdaki gibidir.

İlk kısımda (Bölüm 2) , yakın zamandaki olağan dışı berilyum bozunumlarını her

yönüyle açıklayan, minimum yeni alan içeren MeV ölçeğindeki bir sektör ile destek-

lemiş bir model oluşturduk. Uyarılmış berilyumun elektron-positron çiftine olağan dışı

bozunumu 6.8 σ düzeyinde gözlemlendi. Bu proses 17-MeV’lik proto-phobic bir vektör

bozonla açıklanmıştır. Bu tezde, bir U(1)′ ayar bozonu Z ′ ve U(1)′ altında yüklü Stan-

dard Model (SM) ayar simetrisi altında singlet olan bir S skaler alanından oluşan, fermion

ailelerinde evrensel olmayan bir U(1)′ ele alıyoruz. SM kiral fermiyon ve skaler alaları

U(1)′ altında yüklüdür ve biz bu yüklerin anomaliden ari olmalarını sağlıyoruz. Cabibbo-

Kobayashi-Maskawa (CKM) matrisi, S tarafından sağlanan yüksek boyutlu Yukawa etk-

ileşimleri ile doğru bir şekilde üretilmektedir. Z ′’ın birinci fermiyon jenerasyonuna olan

vektör ve aksiyal-vektör akım kuplajları çeşitli deneylerden gelen tüm kısıtlamaları sağla-

maktadır. Z ′ bozonu hiperyük ayar bozonu ile kinetik karışım yapabilir ve S SM benz-

eri Higgs alanına doğrudan kuplaj yapabilir. Detaylı bir analiz ile gösterceğimiz üzere,

Z ′’ın hiperyük ayar bozonu ile kinetik karışımı gözlemlenmiş olan berilyum anomalisini

meydana getirir. Bulduğumuz o ki, berilyum anomalisi minimal yeni alan içeren MeV

ölçeğindeki bir sektör ile her yönüyle açıklanabilir. Oluşturduğumuz bu minimal model

çeşitli olağan dışı SM bozunumlarının tartışılabileceği bir yapıdadır.

İkinci kısımda (Bölüm 3), hafif bir vektör parçacığın metrik-afin kütleçekiminden

nasıl elde edilebileceğini ve eldeki karanlık madde verilerine ve kısıtlamalarına nasıl fit

ettiğini gösterdik. Düz rotasyon eğrilerinden yapı oluşumuna kadar çeşitli olaylar için

gerekli olan karanlık madde sadece nötral ve uzun ömürlü değil aynı zamanda bilinen

maddeden oldukça izole gibi görünüyor. Burada gösteriyoruz ki metrik tensörü ve afin

bağlantısını iki bağımsız alan olarak içeren minimal formdaki metrik-afin kütleçekimi di-

namik olarak bilinen kütleçekim artı kütleli bir vektör alana indirgenir. Yalnızca quark,

lepton ve kütleçekimle etkileşen Yµ vektörü kütle aralığı 9.4 MeV < MY < 28.4 MeV

aralığında iken nötral ve uzun ömürlüdür (evrenin yaşından daha uzun). Karanlık mad-

denin günümüz kıstlamalarından 60 mertebe daha aşağıda olan nükleonlardan saçılma
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tesir kesiti doğrudan keşfedilmeye olanak sağlaması için çok fazla küçüktür. Bu özel-

lik karanlık madde araştırmalarının nedenleri ve nasıllarına bir açıklama sağlamaktadır.

Gösteriyoruz ki geometrik doğasından dolayı Yµ skaler ve bozonlara kuplaj yapmamak-

tadır. Yµ yalnızca fermiyonlara kuplaj yapmaktadır. Yµ’nün bu belirgin özelliği kendisini

litertürdeki diğer tüm vektör karanlık madde adaylarından farklı kılar. Sunduğumuz ge-

ometrik karanlık madde sadece teorik açıdan minimal ve kendi içinde uyumlu değil aynı

zamanda astrofiziksel olarak da öyledir, öyle ki zayıf etkileşen doğası uzun ömürlü olması

için gerekli olan tek şeydir.
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CHAPTER 1

INTRODUCTION

We have studied gauged and geometric vector fields at the MeV scale in this thesis.

The light, weakly-coupled new particles have been in consideration especially for the dark

matter conundrum. They have been considered as the mediators between the visible and

the dark sectors or the dark matter itself. The possible existence of these kinds of light

new particles have provided motivation to probe the new physics at the intensity frontier.

One of the low energy experiments, the Atomki experiment, has recently observed

anomolous decays of the beryllium which leads to existence of a new light particle. The

Atomki experiment has recently observed a 6.8 σ anomaly (Krasznahorkay et al. (2016))

(see also (Krasznahorkay, A. J. et al. (2017); Krasznahorkay, A.J. et al. (2017); Krasz-

nahorkay et al. (2018))) in excited 8Be nuclear decays, 8Be
∗ → 8Be e+e−, in both the

distributions of the opening angles and the invariant masses of the electron-positron pairs

(IPC). The SM predicts the angular correlation between the emitted e+e− pairs to drop

rapidly with the seperation angle. However, the experiment observed a bump with a high

significance at a large angle of ' 140o which is consistent with creation and subsequent

decay of a new particle with an invariant mass of me+e− = 16.7 ± 0.35(stat) ± 0.5(sys)

MeV. In (Krasznahorkay et al. (2019)), they observed also a peak in e−e+ angular corre-

lations at 115o with 7.2 σ in 21.01 MeV 0− → 0+ transition of 4He and it is described

with a light particle with a mass of mxc
2 = 16.84± 0.16(stat)± 0.20(sys). It is likely the

same particle with the one that is observed in (Krasznahorkay et al. (2016)).

In recent interpretations of the experiment (Feng et al. (2016, 2017)), possible par-

ticle physics interpretations of the 8Be anomalous decays are examined and concluded

that a proto-phobic, spin-1 boson with a mass of ≈ 17 MeV fit the anomaly. They de-

termine the bounds on the vector current couplings of the new gauge boson to the first

generation of the SM fermions via combination of the relevant experimental data. They

propose two particle physics models, U(1)B and U(1)B−L models, that are not initially

anomaly-free therefore they add a new matter content to cancel the anomalies. Another

recent interpretation (Gu and He (2017)) makes an extension of the SM with two gauge
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groups, U(1)Y ′ × U(1)X , and they add a new matter content to get rid of the Z − Z ′

mass mixing. In (Delle Rose et al. (2017)), they present a U(1)′ extended 2-Higgs dou-

blet model for 8Be anomalous decays. In Ellwanger and Moretti (2016) a pseudoscalar

and in (Kozaczuk et al. (2017)) an axial vector candidates are presented. The extension

of the minimal supersymmetric standard model (MSSM) by an extra U(1)′ is discussed

(Demir et al. (2005)) with U(1)′ charges of the fields to be family-dependent and satisfy

the anomaly-free conditions.

In this thesis, we extend the standard model (SM) with a family-nonuniversal

U(1)′ with its associated light gauge boson Z ′ and a singlet scalar S charged under U(1)′

and singlet under the SM gauge symmetry. In the model, there are two mixings with

the SM: the gauge kinetic mixing of the hypercharge gauge boson and the Z ′ boson, and

the quartic scalar mixing of the SM-like Higgs and the extra scalar. The masses of the

gauge bosons are generated dynamically through spontaneous symmetry breaking (SSB)

via vacuum expectation values (vev) of the scalar fields.

Our intention in the first part of this thesis is to construct the framework of an

anomaly-free, family-nonuniversal U(1)′ model that fits the Atomki signal with a minimal

field content. The model we present is able to explain the Atomki signal with a proto-

phobic gauge boson with a mass of ≈ 17 MeV. We find the couplings of the Z ′ boson to

the first generation of the SM fermions via the family-nonuniversal charges of the chiral

fields that satisfy the anomaly-free conditions. We show that with these couplings we are

able to explain the Atomki signal. The vector and axial-vector current couplings of the

Z ′ boson to the first generation of fermions do satisfy all the bounds from the various

experimental data. The minimal model we construct forms a framework in which various

anomalous SM decays can be discussed.

In Chapter 3, we have studied a vector particle as a dark matter candidate. This

vector particle is originally different from all the known dark matter candidates, such

that it is generated from metric-affine gravity and due to the geometrical feutures of the

vector particle its interactions provide it to be a viable dark matter candidate that satisfy

all the constraints and bounds on dark matter. We introduced the notion of "geometric

dark matter". We have shown that it is a viable dark matter candidate when its mass range

is at the MeV scale. The geometry of the model provides it to be the true minimal dark

matter model as we will show in detail in Chapter 3.
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Dark matter, needed for various phenomena ranging from flat rotation curves to

structure formation, seems to be not only neutral and long-living but also highly secluded

from the ordinary matter. Dark matter, which is roughly 5 times more than the bary-

onic matter (Aghanim et al. (2018)), has been under intense theoretical (Lin (2019); Feng

(2010)) and experimental (Schumann (2019); Liu et al. (2017)) studies since its first in-

ference (Rubin et al. (1976)). The particle dark matter which weighs around the weak

scale and which has electroweak-size couplings to the known particles (WIMP) has al-

ways been the core of the dark matter paradigm. It has been modeled in supersymmetry

(Baer et al. (2009); Peskin (2014)), extra dimensions (Arrenberg et al. (2013); Hooper

and Profumo (2007)), and various other contexts. It has, however, revealed itself neither

in direct searches (Schumann (2019); Liu et al. (2017)) nor in collider searches (Boveia

and Doglioni (2018)). This negative result possibly means that dark matter falls outside

the WIMP domain in that it interacts with known matter (proton, neutron and leptons, for

instance) exceedingly weakly.

It is known that among the well-motivated candidates for vector dark matter are

also hidden sector U(1) gauge bosons. They have been studied in a variety of scenarios as

hidden vector dark matter which interacts with the standard model fields through kinetic

mixing with the photon (Chen et al. (2009); Redondo and Postma (2009); Arias et al.

(2012); Ringwald (2012)) and through Higgs portal (Lebedev et al. (2012); Djouadi et al.

(2012); Farzan and Akbarieh (2012); Baek et al. (2013); Choi et al. (2013); Baek et al.

(2014); Ko et al. (2014); Chao (2015); Duch et al. (2015); DiFranzo et al. (2016); Belyaev

et al. (2017)). In view of these interactions, those vector dark matter models face stringent

constraints from their stability (their lifetimes must be longer than the age of the Universe

and their annihilation to the standard model particles must be consistent with experimental

data).

In an attempt to understand such a dark matter scheme, we explore geometrical

fields beyond the general relativity (GR). To this end, we exercise the metric-affine gravity

(MAG) (Vitagliano et al. (2011); Vitagliano (2014)) – an extension of GR in which the

metric gµν and connection Γλµν are independent geometrodynamical variables. One reason

for this choice is that MAG is known to admit decomposition into scalars, vectors and

tensors (Karahan et al. (2013)). Another reason is that attempts to understand electroweak

stability via gravitational completion leads to MAG (Demir (2019)), showing that MAG
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could be the gravity sector necessitated by a UV-safe quantum field theory. Our analysis

shows that MAG, in its simplest ghost-free form, decomposes into GR plus a massive

vector field Yµ, which couples only to fermions (quarks and leptons) such that lighter

the Yµ smaller the couplings. This geometric vector acquires a lifetime longer than that

of the Universe if its mass range is 9.4 MeV < MY < 28.4 MeV and its scattering

cross section from nucleons is some 60 orders of magnitude below the current bounds

(Schumann (2019); Liu et al. (2017)). The Yµ qualifies therefore a viable dark matter

candidate, well satisfying the existing bounds.

In the recent paper (Jiménez and Maldonado Torralba (2020)), a pseudoscalar dark

matter candidate is studied in MAG such that its derivative couplings to fermions arise

through its couplings to the axial vector part of the torsion. The properties of the scalar

depends on various model parameters due to the decomposition of the full connection.

It is claimed that the coherent oscillations of the pseudoscalar can give rise to an ultra

light dark matter of mass ≈ 10−22 eV. In the present work, we study MAG in the Palatini

formalism (torsion is zero) in which decomposition of the full connection into the Levi-

Civita connection plus a rank (1,2) tensor field leads to the massive vector Yµ. Our torsion-

free minimal framework leads to the geometric dark matter Yµ which depends on a single

parameter. The coupling of Yµ to fermions follows from spin connection and is universal

with the same coupling parameter. The vector dark matter (geometric dark matter) Yµ in

the present work is entirely different than the candidates (Chen et al. (2009); Redondo and

Postma (2009); Arias et al. (2012); Ringwald (2012)) and (Lebedev et al. (2012); Djouadi

et al. (2012); Farzan and Akbarieh (2012); Baek et al. (2013); Choi et al. (2013); Baek

et al. (2014); Ko et al. (2014); Chao (2015); Duch et al. (2015); DiFranzo et al. (2016);

Belyaev et al. (2017)) as well as the the approach in (Jiménez and Maldonado Torralba

(2020)). In particular, the geometric dark matter is not a U(1) gauge boson; it stems from

geometry of the spacetime. It does not couple to scalars and gauge bosons. It couples only

to fermions. These features stem from its geometrical origin, and make it fundamentally

different than the other known vector dark matter candidates. We show that due to the

geometric nature of our dark matter, there is no interaction with the photon (or any other

gauge boson). Therefore, we do not need to impose any selection rule (like the well-

known Z2 symmetry) to prevent the decay of the Yµ into photons. Moreover, we show

that the Yµ is a geometric vector which is generated by the affine connection as a massive
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vector. We do not therefore need to deal with interactions due to Higgs or Stueckelberg

mechanisms. It is easy to see that this keeps the present model minimal as there is no need

for additional scalars which would lead to some constraints due to annihilation of vector

dark matter into standard model particles through the Higgs portal or invisible decays of

the standard model Higgs.
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CHAPTER 2

A FAMILY-NONUNIVERSAL U(1)′ MODEL FOR

EXCITED BERYLLIUM DECAYS

In this chapter, we construct a family-nonuniversal U(1)′ model,with a minimal

field content, which is able to explain the Atomki signal. The model is populated with a

17 MeV Z
′ and a scalar S which is charged under U(1)′ and singlet under the SM gauge

symmetry. The minimality of the model is provided by the family-nonuniversality of the

SM charges under U(1)′. This feature makes it different from all the other models for the

beryllium decay as we will show in a detailed analysis. We present a model that explains

the Atomki signal with a proto-phobic 17 MeV Z ′ with couplings to the first generation

of the SM fermions which satisfy all the experimental data.

Chapter 2 is organized as follows. We give the basic structure of the scalar and

gauge sectors of the SM in Section 2.1. In Section 2.2 we construct the framework of

the family-nonuniversal U(1)′ model. We summarize the experimental bounds in Section

2.3. We give the vector and axial-vector current couplings of the Z ′ boson to the first

generation of the SM fermions in Section 2.4. We show that the CKM matrix is properly

obtained in the model in Section 2.5. In Section 2.6, we consider the LHC bound on the

decays of the SM Higgs. We summarize the model and discuss future prospects in Section

2.7.

2.1. The Scalar and Gauge Sectors of the Standard Model

In the family-nonuniversal U(1)′ model, there is an extra scalar S and a Z ′ gauge

boson hence in this section, we give briefly the scalar and gauge sectors of the SM. As

it will be analyzed in detail in the family-nonuniversal U(1)′ model, here we give basic

structures of the relevant SM gauge and scalar sectors.

The SM is based on a GSM = SU(3)c × SU(2)L × U(1)Y gauge symmetry. The
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SM scalar Lagrangian reads as

LSMHiggs = |DµH|2 + µ2|H|2 − λ|H|4 (2.1)

where the Higgs field is parametrized as

H =
1√
2

 φ1 + iφ2

v + h+ iφ3

 . (2.2)

The covariant derivative in (2.1) is given by

Dµ = ∂µ + +igst
aGa

µ + igT iW i
µ + ig′QYBµ (2.3)

where Gµ(a = 1, ..., 8) are the eight gluon fields, gs is the QCD coupling constant and

ta = λa

2
where λa are the Gell-Mann matrices; T i = 1

2
σi is the third component of

isospin where σi (i = 1, 2, 3) are the Pauli spin matrices; W i
µ (i = 1, 2, 3) and Bµ are the

SU(2)L and the U(1)Y gauge fields with the corresponding couplings constants g and g′,

respectively. The weak hypercharge is denoted by QY .

For µ2, λ > 0, the Higgs potential is minimized at a nonvanishing vev

v =
µ√
λ

(2.4)

and the Higgs mass reads as

m2
h = 2λv2. (2.5)

The SM gauge kinetic Lagrangian is given by

Lgauge = −1

4
Ga
µνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν . (2.6)

where the field strength tensors are given by

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν ,

Wµν = ∂µW
i
ν − ∂νW i

µ + gεijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ (2.7)

where fabc and εijk are the structure constants.

The mass eigenstates of the gauge bosons are obtained by the following redefini-

tions of the fields

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, Zµ

Aµ

 =

 cos θW − sin θW

sin θW cos θW

 W 3
µ

Bµ

 (2.8)
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where θW is the Weinberg angle. The masses of the gauge bosons read as

M2
W =

1

4
g2v2,

M2
Z =

1

4
(g2 + g′2)v2,

MA = 0. (2.9)

We have given briefly the basic structure of the SM scalar and gauge sectors which

are relevant to the family-nonuniversal U(1)′ model which in Section 2.2 we will study

its every sector in detail. The model involves a new Z ′ gauge boson and an extra scalar

field S and there are mixings with the SM fields.

2.2. The Family-nonuniversal U(1)′ Model

In this section, we present the framework of the family-nonuniversal U(1)′ model.

We extend the SM gauge symmetry by an extra U(1)′ symmetry

GSM × U(1)′. (2.10)

The U(1)′ quantum number assignment to chiral fermion and scalar fields is given

in Tab. 2.1.

Table 2.1. The gauge quantum numbers of the fields in the family-nonuniversal U(1)′

model for i = 1, 2, 3 which refers to the three generations of matter.

SU(3)c SU(2)L U(1)Y U(1)′

Qi 3 2 1/6 QQi

uRi 3 1 2/3 QuRi

dRi 3 1 −1/3 QdRi

Li 1 2 −1/2 QLi

eRi 1 1 −1 QeRi

Ĥ 1 2 1/2 QH

Ŝ 1 1 0 QS
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2.2.1. Mixing of Higgs Bosons

The Lagrangian of the scalars in the family-nonuniversal U(1)′ model is given by

LHiggs = LSMHiggs + LSHiggs + LmixHiggs; (2.11)

LSMHiggs = |DµĤ|2 + µ2|Ĥ|2 − λ|Ĥ|4, (2.12)

LSHiggs = |DµŜ|2 + µ2
s|Ŝ|2 − λs|Ŝ|4, (2.13)

LmixHiggs = −κ|Ĥ|2|Ŝ|2 (2.14)

where the last equation contains a mixing term with a scalar mixing parameter κ. The

hatted fields are used since we will use the fields without hat in the mass-basis.

We parametrize the SM-like Higgs Ĥ and the extra scalar Ŝ, respectively as

Ĥ =
1√
2

 φ1 + iφ2

v + ĥ+ iφ3

 , Ŝ =
1√
2

(
vs + ŝ+ iφs

)
(2.15)

where φ1, φ2, φ3 and φs are the Goldstone bosons; v and vs are vevs of the scalar fields

that are real and positive.

The scalar potential is bounded from below provided that

λ > 0, λs > 0 and 4λλs − κ2 > 0. (2.16)

For both nonvanishing values of vevs, the minimum of the potential occurs at

v2

2
=

2λsµ
2 − κµ2

s

4λλs − κ2
, (2.17)

v2
s

2
=

2λµ2
s − κµ2

4λλs − κ2
. (2.18)

These solutions are physical for v2 > 0 and v2
s > 0 which leads to λSµ2 > κµ2

S/2

and λµ2
S > κµ2/2 if (2.16) is satisfied. One can realize that for both nonvanishing vevs

there are solutions for

• µ2, µ2
s > 0 for both signs of κ,

• (µ2 > 0, µ2
s < 0) or (µ2 < 0, µ2

s > 0) for only κ < 0.

• There are not any solutions for µ2, µ2
s < 0.
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The scalar mass Lagrangian is given by

Lmassscalar = −Vscalar = −1

2

(
ĥ ŝ

) 2λv2 κvvs

κvvs 2λsv
2
s

 ĥ

ŝ

 . (2.19)

We go to the mass basis, (h, s), via transformation ĥ

ŝ

 =

 cosα sinα

− sinα cosα

 h

s

 (2.20)

where the mixing angle is given by

tan 2α = − κvvs
λv2 − λsv2

s

. (2.21)

The masses of the SM-like Higgs h and the extra scalar s are given by

m2
h,s = λv2 + λsv

2
s ±

√
(λv2 − λsv2

s)
2 + κ2v2v2

s (2.22)

where λv2 > λsv
2
s . In the limit of no scalar mixing, κ → 0, the masses of the scalars in

(2.22) reduce to

m2
h0 = 2λv2, m2

s0 = 2λsv
2
s . (2.23)

2.2.2. Mixing of Gauge Bosons

The U(1)′ symmetry couples to the SM hypercharge symmetry U(1)Y through the

kinetic mixing which leads to the most general gauge Lagrangian of U(1)Y × U(1)′

Lgauge = LSMgauge + LZ
′

gauge + Lmixgauge; (2.24)

LSMgauge = −1

4
B̂µνB̂

µν , (2.25)

LZ′gauge = −1

4
Ẑ ′µνẐ

′µν , (2.26)

Lmixgauge = −1

2
sinχ B̂µνẐ

′µν (2.27)

where B̂µν and Ẑ ′µν are the field strength tensors of U(1)Y and U(1)′, respectively. The

last equation contains a mixing term with a gauge kinetic mixing parameter χ.
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We diagonalize the field strength terms via a GL(2, R) transformation Z̃ ′µ

B̃µ

 =

 √
1− sin2 χ 0

sinχ 1

 Ẑ ′µ

B̂µ

 (2.28)

where Z̃ ′µ and B̃µ are not the mass eigenstates yet.

In this basis, the general covariant derivative is given by

Dµ = ∂µ + igT iW i
µ + ig′QY B̃µ + i(eg̃Q′ + ηg′QY )Z̃ ′µ (2.29)

where T i = 1
2
σi is the third component of isospin in which σi are the Pauli spin matrices

with i = 1, 2, 3; Wµ is the SU(2)L gauge field; g and g′ are the SU(2)L and U(1)Y gauge

couplings, respectively.

In (2.29), we have introduced

g̃ ≡ ĝ

cosχ
, η ≡ − tanχ (2.30)

where ĝ is the normalized U(1)′ gauge coupling

ĝ ≡
gU(1)′

e
. (2.31)

The mass squared matrix of the gauge bosons in the (B̃µ, Z̃
′
µ) gauge-basis is given

by

Lmassgauge =
1

2

(
B̃µ W 3µ Z̃

′µ

)

.


1
4
v2g′2 −1

4
v2gg′ 1

2
g′v2(g

′η
2

+ eg̃QH)

−1
4
v2gg′ 1

4
v2g2 −1

2
gv2(g

′η
2

+ eg̃QH)

1
2
g′v2(g

′η
2

+ eg̃QH) −1
2
gv2(g

′η
2

+ eg̃QH) v2(g
′η
2

+ eg̃QH)2 +Q2
Sv

2
se

2g̃2



.


B̃µ

W 3
µ

Z̃ ′µ

 . (2.32)

The mass eigenstates of the neutral gauge bosons are obtained via the transforma-

tion 
B̃µ

W 3
µ

Z̃
′
µ

 =


cos θW − sin θW cosϕ sin θW sinϕ

sin θW cos θW cosϕ − cos θW sinϕ

0 sinϕ cosϕ




Aµ

Zµ

Z
′
µ

 (2.33)
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where θW is the Weinberg angle and and ϕ is the gauge mixing angle which is given by

tan 2ϕ =
2(g′η + 2eg̃QH)

√
g2 + g′2

(g′η + 2eg̃QH)2 + 4(vs
v

)2Q2
se

2g̃2 − g2 − g′2
. (2.34)

The masses of the physical gauge bosons read as

MA = 0,

M2
Z,Z′ =

1

2

{
M2

Z0 +M2
Z′0 + ∆2 ±

√
(M2

Z0 −M2
Z′0 −∆2)2 + 4M2

Z′0∆
2

}
(2.35)

where

M2
Z0 =

1

4
(g2 + g′2)v2,

M2
Z′0 = e2g̃2Q2

Sv
2
s ,

∆ = v(
g′η

2
+ eg̃QH). (2.36)

It is clear that if (g′η
2

+ eg̃QH

)
= 0, (2.37)

the gauge mixing angle in (2.34) vanishes identically. This ensures zero mixing between

the Z and the Z ′ bosons so that the Z ′ mass is set by the vev vs of the extra scalar

M2
Z′ = e2g̃2Q2

Sv
2
s . (2.38)

The condition in (2.37) can be relaxed. We know that the mixing of the Z and the

Z
′ can be at most at the level of the Z ′ mass

1

2
g′v2

(g′η
2

+ eg̃QH

)
.M2

Z′ (2.39)

which gives (g′η
2

+ eg̃QH

)
. 10−8 (2.40)

for a Z ′ mass of MZ′ = 17 MeV which implies tan 2ϕ . 10−8. The current limit on the

Z − Z ′ mixing angle from the LEP data is about |ϕ| = 10−3 − 10−4 (Erler et al. (2009)).

It is thus clear that the Z − Z ′ mixing angle in our family-nonuniversal U(1)′ model is

well below the limit from the electroweak precision data.
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2.2.3. Leptons and Quarks

The kinetic Lagrangian of the fermions is given by

Lkineticfermion = iQ̄iγ
µDµQi + iūRiγ

µDµuRi + id̄Riγ
µDµdRi + iL̄iγ

µDµLi + iēRiγ
µDµeRi

(2.41)

where i = 1, 2, 3 is the family index, Qi is for the left-handed quark doublets and

(uRi, dRi) are for the right-handed quark singlets

Q =

 uLi

dLi

 , uRi, dRi, (2.42)

and L is for the left-handed lepton doublet and eRi is for the right-handed lepton singlet

L =

 νLi

eLi

 , eRi. (2.43)

The Yukawa Lagrangian is

LY ukawafermion = −YuQ̄ ˜̂
HuR − YdQ̄ĤdR − YeL̄ĤeR + h.c. (2.44)

where (Yu, Yd, Ye) are the Yukawa matrices and ˜̂
H = iσ2Ĥ

∗. The gauge invariance con-

ditions from the diagonal elements of the Yukawa interactions in (2.44) are given by

QuRi
= QQi +QH ,

QdRi
= QQi −QH ,

QeRi
= QLi −QH . (2.45)

It is clear that the conditions in (2.45) involve only the diagonal elements of the

Yukawa interactions. Actually, they are general enough to cover also conditions coming

from off-diagonal Yukawa entries. One will realize in Sec.(2.4) that the U(1)′ charges

give rise to a specific mass matrix structure. The first two families of the up and down-

type quarks have the same U(1)′ charges while the third family has a different charge,

which implies that (Mu)13, (Mu)31, (Mu)23, (Mu)32 and (Md)13,

(Md)31, (Md)23, (Md)32 all vanish. These zeroes leave no Yukawa interactions between

the first two families and the third family of the up and down-type quarks. There can arise
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thus no non-trivial gauge invariance conditions in these sectors. The general Yukawa

interactions between the first two families are trivial in that their U(1)′ charges are uni-

versal. Moreover, leptons have family-universal U(1)′ charges. It therefore is clear that

(2.45) covers all cases.

2.3. Constraints from Experiments

It is argued that the new boson is likely a vector boson (Feng et al. (2016, 2017))

that couples to the SM fermion currents as

L ⊃ iZ ′µJ
µ = iZ ′µ

∑
i=u,d,e,νe,...

εvi eJ
µ
i , J

µ
i = f̄iγ

µfi (2.46)

where εv is the vector current couplings of the Z ′ with superscript ’v’ referring to ’vec-

tor’. It is showed that the vector current couplings of the Z ′ to the SM fermions are

constrained by several experimental data (Feng et al. (2016, 2017)). The Atomki signal

(Krasznahorkay et al. (2016)), the neutral pion decay, Π0 → Xγ, by NA48/2 experiment

(Batley et al. (2015); Raggi (2016)), the SLAC E141 experiment (Riordan et al. (1987);

Bjorken et al. (2009); Essig et al. (2013)), constraint via the electron anomalous magnetic

dipole moment (g− 2)e (Davoudiasl et al. (2014)) and the ν̄e− e scattering by TEXONO

(Deniz et al. (2010)) put constraints on the vector current couplings of the Z ′ to the first

generation of the SM fermions

|εvp| . 1.2× 10−3,

|εvn| = (2− 10)× 10−3,

|εve| = (0.2− 1.4)× 10−3,√
εveε

v
νe . 7× 10−5. (2.47)

The constraints on the couplings of the Z ′ from the neutral pion decay (Feng et al. (2016,

2017)) require it to be proto-phobic, i.e. it has a suppressed coupling to the proton com-

pared with the neutron

−0.067 <
εvp
εvn

< 0.078 (2.48)

where the nucleon couplings are explicitly given by
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εvp = 2εvu + εvd,

εvn = εvu + 2εvd. (2.49)

2.4. Z
′ Couplings

In this section, we find the vector and axial-vector current couplings of the Z ′

that are able to explain the Atomki anomaly. First, we show the vector and axial-vector

current couplings of the Z ′ to the first generation of the fermions in terms of the model

parameters including the U(1)′ charges of the related chiral fermions in Tab. 2.2.

Table 2.2. The Z ′ couplings to the first generation of fermions in terms of the model
parameters including the U(1)′ charges of the related chiral fermions.

εvu = 1
2
ε+ 2

3
δ + cosϕg̃

(
QQ1

+QuR1

2

)
εau = 1

2
ε+ cosϕg̃

(
QQ1

−QuR1

2

)
εvd = −1

2
ε− 1

3
δ + cosϕg̃

(
QQ1

+QdR1

2

)
εad = −1

2
ε+ cosϕg̃

(
QQ1

−QdR1

2

)
εve = −1

2
ε− δ + cosϕg̃

(
QL1

+QeR1

2

)
εae = −1

2
ε+ cosϕg̃

(
QL1
−QeR1

2

)
εvνe = 1

2
ε+ cosϕg̃

QL1

2
εaνe = 1

2
ε+ cosϕg̃

(
QL1

2

)
In Tab. 2.2, we have introduced

ε ≡ −1

2

(
(cot θW + tan θW ) sinϕ+

cosϕ

cos θW
η

)
, (2.50)

δ ≡ tan θW sinϕ+
cosϕ

cos θW
η. (2.51)

The SM chiral fermion and scalar fields are charged under U(1)′. We determine

the couplings by providing the charges to satisfy the anomaly-free and the gauge invari-

ance conditions. In order to avoid gauge and gravitational anomalies, the U(1)′ charges

of the chiral fields must satisfy the following anomaly-free conditions
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U(1)′ − SU(3)− SU(3) : 0 =
∑
i

(2QQi −QuRi
−QdRi

),

U(1)′ − SU(2)− SU(2) : 0 =
∑
i

(3QQi +QLi),

U(1)′ − U(1)Y − U(1)Y : 0 =
∑
i

(
1

6
QQi −

1

3
QdRi

− 4

3
QuRi

+
1

2
QLi −QeRi

),

U(1)′ − graviton - graviton : 0 =
∑
i

(6QQi − 3QuRi
− 3QdRi

+ 2QLi −QeRi
),

U(1)′ − U(1)′ − U(1)Y : 0 =
∑
i

(Q2
Qi

+Q2
dRi
− 2Q2

uRi
−Q2

Li
+Q2

eRi
),

U(1)′ − U(1)′ − U(1)′ : 0 =
∑
i

(6Q3
Qi
− 3Q3

dRi
− 3Q3

uRi
+ 2Q3

Li
−Q3

eRi
).(2.52)

There are 16 charges and 6 anomaly-free conditions with additional conditions

from Yukawa interactions such that as we show in Tab. 2.3 one could express 12 charges

in terms of 4 free charges

QH , QQ2 , QQ3 and QL3 .

Table 2.3. The U(1)′ charge solutions of the chiral SM fermions by the gauge invari-
ance and the anomaly-free conditions.

QQ1 = QH −QQ2 −QQ3 QuR1
= 2QH −QQ2 −QQ3 QdR1

= −QQ2 −QQ3

QuR2
= QQ2 +QH QdR2

= QQ2 −QH

QuR3
= QQ3 +QH QdR3

= QQ3 −QH

QL1 = −QH QeR1
= −2QH

QL2 = −2QH −QL3 QeR2
= −3QH −QL3

QeR3
= QL3 −QH

We parametrize the vector current coupling of the Z ′ boson to the proton as

εvp = 2εvu + εvd = δ′ (2.53)

where we introduce parameter δ′ which obeys the bound

|δ′| . 10−3. (2.54)

Then, by (2.53), we get

δ = δ′ − 1

2
ε+ cosϕg̃

(
3QQ2 + 3QQ3 −

7

2
QH

)
(2.55)
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which together with the charge solutions in Tab. 2.3 lead to the couplings in Tab. 2.4 with

a vanishing gauge mixing angle, cosϕ→ 1. We apply the zero Z −Z ′ mixing limit from

now on.

Table 2.4. The Z ′ couplings after using the charge solutions in Tab. 2.3 and
parametrization of the vector current coupling of the Z ′ boson to the proton
as εvp = 2εvu + εvd ≡ δ′ with |δ′| . 10−3. Consideration of other constraints
reduce the couplings in this table to the couplings in Tab. 2.5.

εvu = 1
6
ε+ 2

3
δ′ + g̃(QQ2 +QQ3 − 5

6
QH) εau = 1

2
ε− 1

2
g̃QH

εvd = −1
3
ε− 1

3
δ′ − g̃(2QQ2 + 2QQ3 − 5

3
QH) εad = −1

2
ε+ 1

2
g̃QH

εve = −δ′ − g̃(3QQ2 + 3QQ3 − 2QH) εae = −1
2
ε+ 1

2
g̃QH

εvνe = 1
2
ε− 1

2
g̃QH εaνe = 1

2
ε− 1

2
g̃QH

The Lagrangian of the axial-vector current interaction of the Z ′ boson is given by

L ⊃ iZ
′

µ

∑
i=u,d,e,νe

εai ef̄iγ
µγ5fi (2.56)

where εa is the axial-vector current coupling with superscript ’a’ referring to ’axial-

vector’.

We obtain the solutions of the free charges QQ2 , QQ3 , QH and QL3 as follows.

• In the limit of minimal flavor violation there holds the relation εvs = εvd by which

we obtain the solution

QQ3 = QH − 2QQ2 . (2.57)

• Next, we parametrize the vector current coupling of the Z ′ boson to the neutron

εvn = εvu + 2εvd ≡ ε′ (2.58)

where parameter ε′ satisfies

|ε′| ≈ (2− 10)× 10−3. (2.59)

Then, by (2.57) and (2.58), we obtain the solutions of QQ2 and QQ3

QQ2 =
1

3g̃
(ε+ ε′) ,

QQ3 =
1

3g̃
(ε− 2ε′) . (2.60)
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• The axial-vector coupling to the electron vanishes, εae = 0, identically via the zero

Z−Z ′ mixing condition in (2.37) as well as the the axial-vector current couplings to

the up and down quarks εau = εad = 0; the vector and axial-vector current couplings

to the electron neutrino, εvνe = εaνe = 0 with the following U(1)′ charge of the

SM-like Higgs boson

QH =
ε

g̃
. (2.61)

Using the solution of QH in 2.61, we get η . 10−4, which well agrees with the

bounds.

• The axial-vector current coupling of the Z ′ boson to the electron is constrained via

the neutral pion decay process, Π0 → e+e− (Abouzaid et al. (2007)). The matrix

element of this process is proportional to εae(ε
a
u−εad) (Kahn et al. (2008)). However,

in our model the axial-vector current coupling of the Z ′ to the electron vanishes,

εae = 0, as well as the axial-vector current couplings to the up and down quarks

εau = εad = 0. Therefore this rare process imposes no constraints on the axial-

vector current coupling of the Z ′. The axial-vector current coupling of the Z ′ to the

electron is constrained also by the atomic parity violation (Porsev et al. (2009)) and

the parity-violating Moller scattering (Anthony et al. (2005)) which constrain the

products εaeε
v
q and εaeε

v
e , respectively. It is obvious that due to vanishing εae , there

arise no constraints from these processes.

As a result of these, the vector and axial-vector current couplings of the Z ′ to the

first generation of the SM fermions take the forms in Tab. 2.5.

Table 2.5. The Z ′ couplings to the first generation of the SM fermions that fit the
Atomki signal with εvp = 2εvu+εvd ≡ δ′, |δ′| . 10−3 and εvn = εvu+2εvd ≡ ε′,
|ε′| ≈ (2 − 10) × 10−3. The couplings of the Z ′ are proto-phobic, (2.48),
and satisfy the experimental constraints in (2.47).

εvu = 2
3
δ′ − 1

3
ε′ εau = 0

εvd = −1
3
δ′ + 2

3
ε′ εad = 0

εve = ε′ − δ′ εae = 0
εvνe = 0 εaνe = 0
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• In Tab. 2.5, we present the Z ′ couplings to the first generation of the SM fermions

that fit the Atomki signal. The couplings of the Z ′ are proto-phobic, (2.48), and

satisfy the experimental constraints in (2.47) with εvp = 2εvu + εvd ≡ δ′, |δ′| . 10−3

and εvn = εvu + 2εvd ≡ ε′, |ε′| ≈ (2− 10)× 10−3.

• As one can realize, our model is proto-phobic in both vector and axial-vector cur-

rent interactions. The axial-vector current couplings to up and down quarks vanish

identically via the zero Z−Z ′ mixing condition in (2.37) so the Z ′ has purely vector

current interactions with up and down quarks.

• The vector current coupling to the electron does not vanish as it should not for the

IPC and it is able take value satisfying the experimental constraints. The axial-

vector current coupling to the electron vanishes identically via the zero Z − Z ′

mixing condition in (2.37).

• The experimental constraints require the vector current coupling to the electron neu-

trino to be significantly below the vector current coupling to the neutron. The vector

and axial-vector current couplings to the electron neutrino vanish identically with

zero Z−Z ′ mixing condition in (2.37) and this obviously satisfies the experimental

data.

• In order to have universal charges in the lepton sector, we assume

QL3 = −QH . (2.62)

As a result of these, the first two families of the quarks have the same U(1)′ charges

which are different from the third family charge and the leptons have universal

U(1)′ charges, as we show in Tab. 2.6.

Table 2.6. The U(1)′ charges of the chiral SM fermions. One obtains the Z ′ couplings
in Tab. 2.5 if these charge solutions are put into the couplings in Tab. 2.4.

QQ1 = QQ2 = 1
3g̃

(ε+ ε′) QuR1
= QuR2

= 1
3g̃

(4ε+ ε′) QdR1
= QdR2

= 1
3g̃

(−2ε+ ε′)

QQ3 = 1
3g̃

(ε− 2ε′) QuR3
= 2

3g̃
(2ε− ε′) QdR3

= − 2
3g̃

(ε+ ε′)

QL1 = QL2 = QL3 = − ε
g̃

QeR1
= QeR2

= QeR3
= −2ε

g̃
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2.5. CKM Matrix

There are several texture-specific quark mass matrices in the literature (Rasin

(1998); Branco et al. (2000); Fritzsch and Xing (2000); Xing and Zhang (2004); Branco

et al. (2009); Gupta and Ahuja (2011, 2012)). The goal has always been avoiding the

large number of parameters in these mass matrices. Some elements of these matrices are

assumed to be zero and they are generally referred to as ’texture zero matrices’. These

kind of matrices provide a viable framework to obtain the flavor mixing matrix, the CKM

matrix, which is compatible with the current data (Patrignani et al. (2016)).

For definiteness, we focus here on the texture-specific quark mass matrices in

(Fritzsch and Xing (1997, 2000))

Mu,d =


× × 0

× × ×

0 × ×

 (2.63)

which are known to reproduce the CKM matrix. The viability of these mass matrices are

analyzed in (Ahuja (2016)) by showing the compatibility with the CKM matrix.

In our model the Higgs field leads to (Mu,d)13 = 0, (Mu,d)31 = 0 and (Mu,d)23 =

0, (Mu,d)32 = 0. In order to match to (2.63), we need to induce matrix elements (Mu,d)23 6=

0 and (Mu,d)32 6= 0. One way to do this is by higher-dimensional operators (Buchmuller

and Wyler (1986); Barger et al. (2003); Grzadkowski et al. (2010); Murdock et al. (2011)).

Then, as a minimal approach that fits to our U(1)′ set up, we introduce the Yukawa inter-

actions

L ⊃ λ23
u

(
S

Λ

)δ23u
Q̄2

˜̂
HtR + λ23

u

(
SS∗

Λ2

)δ23′d (
S

Λ

)δ23d
Q̄2ĤbR + h.c. (2.64)

where λ23
u is the Yukawa coupling, Λ is the mass scale for flavor physics, δ23

u,d and δ23′

d

are parameters that will be determined below. From (2.64), we get the gauge invariance

conditions

−QQ2 −QH +QuR3
+ δ23

u .QS = 0, (2.65)

−QQ2 +QH +QdR3
+ δ23

d .QS = 0

which lead to

δ23
u = δ23

d =
ε′

QS g̃
(2.66)
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after using the solutions of the charges in Tab. 2.6. This method of generating the hierar-

chy can be extended to the other Yukawa entries (in terms of their 33 entries or few other

entries) (Buchmuller and Wyler (1986); Barger et al. (2003); Grzadkowski et al. (2010);

Murdock et al. (2011)).

The parameters δ23
u and δ23

d are positive integers so that we adoptQS = ε′

g̃
to obtain

δ23
u = δ23

d = 1. This solution of QS leads to vs ≈ O(10) GeV for a 17 MeV Z ′ boson.

The charge of the extra scalar Ŝ is QS ≈ O(10−2) for the coupling g̃ ≈ O(10−1). If we

use the optimized values of the matrix elements of (Mu,d)23 from (Ahuja (2016)), we find

that δ23′

d ≈ 2 for Λ ≈ O(10) GeV and λ23
u,d = 1.

The solutions via (2.64) are not necessarily specific to the texture in (2.63). One

can consider different textures and generate the same CKM structure by modifications or

extensions of (2.64).

In the present model in the interaction basis the couplings of the Z ′ to the SM

quarks are diagonal but nonuniversal. This nonuniversality gives rise to flavor changing

neutral currents (FCNCs). FromB0−B̄0 mixing there arise stringent constraints for these

FCNCs (Bećirević et al. (2016); Kumar and London (2019))

|εL(R)| . 10−6 (2.67)

where εL(R) are the chiral couplings of the Z ′ to the s̄γµb current.

In the present model the chiral couplings in the down quark sector are given by

gdL ≡ diag(g1
dL
, g1
dL
, g3
dL

), (2.68)

gdR ≡ diag(g1
dR
, g1
dR
, g3
dR

) (2.69)

where g1
dL

= g1
dR

= ε′

3
, g3
dL

= g3
dR

= −2ε′

3
. If we introduce the CKM matrix, in the quark

mass eigenstate basis the chiral couplings become

εLsb ≡ (VCKMgdLV
†
CKM)23, (2.70)

εRsb ≡ (V †CKMgdRVCKM)23. (2.71)

Then one obtains the following condition from both of the chiral couplings above

|ε′| = 2× 10−3. (2.72)
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2.6. LHC bound

In our family-nonuniversal U(1)′ model, the SM-like Higgs boson is charged un-

der U(1)′ which leads to decay of (h→ Z
′
Z
′) that should be sufficiently small such that

the branching fraction of the SM-like Higgs to the Z ′ boson pairs has to be BR(h →

Z
′
Z
′
) . 10% (Curtin et al. (2014); Lee and Sher (2013)).

The decay rate of this process is given by

Γ(h→ Z ′Z ′) =
3

32πmh

ξ2

(
1− 4M2

Z′

m2
h

)1/2(
1− m2

h

3M2
Z′

+
m4
h

12M4
Z′

)
(2.73)

where we have introduced

ξ ≡ 4

[
cosα sin2 θWη

2M
2
Z

v
− sinα

M2
Z′

vs
− cosα

2 cos θW
v

(
g′ − e

2 cos θW

)
eη2

]
. (2.74)

In Fig.(2.6), we show the region where the partial decay width Γ(h → Z ′Z ′) is

less than 10% of the SM Higgs total decay width

BR(h→ Z ′Z ′) =
Γ(h→ Z ′Z ′)

ΓSMtotal(h) + Γ(h→ Z ′Z ′)
. 0.10 (2.75)

where ΓSMtotal(h) = 4.07× 10−3 GeV (Andersen et al. (2013)).

The scalar mixing angle is sinα ∼ O(10−3) and accordingly the scalar mixing

parameter is κ ∼ O(10−3) required for BR(h → Z ′Z ′) . 10% for the SM Higgs boson

mass of mh = 125.09 GeV (Patrignani et al. (2016)) and η = 10−4. The scalar mixing

remains at the same order for different values of the kinetic mixing η = 10−5, 10−6.

The decay process of (h → ZZ ′) would also be relevant however, the (hZZ
′
)

vertex factor, which is given by

hZZ ′ : − cosα

sin 2θW
ve
(g′η

2
+ eg̃QH

)
(2.76)

is proportional to the left-hand side of the zero Z −Z ′ mixing condition in (2.37). There-

fore this vertex is zero and there arise no constraints from this decay.
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Figure 2.1. We show the region where the partial decay width Γ(h → Z ′Z ′) is less
than 10% of the SM Higgs total decay width BR(h → Z ′Z ′) . 10%.
The Higgs mixing angle is sinα ∼ O(10−3) for mh = 125.09 GeV and
η = 10−4. The vertical red line is for the Z ′ boson mass MZ′ determined
via the experimental data.

2.7. Summary and Outlook

In Chapter 2, we have constructed the framework of a family-nonuniversal U(1)′

model, which is a minimal, anomaly-free extension of the SM that is able to explain the

6.8 σ anomaly in 8Be nuclear decays at the Atomki pair spectrometer experiment.

One possible interpretation of the Atomki signal is a spin-1, proto-phobic gauge

boson with a mass of ≈ 17 MeV. We present a family-nonuniversal U(1)′ model with its

associated Z ′ boson with a mass of ≈ 17 MeV which fullfills all the experimental con-

straints on its vector and axial-vector current couplings to the first generation of fermions

that are necessary to explain the 8Be anomalous decays.

The previously proposed models have a large new field content. However, we have

a minimal field content with the Z ′ boson and the extra scalar. Our family-nonuniversal
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U(1)′ model is an anomaly-free extension of the SM with a minimum field content that

can explain the observed beryllium anomaly.

The CKM matrix is reproduced correctly by higher-dimensional Yukawa interac-

tions facilitated by S. The model provides new couplings to probe new physics at low

energies. It may provide framework for anomalous SM decays and forms a framework

in which various low-energy phenomena can be addressed. The low-energy phenomena

such as ss∗ → ff̄ and Z ′Z ′ → ff̄ can be relevant for phenomenological as well as

astrophysical (dark matter) purposes.
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CHAPTER 3

GEOMETRIC DARK MATTER

In this chapter, we exercise the MAG in which the metric gµν and connection Γλµν

are independent geometrodynamical variables. We show that the MAG, in its minimal

form, decomposes into GR plus a massive vector field Yµ, which couples only to fermions

(quarks and leptons) and gravity. It does not couple to scalars and gauge bosons. This

interaction feature of the Yµ stems from the geometric nature of it and it is generated from

the affine connection as a massive vector. These very features of the Yµ provide to keep the

model minimal. The model involves only one free parameter and the Yµ feebly interacts

with the fermions. This interaction feature of the Yµ is the only thing necessary for its

longetivity as a dark matter candidate. We show in detail that the Yµ qualifies a viable

dark matter candidate, well satisfying the existing bounds. We introduced the notion of

"geometric dark matter" and under all these aspects we have shown that this Yµ geometric

dark matter is the true dark matter model which differs from all the known dark matter

candidates.

In Chapter 3, Section 3.1 gives brief introduction of the metric and Palatini for-

mulations. Section 3.2 explains the physical necessity of affine connection, and Section

3.3 builds on it by structuring the most minimal ghost-free MAG. Section 3.4 quantizes

Yµ in the flat metric limit. Section 3.5 shows that Yµ possesses all the features required of

a dark matter particle. Section 3.6 concludes.

3.1. Notes on Metric and Palatini Formulations

In this section we give introductory notes on the metric and Palatini formulations

briefly as it will be detailed within the concept in the next section.

The GR is based on metric formulation (or second-order formalism). The metric

gµν measures distances between points of the manifold and angles between vectors in

the tangent space. In pure metric gravity the connection is the Levi-Civita connection

with components gΓλµν and it defines parallel transport of tensor fields along a given curve
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in spacetime. It is characterised such that the connection is compatible with the metric

∇λgµν = 0 and has no torsion gΓλµν = gΓλνµ. The curvature of the spacetime is determined

by the Riemann tensor given by

Rλ
µσν(

gΓ) = ∂σ
gΓλµν − ∂νgΓλσµ + gΓλσρ

gΓρµν − gΓλνρ
gΓρσµ, (3.1)

and its dynamics is described by the principle of minimal action. Riemann and Ricci

tensors are directly given in terms of the metric tensor. As will be detailed in the next

section, the curvature tensor involves second derivatives of the metric tensor and it re-

quires adding an extrinsic curvature to cancel the surface terms (York (1972); Gibbons

and Hawking (1977)).

In the Palatini formulation (Palatini (1919); Einstein (1925); Deser (2006)) (or

first-order formalism) the metric tensor gµν and the connection coefficients Γλµν are a priori

independent geometrical variables. In this formalism the connection is not necessarily

the Levi-Civita connection, it is not a predetermined quantity; its form is determined

through the requirement of dynamics. Riemann and Ricci tensors do depend only on the

connection and the curvature tensor involves only first derivatives of the connection which

requires no extrinsic curvature. We will discuss the two formalisms in the next section

such that one will see clearly that the Palatini formalism is the right generalized form of

the GR to obtain the Einstein field equations.

3.2. Necessity of Affine Connection

The GR, whose geometry is based on the metric tensor gµν and its Levi-Civita

connection

gΓλµν =
1

2
gλρ (∂µgνρ + ∂νgρµ − ∂ρgµν) , (3.2)

is defined by the Einstein-Hilbert action

S [g] =

∫
d4x
√
−gM

2
Pl

2
gµνRµν(

gΓ) (3.3)

as a purely metrical theory of gravity. The problem is that this action is known not to lead

to the Einstein field equations. It needs be supplemented with exterior curvature (York
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(1972); Gibbons and Hawking (1977)) because the Ricci curvature of the Levi-Civita

connection

Rµν(
gΓ) = ∂λ

gΓλµν − ∂νgΓλλµ + gΓρρλ
gΓλµν − gΓρνλ

gΓλρµ, (3.4)

obtained from the Riemann tensor as Rµν(
gΓ) ≡ Rλ

µλν(
gΓ), involves second derivatives

of the metric. The need to exterior curvature disrupts the action principle for GR.

The remedy, long known to be the Palatini formalism (Palatini (1919); Einstein

(1925); Deser (2006)), is to replace the Levi-Civita connection gΓλµν with a (symmetric)

affine connection Γλµν = Γλνµ and restructure the Einstein-Hilbert action (3.3) accordingly

S [g,Γ] =

∫
d4x
√
−gM

2
Pl

2
gµνRµν(Γ) (3.5)

to find that Γλµν reduces to gΓλµν dynamically because S [g,Γ] can stay stationary against

variations in Γλµν only if the nonmetricity vanishes, that is, only if Γ∇λgµν = 0. This

ensures that the Palatini action (3.5) is the right framework for getting the Einstein field

equations.

3.3. Metric-Affine Gravity

The Palatini formalism, a signpost showing the way beyond the purely metrical

geometry of the GR, evolves into a dynamical theory if the affine connection Γλµν acquires

components beyond the Levi-Civita connection. In this context, spread of Γλµν into the

curvature (Karahan et al. (2013)) and matter (Bauer and Demir (2008, 2011)) sectors, for

instance, leads to the MAG. The MAG is described by the action

S [g,Γ,z] =

∫
d4x
√
−g
{M2

Pl

2
gµνRµν(Γ)− ξ

4
Rµν(Γ)Rµν

(Γ) + L (g,Γ,z)
}

+ ∆S

(3.6)

in which Rµν(Γ) is the Ricci curvature obtained from (3.4) by replacing gΓ with Γ, L

is the Lagrangian of the matter fields z with Γ kinetics, and Rµν(Γ) is the second Ricci

curvature

Rµν(Γ) = ∂µΓλλν − ∂νΓλλµ (3.7)

obtained from the Riemann tensor as Rµν(Γ) ≡ Rλ
λµν(Γ). It equals the antisymmetric part

of Rµν(Γ), and vanishes identically in the metrical geometry, Rµν(
gΓ) ≡ 0.
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The ∆S in (3.6), containing two– and higher-derivative terms, has the structure

∆S [g,Γ]=

∫
d4x
√
−g
{
A (gµνRµν(Γ))2 +BRµν(Γ)Rµν(Γ) + CRµναβ(Γ)Rµναβ(Γ) + · · ·

}
(3.8)

in which the leading terms, weighted by dimensionless coefficientsA,B, C, are of similar

size as the ξ term in (3.6). These terms, excepting A, are, however, dangerous in that they

give ghosts in the metrical part. This is so because ∆S involves at least four derivatives

of the metric. (The ξ term in (3.6) has no metrical contribution and remains always two-

derivative.) We will hereon drop B, C and all higher-order terms on the danger of ghosts.

The A term and terms containing higher powers of gµνRµν(Γ) are known to lead collec-

tively to a scalar degree of freedom in excess of the GR (Sotiriou and Faraoni (2010)).

In principle, there is no harm in keeping them but we drop them as they do not have any

distinctive effect on the vector dark matter we shall construct. They can be included to

study vector dark matter in scalar-tensor theories (Quiros (2019)), and this can indeed be

an interesting route.

Now, we continue with (3.6) with ∆S completely dropped. The Palatini formalism

implies that MAG can always be analyzed via the decomposition

Γλµν = gΓλµν + ∆λ
µν (3.9)

where ∆λ
µν = ∆λ

νµ is a symmetric tensor field. Under (3.9), the two Ricci curvatures split

as

Rµν(Γ) = Rµν(
gΓ) +∇λ∆

λ
µν −∇ν∆

λ
λµ + ∆ρ

ρλ∆
λ
µν −∆ρ

νλ∆
λ
ρµ,

Rµν(Γ) = ∂µ∆λ
λν − ∂ν∆λ

λµ (3.10)

to put the MAG action in (3.6) (with ∆S dropped) into the form

S [g,∆,z] =

∫
d4x
√
−g
{M2

Pl

2
gµνRµν(

gΓ)

− 1

4
ξgµαgνβ

(
∂µ∆λ

λν − ∂ν∆λ
λµ

) (
∂α∆ρ

ρβ − ∂β∆ρ
ρα

)
+

M2
Pl

2
gµν
(
∆ρ
ρλ∆

λ
µν −∆ρ

νλ∆
λ
ρµ

)
+ L (g, gΓ,∆,z)

}
(3.11)

where∇α is the covariant derivative with respect to the Levi-Civita connection (∇αgµν =

0).
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In the action (3.11), the kinetic term, proportional to ξ, pertains only to the vector

field ∆λ
λµ but the quadratic term, proportional to M2

Pl, involves all components of ∆λ
µν .

In fact, it shrinks to a consistent vector field theory if the quadratic term reduces to mass

term of ∆λ
λµ, and this happens only if ∆λ

µν enjoys the decomposition

∆λ
µν =

1

2

(
∆ρ
ρµδ

λ
ν + δλµ∆ρ

ρν − 3gλα∆ρ
ραgµν

)
(3.12)

under which the action (3.11) takes the form

S[g, Y,z] =

∫
d4x
√
−g
{M2

Pl

2
R(g)− 1

4
YµνY

µν − 3M2
Pl

4ξ
YµY

µ

− 3

2
√
ξ
fγµfYµ + L(g, gΓ,z)

}
(3.13)

where R(g) ≡ gµνRµν(
gΓ) is the metrical curvature scalar, Yµ ≡

√
ξ∆λ

λµ is a vector field

generated by the affine connection, and L (g, gΓ,z) is part of the matter Lagrangian that

does not involve Yµ. This action exhibits two crucial facts about the geometrical vector

Yµ:

1. First, it is obliged to be massive if gravity is to attract with the observed strength.

Indeed, the Newton’s constant (GN = (8πM2
Pl)
−1) and the Yµ mass (M2

Y = 3
2ξ
M2

Pl)

are both set by the Planck scale MPl. This action represents a rather rare case that

Planck’s constant sets both the gravitational scale and a particle mass.

2. Second, it couples only to fermions f ⊂ z. And its couplings, originating from

the spin connection through the decomposition in (3.12), are necessarily flavor-

universal. It couples to the known (leptons and quarks in the SM) and any hypo-

thetical (say, the dark matter particle χ) fermion in the same way, with the same

strength.

3.4. Quantization

The classical setup in (3.13) involves two distinct fields: The metric tensor gµν

which leads to gravity as is the GR, and the geometrical vector Yµ which gives rise to

a fifth force that affects fermions universally. These two may well be quantized but,

given the difficulties with the quantization of gravity, it would be reasonable to keep gµν
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classical yet let Yµ be quantized. In the flat limit, for which gµν nears the flat metric

ηµν , quantum field theory is full force and effect so that Yµ, along with the other fields

in L (g, gΓ,z), changes to the field operator (see, for instance, Ramond (1981, 1989);

Peskin and Schroeder (1995))

Ŷ µ(x) =
3∑

λ=0

∫
d3~p

(2π)3/2

1√
2ω(~p)

{
â(~p, λ)εµ(~p, λ)e−ip·x + â†(~p, λ)εµ?(~p, λ)eip·x

}
(3.14)

in which the operator â(~p, λ), with the commutator
[
â(~p, λ), â†(~p′, λ′)

]
= iδ4 (p− p′) δλλ′ ,

annihilates a spin-1 boson of momentum ~p, energy ω(~p) = (M2
Y + ~p · ~p)1/2, polarization

direction λ, and polarization sum
∑3

λ=1 ε
µ(~p, λ)εν?(~p, λ) = ηµν − pµpν

M2
Y

. The Yµ-quanta

can be converted into or created from any fermion f and its anti-fermion f c, as will be

analyzed in the next section.

3.5. Geometric Dark Matter

In this section we will study Yµ to determine if it can qualify as dark matter. (The

vector dark matter, as an Abelian gauge field, has been studied in (Chen et al. (2015)).)

To this end, the crucial factor is its lifetime. The rate of Yµ into a fermion f and its

anti-particle f c decay is obtained from the following differential rate

dΓ = N f
c

1

32π2
< |M |2 > |~p1|

M2
Y

dΩ (3.15)

for the following amplitude

M = −i 3

2
√
ξ
ū(~p1)γµv(~p2)εµ(~p1 + ~p2). (3.16)

In fact, as follows from (3.13) with (3.14), it decays into a fermion f and its anti-

particle f c with a rate

Γ (Y → ff c) =
N f
c

8π

(
3

2ξ

) 3
2
(

1 +
4ξm2

f

3M2
Pl

)(
1−

8ξm2
f

3M2
Pl

) 1
2

MPl

ξm2
f�M

2
Pl−−−−−−→ N f

c

8π

(
3

2ξ

) 3
2

MPl

(3.17)

where mf is the mass of the fermion and N f
c is the number of its colors. Then, summing

over SM quarks (up and down) and leptons (electrons and neutrinos) its lifetime turns out
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to be

τY =
1

Γtot
=

4π

5

(
2

3

)3/2
ξ3/2

MPl

(3.18)

which is larger than the age of the Universe tU = 13.8 × 109 years (Ade et al. (2016))

if ξ > 1.1 × 1040. On the other side, the decay rate is prevented to go imaginary if

ξ < 1× 1041. These two bounds lead to the allowed mass range

9.4 MeV < MY < 28.4 MeV (3.19)

across which Yµ lifetime ranges from 4.4 × 1017 s to 1.2 × 1019 s. This means that Yµ

exists today to contribute to galactic dynamics and other phenomena (Rubin et al. (1976);

Schumann (2019); Liu et al. (2017)). Its relic density

ρrelic = ρprimordial e
−ΓtottU (3.20)

ranges from ρprimordial/e (for MY = 28.4 MeV) to near ρprimordial (for MY = 9.4 MeV).

The question of if Yµ can be detected in direct searches is a crucial one. To see

this, it is necessary to compute rate of scattering from nucleons. The relevant diagrams

are depicted in Fig. 3.1 below.

Figure 3.1. The Yµq → Yµq scattering. The quark q belongs to the nucleon.

The two diagrams in Fig. 3.1 result in the amplitude

M = −i 9

4ξ
ū(k′)

(
γν

��k − �p
′ +mq

(k − p′)2 −m2
q

γµ + γµ
��k + �p+mq

(k + p)2 −m2
q

γν

)
u(k)ε∗µ(p′)εν(p)

(3.21)

where 1/ξ in front follows from the Yµ coupling to quark q in (3.13). In the nonrelativistic

limit, Yµ momenta become p = p′ = (MY , 0, 0, 0). Moreover, the quark momentum
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reduces to k = (Eq, 0, 0, 0) after neglecting its motion in the nucleon. The total amplitude

then takes the form

M = −i 9

4ξMY

ū(k′)(γµγ0γν − γνγ0γµ)u(k)ε∗µ(p′)εν(p) (3.22)

after imposing Eq ≈ mq < MY in (3.21). As a result, the spin-dependent scattering cross

section for a vector dark matter scattering off a proton (Chen et al. (2015)) becomes

σSDp =
1

2π

m2
p

(MY +mp)2
a2
p (3.23)

wheremp is the proton mass and ap is the effective spin-spin interaction of the dark matter

Yµ and the proton

ap =
9

4ξMY

∑
q=u,d,s

∆p
q (3.24)

where ∆p
u = 0.84,∆p

d = −0.44 and ∆p
s = −0.03 (Cheng and Chiang (2012)). We plot

the spin-dependent cross section (3.23) in Fig. 3.2 in the allowed range (3.19) of MY .

Figure 3.2. The spin-dependent Yµ–proton cross section as a function of MY .

Direct search experiments like COUPP (Behnke et al. (2012)), SIMPLE (Felizardo

et al. (2014)), XENON100 (Aprile et al. (2016)), PICO-2L (Amole et al. (2016)), PICO-

60 (Amole et al. (2017)), PandaX-II (Fu et al. (2017)), PICASSO (Behnke et al. (2017))

and LUX (Akerib et al. (2016)) have put stringent upper limits on the spin-dependent
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cross section for scattering of dark matter off the SM particles. They mainly exclude the

WIMPs. The most stringent limit is around σSDp ∼ O(10−41) cm2. It is clear that the Yµ–

proton spin-dependent cross section given in Fig. 3.2 is at mostO (10−106) cm2, which is

too small to be measurable by any of the current experiments. The Fig. 3.2 can be taken

as the explanation of why dark matter has so far not been detected in direct searches.

It might, however, be measured in future experiments though it is hard to imagine what

future technology can provide access to such tiny cross section. One possibility, specu-

latively speaking, would be variants of the (laser, SQUID, etc) technology that led to the

detection of gravitational waves.

3.6. Conclusion

In this second part of the thesis, we have set forth a new dark matter candidate,

which seems to agree with all the existing bounds. In accordance with its signatures, it

reveals itself only gravitationally. Our candidate particle, a genuinely geometrical field

provided by the metric-affine gravity, is a viable dark matter candidate, and explains the

current conundrum by its exceedingly small scattering cross section from nucleons. It

can be difficult to detect it with today’s technology but future experiments (plausibly

extensions of gravitational wave detection technology) might reach the required accuracy.

We propose a fundamentally different vector dark matter candidate from all the

other vector dark matter candidates in the literature. We show that due to its geomet-

rical origin the geometric vector dark matter Yµ does not couple to scalars and gauge

bosons. It couples only to fermions. It must be emphasized that there is no need to im-

pose any Z2 symmetry to prevent the gauge kinetic interaction in the vector portal. Its

feebly interacting nature is all that is needed for its longevity. Morover, we should note

that since the Yµ is generated by the affine connection as a massive vector, we do not

need to deal with interactions due to Higgs or Stueckelberg mechanisms. This keeps the

present model minimal as there is no need for additional scalars conceptually. On the

basis of the above-mentioned basic features it is obvious that the geometric dark matter

Yµ is the truly minimal model of dark matter.

The model can be extended in various ways. As already mentioned in the text, one

possibility is to include quadratic and higher-order terms in curvature tensor. This kind

33



of terms, even after discarding the ghosty terms, can cause, among other things, the rank-

3 tensor to be fully dynamical. The theory is then a tensor theory involving dynamical

fields beyond Yµ, where the excess degrees of freedom may contribute to dark energy and

inflation.

Before closing, it proves useful to emphasize that quantization of Yµ is actually

quantization of the geometry. But, what is done here is a partial quantization in that metric

tensor is kept classical. This is certainly not the long-sought quantum gravity but it might

be a glimpse of the fact that what is to be quantized may not be the metric (measurement

toolbox) but the connection (the source of curvature and dark matter).
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CHAPTER 4

CONCLUDING REMARKS AND OUTLOOK

Here, we give a brief summary of the thesis as well as some future prospects that

may be relevant for a future study.

As for the astrophysical implications, it is worth to mention the Big Bang nu-

cleosynthesis (BBN). It is known that the BBN, which is based on the standard model

physics (Wagoner et al. (1967)) in which the spacetime is described by the GR, cosmol-

ogy is based on the ΛCDM model and the particle physics is based on the SM. The BBN

gives predictions of the abundances of the light elements D,3He,4He and 7Li which

depend only on one parameter namely the baryon-to-photon ratio η = nb/nγ (or equiv-

alently the baryon density Ωbh
2 ≡ ωb). The baryon-to-photon ratio has been determined

to be η = 6.10 ± 0.004 (or ωb = 0.002225 ± 0.00016) via measurements of the mi-

crowave background anisotropies by Planck (Ade et al. (2016)). The BBN takes place

from ∼ 1 s to ∼ 3 min after the Big Bang and roughly at the end of the three minutes the

abovementioned light elements were synthesized. The BBN-predicted abundances are in

good agreement with the observational data except the lithium abundance (Schramm and

Turner (1998); Steigman (2007); Iocco et al. (2009); Cyburt et al. (2016)). The BBN-

predicted lithium abundance is about a factor of 3 higher than the abundance determined

in low-metalicity halo stars. There is no solution to the problem from nuclear aspects

hence it is yet a possibility that new physics during or after the nucleosynthesis might

explain it. However, the BBN as a probe of the early universe puts stringent constraints

on physics beyond the SM (Sarkar (1996); Jedamzik and Pospelov (2009); Pospelov and

Pradler (2010); Fields (2011)). Morover, it is important to note that all the known forces;

strong, weak, electroweak and gravitational, are effective during the synthesis of the light

elements hence the precise determinations of light element abundances in the early Uni-

verse put constraints on the possible new physics in gravity and particle physics. There-

fore there may be some astrophysical implications of this picture for our work which is

out of scope of this thesis. However, it may be a future work study to analyze the effects

of such MeV-scale particles in the early Universe.
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In the first part (Chapter 2) of the thesis, we have constructed a family-nonuniversal

U(1)′ model which explains the recent anomalous beryllium decays. The beryllium de-

cays can be explained by a neutral, proto-phobic gauge boson. It is exciting that the new

neutral gauge boson might refer to the fifth force. The model we construct is populated

with the 17 MeVZ ′ and the scalar field S which is singlet under the SM and charged under

U(1)′. It is worth to mention that the framework represents a minimal model with its mini-

mal field content which makes it different from all the other models in the literature for the

beryllium decays. This minimality is provided by the nonuniversality of the U(1)′ charges

of the SM chiral fermions that satisfy the anomaly-free conditions. It is shown that the

CKM matrix is reproduced correctly by higher-dimension Yukawa interactions facilitated

by the S. It is presented by a detailed analysis that the vector and axial-vector coupligs of

the Z ′ to the first generation of the fermions satisfy all the experimental constraints. The

S scalar couples directly to the SM-like Higgs; and the Z ′ has a kinetic mixing with the

hypercharge gauge boson which generates the observed beryllium anomaly as we have

shown by a detailed analysis. We have constructed a family-nonuniversal U(1)′ model,

with a minimal field content, and show that the beryllium anomaly can be explained by

an MeV-scale sector. Under all these aspects, one can see clearly that the model we have

constructed explains the beryllium anomalous decays properly and it differs from all the

other models.

In the second part (Chapter 3) of the thesis , we have introduced the notion of

"geometric dark matter". It is basically a light vector particle Yµ that arises from the

MAG. In this set up, we have shown that the MAG dynamically reduces to the usual

gravity plus a massive vector field Yµ. The Yµ interacts with only quarks, leptons and

gravity due to the decomposition of the affine connection. It is neutral and long-living

when its mass range lies in the range 9.4 MeV < MY < 28.4 MeV. As we have explained

in detail its longevity is already provided by its interaction nature and it is generated by

the affine conection as a massive vector. These very futures of the Yµ keeps the present

model minimal, self-consistent and different from all the other dark matter models in the

literature. It is remarkable under all these features that the geometric dark matter Yµ is

the minimal model of dark matter. Its spin-dependent scattering cross section in Fig. 3.2,

which corresponds to the diagrams in Fig. 3.1, is at most O (10−106) cm2 which is too

small to be measurable by any of the current experiments. The most stringent bound
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is around σSDp ∼ O(10−41) cm2. This small scattering cross section of the Yµ gives an

explanation of why dark matter has not been detected in direct search experiments yet. We

have shown that Yµ is a viable dark matter candidate that satisfies all the experimental data

and constraints on the dark matter and it differs from all the other dark matter candidates.

We have studied vector fields at the MeV scale and after all it is clearly realized

that the physics at the low energy is the frontier worth to probe; as it seems the recent

experimental results as well as the geometric dark matter model that we have constructed

point the low energy physics. The new physics needed might be at low energies.
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