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ABSTRACT 

 

 

A MODEL-BASED TEST GENERATION APPROACH FOR AGILE 

SOFTWARE PRODUCT LINES 

 

 

 Achieving fast development of good-quality software products is as important as 

achieving pure functionality. Qualified software development provides client 

satisfaction, reduces post-deployment costs and certificates the products.  In addition to 

increasing quality, clients expect to tailor the products according to their needs and 

therefore, product configurability becomes more and more critical. Hence, the software 

manufacturing is required to adapt this configurable development process 

correspondingly. Software product line is a paradigm that purposes faster development 

of qualified software products that belongs to a particular domain. This thesis 

concentrates on quality assurance in software product lines and provides novel model-

based approaches which are full test sequence composition and incremental test 

sequence composition approaches that aim to reuse existent test artefacts. Full test 

sequence composition approach reuses the existing test models and the test sequences 

are composed from scratch each time a product variant’s test sequences are generated. 

Incremental test sequence composition approach reuses both of the test models and the 

existing test sequences of product variants. Whenever a product variant’s test sequences 

are generated, existing test sequences and features which are incrementing the existing 

product are composed. The proposed approaches and the classical test generation of 

ESGs are compared, the results show that the incremental test sequence composition is 

the best in terms of both test set size and test generation time, the full test sequence 

composition is better than the single model ESG test generation in terms of test suite 

size but not in terms of test generation time.  
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ÖZET 

 

 

ÇEVİK YAZILIM ÜRÜN HATLARI İÇİN BİR MODEL TABANLI 

TEST ÜRETİM YAKLAŞIMI 

 

 

 Yazılım ürünleri geliştirilmesinde, kaliteli ve hızlı bir şekilde ürün 

geliştirebilmek, ürünlerden beklenen işlevselliği elde etmek kadar önemlidir. Yüksek 

kaliteli yazılım ürünleri, müşteri memnuniyetini artırırken dağıtım sonrası maliyetleri 

azaltır. Günümüzde, yazılım ürünlerinin alıcıları, sadece yüksek kaliteli değil, aynı 

zamanda ihtiyaçlarına göre uyarlanabilen ürünleri de beklemektedir. Bu nedenle, ürün 

yapılandırılabilirliği, ensdütriyel anlamda daha önemli hale gelmiştir. Yazılım 

üretiminin, bu yapılandırılabilir geliştirme sürecine uyum sağlaması gerekmektedir. 

Yazılım ürün hattı (YÜH), belirli bir alana ait yazılım ürünlerinin, yüksek kaliteli bir 

şekilde ve daha hızlı geliştirilmesini amaçlayan bir paradigmadır. Bu tez, yazılım ürün 

hatlarında kalite güvencesi üzerine yoğunlaşmakta ve mevcut test paydaşlarını yeniden 

kullanmayı amaçlayan, tam test sırası birleştirme ve artırımlı test sırası birleştirme 

isimli model tabanlı yaklaşımlar sunmaktadır. Tam test sırası birleştirme yaklaşımında, 

yalnızca mevcut test modelleri yeniden kullanılmaktadır ve bir ürün varyantının test 

sıraları her oluşturulduğunda, test modellerine ait test sıraları sıfırdan birleştirilmektedir. 

Artırımlı test sırası birleştirme yaklaşımında ise hem test modelleri hem de ürün 

varyantlarının mevcut test sıraları yeniden kullanılabilir ve bir ürün varyantının test 

sıraları birleştirilirken, bu yeni ürünün elde edilmesini sağlayan taban ürüne ait test 

sıraları ve bu mevcut ürünü artıran özelliklere ait test sıraları birleştirilmektedir. Bu tez 

kapsamında önerilen iki yaklaşımı ve klasik, tek-model test üretim yaklaşımlarını 

karşılaştırırken, sonuçlar, artırımlı test sırası birleştirme yaklaşımının hem test kümesi 

boyutu hem de test üretim süresi açısından en iyi olduğunu; ful test sırası birleştirme 

yaklaşımının ise test kümesi boyutu bakımından tek-model test üretimi yaklaşımından 

daha iyiyken, test üretim süresi açısından daha kötü olduğunu göstermektedir. 
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CHAPTER 1   

 

 

INTRODUCTION 

 

 

 System quality is one of the most important aspects of software development as 

much as achieving pure functionality (Mistrik et al. 2014). It provides client 

satisfaction, reduces post-deployment costs and certificates the products (Mistrik et al. 

2014) In addition to increasing quality, customers expect to tailor the products 

according to their needs therefore, product configurability becomes more and more 

critical (Mistrik et al. 2014). Hence, the software manufacturing is required to adapt this 

configurable development process correspondingly. Paradigm for software product lines  

is proposed for configurable systems production (Mistrik et al. 2014) hence, this thesis 

focuses on quality assurance in software product lines.  

  Software product line paradigm states that most software systems are not new 

(Kang, Sugumaran, and Park 2009). More commonalities are shared by software 

systems in application domain (Kang, Sugumaran, and Park 2009). In fact, most 

companies tend to build modular software systems from reusable parts instead of 

designing software systems from scratch (Apel et al. 2013). For example, world-wide 

known companies Boeing, Bosch, Toshiba, General Motors etc. have software product 

line development success stories (Apel et al. 2013). Software product lines promises 

different advances such as tailor-made products, reduced costs, shorter development 

cycles and higher quality through the systematic reuse of software assets (Apel et al. 

2013; Devroey et al. 2012). Agile software product lines are obtained from the 

transformation of classical software product lines with agile methods. 

 Comparing the monitored behavior of system to the expected one by stimulating 

the system with the pre-defined inputs is the idea behind the testing (Mistrik et al. 

2014). User-centered testing examines the behavior of the system as it checks whether 

the software does what it is expected to do (positive testing) or not what it is not 

expected to do (negative testing) (Linschulte 2013).  Since the number of to-be-applied 

tests can be infinite, the distinction between positive functioning and negative 

functioning, which is known as Oracle Problem (Memon, Pollack, and Soffa 2001),  
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comes into question. In order to overcome this problem, formal methods which model 

the behavior that is desired and undesired are proposed. These methods are called as 

model-based testing (MBT) methods. In model-based testing, a formal model is derived 

from the requirements (Mistrik et al. 2014). Furthermore, it is required to employ 

models from which test cases are obtained automatically (Mistrik et al. 2014). The 

software system’s source code for test case generation does not have to be available for 

MBT and this makes it attractive to the industry since most of the products’ source 

codes are not shared (Linschulte 2013).   

 In this thesis, a model-based approach is proposed for systematic and automatic 

testing of agile software product lines (SPLs). The software systems’ behavior is 

represented by using the event sequence graphs (ESG) under consideration of user 

actions, i.e., events and features of a software product line are represented featured 

event sequence graphs (FESG). 

   

 

1.1. Motivation 

 

 

For majority of the projects, the testing costs range from 20 to 50 per cent of the 

comprehensive system development costs (Mistrik et al. 2014). Moreover, these costs 

can reach up to 80% easily for safety-critical systems (Jones 1991).  One study on the 

ground of data gathered from Rolls-Royce shows that nearly 52 per cent of the overall 

development activities of a system are on testing activities (Mistrik et al. 2014; Nolan et 

al. 2011). It has been argued that software product line paradigm reduces the 

development costs but not necessarily the testing costs, in the aforementioned study. 

Also, it has been reported that, 72% of overall product development activities are on 

validation and verification in software product line context and this percentage can 

reach 90 in theory, because of high reuse (Nolan et al. 2011). It has been concluded that 

this percentage rises not because the testing effort has increased but because the 

development effort has decreased thanks to the reusable assets and this raises the testing 

effort compared to the overall effort, nevertheless, testability becomes more important 

for software product lines (Nolan et al. 2011). Hence, automatic and systematic testing 

methods become a must-have in software product line development. 
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 Automation could be applied to test execution and test design. To implement test 

design automation, a formal model from requirements is derived and a test case set 

based on that model are generated which leads us to model-based testing. A high 

potential to exploit reuse opportunities for SPL testing is provided by MBT (Olimpiew 

2008; Tuglular, Beyazıt, and Öztürk 2019). Various model MBT techniques has been 

proposed for SPLs which are explained in  

. Nevertheless, most of the current SPL testing approaches cannot remedy the following 

two deficiencies, potentially (Lochau et al. 2016). Firstly, for some approaches, one 

overlaying specification with all possible variants of the software product line is 

required and because of computational overhead, this becomes unwieldy for large-scale 

software product lines (Tuglular, Beyazıt, and Öztürk 2019; Lochau et al. 2016; 

Czarnecki and Antkiewicz 2005). Secondly, instead of considering behavioral impact of 

variations, the emphasis is on structural and syntactical variability (Apel and Hutchins 

2010). Therefore, there is no systematic propagation of behavioral properties from one 

product form (variant) to another (Lochau et al. 2016).  

 To decrease the test cost of SPLs with the aid of automatic MBT techniques, this 

thesis which proposes a test generation approach for agile SPLs and remedies the 

potential deficiencies of model-based techniques is presented.  

 

 

1.2. Major Contributions of the Thesis 

 

 

This thesis aims to develop a model-based test generation approach for agile 

software product lines and addresses the following questions:  

1. How to build variable testing models in order to explicitly represent the 

variability of behaviors in SPLs? 

2. How can the exertion of test generation and thus the test cost be decreased while 

the number of product variants and their complexity continuously increasing? 

3. How can the existing test cases be reused in extension of a product with new 

features? 

 To answer the first question, this thesis utilizes Featured Event Sequence Graphs 

(FESGs) as variable testing models which are used to explicitly represent the variability 
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of behaviors in SPLs. The core of the SPL and each feature are modelled as partial or 

full ESGs which are independent and named as c-ESG and f-ESG, respectively. Then, 

the combination of core ESG and selected feature ESGs represent the behavior of the 

corresponding product.  

 To answer the second question, this thesis employs a full test sequence 

composition approach which exploits the FESGs. The implementation of this approach 

resembles as divide-and-conquer strategy in the sense that the core of the SPL and 

existing features of each SPL variant are modelled separately. Prepared test models 

together constitute the FESG of a product. Comparing to the single ESG model of each 

product variant which is called as full-ESG model, the FESG constituents are quite 

simple models in terms of number of vertices and edges. This because, a full-ESG 

model includes both the core’s and selected features’ behaviors and it is a more 

complex model. Therefore, test generation is faster and traceability and maintainability 

of these models are easier.  

 One can simply prepare test models of the core and all the features within the 

SPL and then combine these models for different products’ test generation. New 

features could be added easily, or existing features could be updated without interfering 

other features. In the test sequence composition approach, existing test models are 

reused and each time a new variant is obtained their test sequence are composed from 

scratch. Even though the test composition from scratch, this approach is more efficient 

than the traditional test generation approach of full-ESG models.  

 To answer the third question, this thesis utilizes another approach called 

incremental test sequence composition approach. This approach is an enhanced version 

of test sequence composition approach and it also exploits the FESGs. The aim of this 

approach is reusing both the test models and the existing test cases. Thus, each time a 

new feature (or features) is added to an existing variant, the test model of the new 

feature is prepared, and its corresponding test sequences are generated. The existing test 

cases of the product and the new test sequences are composed in order to generate the 

test cases of a new product variant. Therefore, the test models and their corresponding 

test cases are reusable and configurable for different variants within the SPL. 

 Additionally, another contribution of this thesis is a directed graph which is 

called Feature-Based Incremental Product Graph. The Feature-based Incremental 

Product Graph holds FESGs in its vertices and feature sets in its edges. The structure of 

the Feature-based Incremental Product Graph allows to automatically run the 
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incremental test sequence composition approach very easily and automatically. The 

Feature-based Incremental Product Graph is used to experiment on SPL product 

variants by using incremental test sequence composition approach. This graph is used to 

validate the configurations of these product variants. In order to achieve these 

operations two different algorithms are proposed in which the graph is traversed via 

Breadth First Traversal.  

 

 

1.3. Outline of Thesis 

 

 

This thesis is organized according to the following. The next chapter provides an 

overview of the literature. CHAPTER 3 provides context on software product lines, 

feature modeling, event sequence graphs and related algorithms. CHAPTER 4 includes 

the detailed explanation of the model-based full test sequence composition approach. In 

CHAPTER 5, the incremental test sequence composition approach is proposed which is 

an improved version of test sequence composition approach. The feature-based 

incremental product graph is introduced in CHAPTER 6. Case study of this thesis work 

is presented in CHAPTER 7. Finally, CHAPTER 8 provides final comments and future 

work.  
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CHAPTER 2  

 

 

RELATED WORK 

 

  

 In model-based testing (MBT), the specifications of the software to be tested are 

defined by a model in accordance with the specification. These models are usually 

graph-based. Examples of these models can be given as finite state machines (Chow 

1978; Fujiwara et al. 1991), petri nets (Xu 2011) and event sequence graphs (Belli 

2001). An algorithm for test generation that takes this model as input creates a test set 

using a test selection criterion (Belli 2001).  

 Whittaker (Whittaker 1997) suggested that models used in MBT could be 

decomposed or combined, and showed that test cases can be generated from partial 

models or model parts and also from the combined large model, and then compared the 

results. El-Far and Whittaker (El-Far and Whittaker 2002) examined the issue of test 

generation from hierarchical models. They showed how the main finite state machine 

can be expanded by replacing a state with a finite state machine.  They made the 

definition of a hierarchical finite state machine and discussed test generation from 

hierarchical finite state machines. Belli et al. (Belli, Guler, and Linschulte 2011) 

proposed a method for test generation from hierarchical models that use event sequence 

graphs. However, these ideas have not been applied to MBT of SPLs. 

 Scenario based TEst case Derivations (ScenTED) was one of the initially 

proposed approaches in model based testing of software product lines that exploits reuse 

of the core properties and components in order to reuse of the test cases (Reuys et al. 

2005). Customizable Activity diagrams, Decision tables and Test specifications 

(CADeT) method was also another significant research on model based testing of 

software product lines (Olimpiew 2008) which generates feature-based test suites by 

employing UML use case and activity diagrams. In order to model variability and 

generate test cases, decision tables are used. A method named as 150% finite state 

machines, which employs an overlaying model for the software product line under 

consideration and includes a coverage-driven method for SPL testing was proposed by 

Cichos et al. (Cichos et al. 2011). Another model-based testing method for software 



 

7 

 

product lines is model-checking. Kishi and Noda (Kishi and Noda 2006) suggested 

modelling the design as a finite machine and checking if the product has the determined 

features indeed, by using model checking. In order to apply model checking to SPLs 

several approaches has been suggested (Gruler, Leucker, and Scheidemann 2008; 

Classen 2011; Classen et al. 2011) . 

 Additionally, Olimpiew and Gomaa (Olimpiew and Gomaa 2005) suggested the 

Product Line UML based Software engineering (PLUS) method that maps the software 

product line models to functional test cases to generate and select the functional tests 

automatically for the corresponding SPL applications. PLUS has outlined that how to 

build specifications, analyzes and the design for an SPL. A feature model and a use case 

model are included in the requirement models; a class, state chart and object interaction 

model are included by an analysis models; component-based software architecture 

models are included by design models. All of the requirement, analysis and design 

models are based on UML 2.0 notation. Another approach for testing in SPLs was 

proposed by Lamancha et al. (Lamancha, Usaola, and de Guzman 2009) which is based 

on familiar standards for instance UML 2.0, the UML testing profile and QVT 

Language in which the traceability is preserved between  different levels of abstraction, 

as well as between levels of domain and product engineering. 

 Moreover, Geppert et al. (Geppert 2004) proposed a method for SPL testing that 

employs a decision model to guide feature selection during derivation of an application, 

test selection and customization. In this method, test parameters are contained by 

generic test templates and corresponds to points of variation or groups of feature in an 

SPL. To assign a value to the test parameter, a feature of the SPL is selected. Gebizli 

and Sözer (Gebizli and Sözer 2016) suggested a method for product family testing 

which models the system functionality by using Markov chains in which the behavioral 

variability is depicted via a feature model. The Markov chains are employed to capture 

usage scenarios for products within the SPL and testing is performed on an industrial 

case study which shows that testing even a small number of products redeem the cost of 

SPL engineering adoption. 

 Furthermore, Oster et al. (Oster et al. 2011) proposed a tool chain that realizes 

Model-based Software Product Line Testing (MoSo-PoLiTe) concept which combines 

model-based and combinatorial testing of SPLs. Variant management tool pure::variants 

for Rational Rhapsody and the Rational Rhapsody Plugin ATG underlies the tool chain 
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for test case generation and a plugin for pure::variants  is implemented that realizes the 

pairwise algorithm of the MoSo-PoLiTe concept. 

 To reduce redundancies in SPL testing,  regression-based and subset selection 

heuristics are two research directions (Lochau et al. 2016). Since this thesis is on 

regression-based testing of SPLs, the related literature is covered. Uzuncaova et al. 

(Uzuncaova, Khurshid, and Batory 2010) suggested a method using SAT-based analysis 

to produce test inputs for each software product line variant. Incremental enhancement 

of test cases for a specific variant is enabled by their approach. Neto et al. (Neto et al. 

2010) suggested a method that decreases the effort of testing by reusing test suites 

which requires exploiting similarities in the architecture of the SPL. Additionally, an 

approach for reuse of test artifacts between product variants was proposed by Lochau et 

al. (Lochau et al. 2012). All these studies are based on finite state machines (FSMs), 

without explicit mapping of features with FSMs. In other words, how states, transitions, 

etc. represent a single feature and how states and transitions representing a single 

feature are connected to a product’s FSM are not depicted. In practical terms, these 

representations are significant for the techniques to be used by industry for traceability 

reasons, all features are represented distinctly and the way how to connect a single 

feature to a product is stated clearly. Another novelty of the approaches proposed in this 

thesis is that starting with a base product and coming up to other incrementally are not 

necessary.  
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CHAPTER 3  

 

 

FUNDAMENTALS 

 

 

 This chapter explains the fundamental notions and algorithms that construct the 

background of this study. Firstly, the software product line paradigm and feature 

modeling are introduced. Secondly, the Event Sequence Graphs (ESGs), which are the 

building blocks of this study are presented. The ESG test generation algorithm is 

explained in depth. Finally, the ESG transformation algorithm is introduced. 

 

 

3.1. Software Product Line and Feature Modeling 

 

 

A set of products that have common features with varying  additional features 

which are related to each other in a specific domain constitute a software product line 

(SPL) (Withey 1996). Software product line paradigm enables systematic software asset 

reusing therefore, it promises faster development, automatic testing and increased 

product quality (Devroey et al. 2012).   

In software product lines, there are different variations of a software equipped 

with different features to appeal to different target audiences. For example, a product set 

of standard, professional and enterprise versions of a software represent a software 

product line. The number of elements of the product set that represents the software 

product line can be quite high. Every new feature added to the mutual features at the 

core/base of the software increases the complexity of the software and thereby 

reinforces its predisposition to failure. 

The features in a software product line shape the products according to the 

selection of the stakeholders and enable us to distinguish one product from another 

(Czarnecki, Krysztof and Eisenecker, Ulrich 2000). The feature selection is done 

through feature diagrams. A feature diagram is given in Figure 3.1 which is used as a 

running example in this study and it belongs to a bank account software product line. 
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This diagram enables us to develop related bank account products such as one allowing 

cancellation of deposit and/or withdraw operations, one allowing extra money, one 

allowing daily limit etc. 

 

 

 

   Figure 3.1. Bank account SPL feature diagram 

 

 

 The configuration options and the dependencies are represented by feature 

diagrams(Tuglular, Beyazıt, and Öztürk 2019), which are originally proposed by Kang 

et al (Kang n.d.). In feature diagrams, the SPL is represented by the root and the 

features of the SPL are represented by the leaves. The features which are either 

mandatory or optional, could be combined with XOR or OR relationships (Tuglular, 

Beyazıt, and Öztürk 2019). The features that are in OR relationship could be included in 

a product in different combinations (Tuglular, Beyazıt, and Öztürk 2019). However, the 

ones that are in XOR relationship could be included exclusively, i.e., only one of them 

could be included in a certain product (Tuglular, Beyazıt, and Öztürk 2019). The 

require relationship in feature diagrams, denotes the implication between two features 

(Tuglular, Beyazıt, and Öztürk 2019). The exclude relationship denotes the exclusion 

between two features (Tuglular, Beyazıt, and Öztürk 2019). In feature diagrams, there 

are also abstract features which are employed to group features and concrete features 

which are actually corresponding real features in an SPL. 
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 The feature diagram shown in Figure 3.1, a bank account SPL is shown with 

mandatory features which are Deposit and Withdraw. In this diagram, the abstract 

feature Cancellation is grouping CancelDeposit and CancelWithdraw features with OR 

relationship and the abstract feature ExtraMoney is grouping Overdraft and Credit 

features with XOR relationship. The features Cancellation, ExtraMoney, Interest, 

InterestEstimation and DailyLimit are optional for this SPL. Furthermore, the 

implications that are written below the feature diagram correspond to require 

relationship where InterestEstimation feature requires Interest feature, DailyLimit 

feature requires Withdraw and CancelWithdraw features, and, Overdraft feature 

requires CancelWithdraw and DailyLimit features in a product configuration. The bank 

account SPL example is modified from the online software product line catalog SPL2go 

(“SPL2go” n.d.),  in which the source code and the feature model of the running 

example is publicly available. 

 

 

 

Figure 3.2. Product matrix of the bank account SPL 

 

 

 Formal presentations of feature diagrams which are feature models are generally 

user-centric (Tuglular, Beyazıt, and Öztürk 2019). The definitions of the feature model 

and the product configuration are given in following. 

 Definition 3.1: Let B indicates the Boolean values domain by B = {false, true}. 

 Let F be a finite Boolean variables (features) set. A feature model (FM) fm: 
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(F→B)→B is represented as a propositional formula over the set F (Lochau et al. 2016). 

 Definition 3.2: An assignment of Boolean values to features such that 

fm(p)=true holds is a product configuration (PC) p: F→B is (Lochau et al. 2016; Kang 

et al. 1990).  

 Product diagrams are visual representations of product configurations. Product 

matrix of a SPL shows available products for that SPL. Product matrix of the bank 

account SPL is given in Figure 3.2. 

 

 

3.2. Event Sequence Graph 

 

 

An Event Sequence Graph which is abbreviated as ESG is a technique that is 

used for behavioral-modelling of systems (Belli et al. 2005). Both the expected (i.e. 

correct) and un expected (i.e. exceptional) behavior of the system could be represented 

by using ESGs from the system user’s point of view (Belli et al. 2005; Belli and Budnik 

2005). ESGs focus on the externally observable behavior of computer-based systems by 

means of discrete event-based models (Belli et al. 2005). 

The interactions between the user events, the environmental actions, and the 

system responses are modelled by exploiting the event-based structure of ESGs (Belli et 

al. 2005). The complete set of interactions is obtained in terms of an ESG set, where 

each ESG stands for a possibly infinite set of event sequences (Belli et al. 2005). This 

event sequences set is used in order to test both the desired and the undesired behavior 

of a computer-based system. The following event sequence graph’s definitions are used 

throughout this study. An example event sequence graph is depicted in Figure 3.3. 

Definition 3.3:  An Event Sequence Graph   is a directed graph 

where   is a finite set of nodes (vertices) and  is a finite set of arcs 

(edges), and  finite sets of distinguished vertices with , called 

entry nodes and exit vertices, respectively, wherein  there is at least one 

sequence of vertices  from each  to each  with 

, for i = 0, …, k-1 and  (Belli, Budnik, and White 2006).  

The start (entry) and finish (exit) vertices of an ESG are marked by applying the 

following convention: all   are preceded by a pseudo vertex ‘[‘  and all 
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 are followed by another pseudo vertex ‘]’   (Belli, Budnik, and White 2006). 

The start (entry) and finish (exit) vertices which are demonstrated by ‘[‘ and  ‘]’ 

respectively, are called pseudo vertices and they are not included in  (Belli and Budnik 

2005; Belli, Budnik, and White 2006). The pseudo vertices are not included also in 

event sequences. 

Example 3.1: For the ESG given in Figure 3.3,  = {get balance, select deposit, 

enter deposit amount, put money, select withdraw, enter withdraw amount, take 

money}, Ξ={get balance, select deposit, select withdraw}, Γ={get balance, put money, 

take money} and  ={(get balance, select deposit), (select deposit, enter deposit 

amount), (enter deposit amount, put money), (get balance, select withdraw), (select 

withdraw, enter withdraw amount), (enter withdraw amount, take money), (put money, 

get balance), (take money, get balance)}.  does not contain the edges from pseudo 

start vertex ‘[’, and to pseudo finish vertex ‘]’. 

 

 

 

Figure 3.3. ESG of bank account SPL-base product 

 

 

 Definition 3.4: Let V,E be defined as in Definition 3.3. Any sequence of vertices 

 is called an event sequence (ES) if , for i=0, …, k-1 

(Belli and Budnik 2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). 
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 Example 3.2: select deposit - enter deposit amount - put money is an ES of 

length 3 of the ESG in which given in Figure 3.3.  

 In order to specify the start vertex and finish vertex of an ES  and 

 are functions are used, i.e., ,  (Belli and Budnik 

2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). The successors set of  

 is denoted by  and the predecessors set of  is denoted by 

 (Belli and Budnik 2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). 

The number of vertices of an ES is determined by the function  (Belli and 

Budnik 2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). If  

then  is an ES of length one (1) (Belli and Budnik 2005; Belli, Budnik, and 

White 2006; Belli and Budnik 2004). Each edge of ESG or an  of 

length two (2) represent an event pair (EP) (Belli and Budnik 2005; Belli, Budnik, and 

White 2006; Belli and Budnik 2004). 

 Definition 3.5: An ES is called a complete ES (Complete Event Sequence, 

CES), if  is the entry and  is the exit (Belli and Budnik 

2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). 

 Example 3.3: The ESG demonstrated in Figure 3.3 has a CES get balance - 

select withdraw - enter withdraw amount -take money which describes a walk from the 

start of the ESG to its finish. 

 A test sequence, i.e., test case, CES,  of the ESG is of the shape  “(initial) user 

inputs → (interim) system responses → … → (final) system response”(Belli and 

Budnik 2007). 

 A legal walk is represented by a CES which traverses the ESG from its 

start to its finish (Belli et al. 2005). A complete legal walk or an entire walk contains 

each event pair (EP) in the corresponding ESG at least once (Belli et al. 2005; Belli and 

Budnik 2005). A complete legal walk or a legal entire walk is minimal if its length 

cannot be decreased without changing it into an incomplete legal walk (Belli et al. 

2005). If a minimal legal walk contains every EP exactly once then it is considered ideal 

(Belli et al. 2005). CESs are considered as legal walks of ESGs (Belli et al. 2005). 

However, constructing an entire or an ideal walk is not always feasible (Belli et al. 

2005). 
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3.3. Test Generation from Event Sequence Graphs 

 

 

Test generation consists of extracting the complete event sequences (CESs) from 

ESGs. In order to extract the CESs of an ESG, one is required to solve the Chinese 

Postman Problem, which is abbreviated as CPP (Belli et al. 2005). Solving CPP means 

finding the Euler cycles on the graph, i.e., starting from and returning back to the same 

vertex by visiting each edge exactly once (Belli, Guler, and Linschulte 2011; Tuglular, 

Belli, and Linschulte 2016).  

The solution to the CPP on ESGs is the set of CESs of the corresponding 

ESG(Belli, Guler, and Linschulte 2011). The generation of CESs is anticipated to have 

a lower degree complexity comparing to solution of CPP, since the edges of ESG are 

not weighted (Belli et al. 2005).  

In order to derive the solution of CPP, the given ESG is required to be an 

Eulerian graph (Belli, Guler, and Linschulte 2011). If a graph is strongly connected and 

balanced, i.e.,   has equal in degree and out degree (Belli, Guler, and 

Linschulte 2011). An Eulerian graph has a cycle which goes exactly  

once across each edge and returns to the starting vertex (Belli, Guler, and Linschulte 

2011). 

 Figure 3.4 illustrates the transformation of an ESG given in Figure 3.3 into a 

strongly connected graph. Strongly connected means that there is a path between each 

vertex pair (Belli et al. 2005). A backward edge symbolized as a dashed arrow is added 

from exit vertex to entry vertex in order to transform the given ESG into a strongly 

connected ESG(Belli et al. 2005). All ESGs have a pseudo start vertex which reaches to 

each vertex in   by a path. Also, each vertex in  reaches to a pseudo end vertex by a 

path in all ESGs. Therefore, adding an edge from pseudo finish vertex to pseudo start 

vertex makes ESGs strongly connected. 

Definition 3.6: The number of edges going into a vertex    is the in degree 

written , and the number of edges pointing out of a vertex  is the outdegree 

written . Let  be the difference between the in- and outdegrees: 

 If , vertex  is called balanced (Belli, Guler, and 

Linschulte 2011).  
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 The vertex labels of Figure 3.5 indicates the balance values of the vertices of 

ESG given in Figure 3.4. The number of additional edges that are used to balance each 

vertex will be determined by exploiting these balance values (Belli et al. 2005). 

Definition 3.6 concludes that a directed graph is Eulerian if each of its vertices are 

balanced, i.e., .  

In order to balance the ESG, first, a positive degree vertex partition which is 

shown below as  and a negative degree vertex partition which is shown below as  

must be determined (Belli, Guler, and Linschulte 2011). Then, the vertices of these 

vertex partitions must be matched by taking the path lengths between them into 

consideration (Belli, Guler, and Linschulte 2011).  

 

 

 

 

 

Figure 3.4. Strongly connected ESG of bank account SPL - base product  

(derived from Figure 3.3) 

 

 

Figure 3.5, which is based on Figure 3.4, demonstrates the degree belonging to 

the each vertex in  Figure 3.4 with set  and 

set  (Belli, Guler, and Linschulte 2011).  and  

occur twice in  and , because their degree is  , respectively.  

To balance the given graph, each element of set  is strictly assigned to one 

element of set  until no unassigned element in either set is left and no other assignment 

with a lower number of edges to be added up to the assignment is left (Belli, Guler, and 

Linschulte 2011). This leads to assignment problem which answers the question of how 

n items (agents) are assigned to n other items (tasks) with varying costs, relying on the 

agent-task assignment (Belli, Guler, and Linschulte 2011). It is necessary to perform all 
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tasks by assigning exactly one agent to each task so that the total cost of the assignment 

is minimum (Belli, Guler, and Linschulte 2011).  

In this study, The Hungarian Matching Algorithm (Burkard, Dell’Amico, and 

Martello 2012) so-called Kuhn-Munkres Algorithm, which solves assignment problem 

is applied to match the two partitions  and ’s vertices and the ESG is made balanced 

by using this matching. The Hungarian Matching Algorithm is one of the fastest 

methods for solving the assignment problem and it provides a solution in O(n3) time 

(Belli, Guler, and Linschulte 2011).  

The balanced and strongly connected ESG is demonstrated in Figure 3.6 based 

on the ESG shown in Figure 3.3. The resulting paths of the matchings 

 

are added to the corresponding ESG and the additional paths are shown with dashes 

arrows. 

 

 

 

Figure 3.5. Vertex degrees of the bank account SPL - base product  

(derived from Figure 3.4) 

 

 

Since the ESG becomes an Eulerian graph, the problem is transformed into the 

construction of an Euler cycle from this graph (Belli et al. 2005). Each separate test case 

is identified by each occurrence of the ES = ] [ in the Euler cycle (Belli and Budnik 

2005). The number of walks or CESs are indicated by the number of backward edge 

which is contained by the Euler cycle (Belli et al. 2005).  

 This study solves CPP by finding an Euler cycle on an ESG by using Hierholzer 

Algorithm (Hierholzer and Wiener 1873) and dividing the cycle by the occurrence of 

ES = ] [. Each divided part corresponds to a CES and represents one of the test cases.  

On the basis of the Eulerian graph given in Figure 3.6, the resulting Eulerian 

cycle is given as follows: 
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enter withdraw amount take money – get balance ][ select withdraw  enter withdraw  

amount take money ][ select deposit – enter deposit amount – put money – get 

balance – select deposit – enter deposit amount – put money ][ get balance – select 

withdraw – enter withdraw  amount  

 

 

 

Figure 3.6. Strongly connected and balanced ESG of bank account SPL base product 

 

 

 The last vertex “enter withdraw amount” of the output cycle does not play a role 

in the desired test sequences, therefore it could be deleted (Linschulte 2013). Whenever 

this cycle is split up between each occurrence of  “][”, the resulting CESs are as 

follows:  

CES1: select withdraw  enter withdraw  amount take money 

CES2: select deposit – enter deposit amount – put money – get balance – select deposit 

– enter deposit amount – put money 

CES3: get balance – select withdraw – enter withdraw  amount take money – get 

balance 

 Algorithm 3.1 achieves test sequence generation from an ESG. 

 

 Algorithm 3.1 Sequence Generation 

Input:  G = (V, E, Ξ, Γ) – an ESG 

 k – integer coverage parameter for k-sequence coverage 

Output:  T – a set of complete sequences for G achieving k-sequence coverage 

              Gk  = transformESG(G) // See Algorithm 3.2 

              Gk-stronglyConnected  = add an edge from ‘]’ to ‘[’ 

              Gk-stronglyConnected-balanced  = add necessary paths untill degree of each V  Gk-stronglyConnected is 0. 

              T = generate Euler cycles from  Gk-stronglyConnected-balanced   
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To conclude, the test generation algorithm is required to solve the Chinese 

Postman Problem on the ESGs. The solution set of CPP contains each CES of the 

corresponding ESG and it covers each event pair (EP) of the ESG.  

 

 

3.4. ESG Transformation 

 

 

 ESG transformation algorithm is proposed in Algorithm 3.2 to cover event 

triples, quadruples etc., i.e. test sequences of length k where k could be 3,4 etc. When an 

ESG is transformed, it becomes to have event sequences in each of its nodes. The length 

of the ES, determines the value of k. If it is not transformed, only the event pairs could 

be covered, however k-length event sequences could help to connect the testing process 

thoroughly and reveal possible extra faults.  

Suppose an ESG has V= {x, a, b, c, z}, E= {(x, a), (a, b), (a, c), (b, c), (c, b), (b, z)} 

before transformation. When it is transformed once, each node becomes to have an ES 

of length 2 in it. After transformation, V= {xa, ab, ac, bc, cb, bz} and E= {(xa, ab), (xa, 

ac), (ab, bc), (ab, bz), (ac, cb), (bc, cb), (cb, bc), (cb, bz)}. When the edges of 

transformed ESG are covered, event triples which are xab, xac, abc, abz, acb, bcb, cbc 

and cbz are covered in test sequences. We cover k events by covering a single edge, 

when the length of the ES in a vertex is k-1. For example, the transformed ESG has a 

length-2 ES in each of its nodes, event triples are covered, i.e. k is 3.  

 Algorithm 3.2 convert the input ESG to a sequence ESG, i.e., an ESG that 

contains vertices of a special type called as sequence vertex by calling 

"convertToOneESG" procedure. Each sequence vertex includes event sequences (ESs) 

of length k of the Algorithm 3.2. Note that, the ESs of sequence vertices are acted as an 

event but they are not actual events, indeed. In "transform" procedure of Algorithm 3.2, 

the sequence ESG version of input ESG is transformed with itself k times until all the 

edges to cover ESs of length k are added.  

 Example 3.4: Consider the ESG that is given in Figure 3.3. V = {get balance, 

select deposit, enter deposit amount, put money, select withdraw, enter withdraw 

amount, take money} before transformation. When it is transformed once, each node 

becomes to have an ES of length 2 in it. After transformation, the vertex set becomes V 
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= {get balance: select deposit, select deposit: enter deposit amount, enter deposit 

amount: put money, put money: get balance, get balance: select withdraw, select 

withdraw: enter withdraw amount, enter withdraw amount: take money, take money: 

get balance}. Therefore, an event triple could be obtained by covering a single edge that 

belongs to the one-time transformed ESG. For example, when the edge (get balance: 

select deposit, select deposit: enter deposit amount) is covered the event triple get 

balance: select deposit: enter deposit amount is obtained. 

 

Algorithm 3.2  Transformation of ESG 

Input:  G = (V, E, Ξ, Γ) – an ESG to be transformed 

 k – integer transformation parameter 

Output:  Gk – transformed ESG 

              GoneESG = convertToOneESG(G) 

              Gk = GoneESG 

              for n=1 to k incrementing by 1 do 

                     Gk = transform (Gk , GoneESG) 

               endfor 

 

 In this chapter, the notions software product line, the feature modelling and the 

event sequence graphs are explained. Also, the algorithms test generation of EGSs and 

the transformation of EGSs are given. These notions and algorithms provide a basis for 

the next chapter, which will present a model-based test generation approaches for SPLs.  
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CHAPTER 4  

 

 

FULL TEST SEQUENCE COMPOSITION FROM 

FEATURED EVENT SEQUENCE GRAPHS 

 

 

The full test sequence composition approach is explained in this chapter. The 

full test sequence composition approach is a model-based approach which introduces 

Featured Event Sequence Graphs (FESG). FESGs are variable testing models which are 

used to express the variability of SPL products’ behavior explicitly (Tuglular, Beyazıt, 

and Öztürk 2019). In this approach, the core feature and each separate feature are 

modelled as ESGs into a FESG. Afterwards, the behavior of a specific product is 

obtained from the FESG that results from the combination of the core ESG and the 

feature ESGs. The purpose of this approach is to reuse the existing test models and also 

the test cases through composition. 

 

 

4.1. Featured Event Sequence Graph 

 

 

The notion Featured Event Sequence Graph is proposed in order to fulfill the 

need of associating a new feature to an existing product configuration so that the 

corresponding test model can be updated accordingly (Tuglular, Beyazıt, and Öztürk 

2019). Featured Event Sequence Graphs are abbreviated as FESGs and FESG is an 

extension of ESG(Tuglular, Beyazıt, and Öztürk 2019).  

Definition 4.1: A featured event sequence graph (FESG) is (F, c, Ξ, Γ) where F 

= {f1, f2, …, fN} ≠ ∅ is a finite set of EGSs called feature ESGs (f-ESGs) with each fi = 

(Vi, Ei, Ξi, Γi). c ∈ F is a special f-ESG called core ESG (c-ESG). Ξ, Γ ⊆  are 

finite sets of excided vertices called entry nodes (start events) and exit nodes (finish 

events), respectively. 
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Definition 4.1 suggest that an FESG is a set of feature-ESGs (f-ESGs) one of 

which is designated as core-ESG (c-ESG). These f-ESGs forms a behavioral model for 

a product/system when considered together. An f-ESG except for the c-ESG contains 

one or more nodes of other f-ESGs, which signifies that it is connected to these other f-

ESGs. A c-ESG, however, does not contain any node of another f-ESG. Also, two f-

ESGs cannot contain nodes from each other. 

Definition 4.2: A core-ESG (c-ESG) contains the events that represent the core 

behavior of the SPL These events are called core events and they are not necessarily 

connected to the c-ESG.   

 

 

 

Figure 4.1. c-ESG of bank account SPL 

 

 

The c-ESG of the running example is demonstrated in Figure 4.1. The core 

behavior of the SPL is represented as c-ESG (Tuglular, Beyazıt, and Öztürk 2019). 

Selected features’ behaviors are represented as feature ESGs which are defined in 

Definition 4.3. f-ESGs are combined with c-ESG in order to obtain a specific product’s 

behavior within SPL (Tuglular, Beyazıt, and Öztürk 2019). 

Definition 4.3: A particular feature in the feature model is represented by  a 

feature-ESG (f-ESG). Unlike ordinary ESG vertices and c-ESG vertices, a f-ESG 

contains vertices associated with the points of variability, which are named as 

connection events. Connection events are in fact occurrences in other c-ESGs or f-

ESGs. They are named as (ESG, Event) pairs (Tuglular, Beyazıt, and Öztürk 2019). 

The constraints are defined in feature diagram (Figure 3.1.) due to the existence 

of connection events. For example, the daily limit f-ESG requires both withdraw and 

cancelWithdraw features because of its connections to these f-ESGs. Note that, 

whenever an f-ESG A is connected to another f-ESG B, there should be a constraint that 

is A requires B, so that, A and B features are added to the product configurations 

together. Note that, even though the withdraw and deposit features are mandatory, the 

 constraints that implies these features are added because if these features become 
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optional, the cancelDeposit and cancelWithraw will still be requiring them.  

The bank account SPL running example is constituted from the c-ESG (Figure 

4.1) and nine f-ESGs. The behavior of withdraw feature is shown in Figure 4.2. In the 

given f-ESG, the connection points are placed right before the pseudo entry and the 

pseudo exit vertices in which “[, ], get balance” of c-ESG are events to be connected.  

 

 

 

Figure 4.2. withdraw f-ESG of bank account SPL 

 

 

Connection events are added in one-way direction from bottom to top which 

means that a c-ESG does not have connection event to its feature events (Tuglular, 

Beyazıt, and Öztürk 2019). This is the selected convention for this study in order to take 

advantage of reuse (Tuglular, Beyazıt, and Öztürk 2019). Nevertheless, each f-ESG 

contains variability points, i.e., the information of connection events (Tuglular, Beyazıt, 

and Öztürk 2019). In order to constitute a FESG for a specific product configuration, a 

c-ESG and a f-ESG set are composed (Tuglular, Beyazıt, and Öztürk 2019). 

 

 

4.2. Discussion 

 

 

In this thesis work, one novelty is Featured Event Sequence Graphs. Since these 

FESGs are extensions of EGS models, the reasons behind the preference of ESGs are 

explained in this section. Afterwards, the necessity for extending ESGs and introducing 

FESGs are mentioned.  

The first reason is that the ESGs are event-based models. As it is written before 

in CHAPTER 2, Chow (Chow 1978) described test models based on finite state 
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machines in 1978. The finite state machine-based test models and the Petri nets (Xu 

2011) which are variation of finite state machines are all state-based models. Using 

ESGs as test models provide a better reflection of the interactive human-machine 

systems’ behavior. In event-based modelling of the ESGs, both the desirable and the 

undesirable behavior of the reactive systems are modelled, and this brings a 

complementary view on the system which enables modelling potential user faults. 

The second reason is that ESGs are graphs and for graphs, there exist algorithms 

to get minimal set of test sequences such as Chinese Postman Problem or Travelling 

Salesman Problem. The efficiency is neglected by generating large test sets including 

redundant and unnecessary test sequences and, these large test sets do not always result 

in a better test coverage (Linschulte 2013).  

The third reason is that model refinement of ESG by hierarchical structures 

exists. These hierarchical refined models help to apply the principle of “divide and 

conquer” and allows modularization. Furthermore, there is no other approach to use 

hierarchical structures to generate optimized test sets (Linschulte 2013).  

ESGs are preferred in model-based testing because of the advantages outlined 

above and extended for the following reasons. First of all, Featured Event Sequence 

Graphs are also event-based models and they are preferable for interactive human-

machine systems. Second, FESGs contains c-ESG and f-ESG models, which are 

modelled as ESG, therefore, they exploit the optimal test sequence generation 

approaches.  

Furthermore, Featured Event Sequence Graphs follows the “divide and conquer” 

principle in a more traceable way. In the hierarchical ESG models, models that are low-

level in hierarchy are hidden under certain vertices. This makes the traceability of these 

models harder comparing to the FESG models, since in FESG models the hierarchy is 

shown explicitly via connection points. Also, c-ESG and f-ESGs of the FESG model 

could be handled separately from each other. Additionally, the hierarchical models of 

EGSs are not used before in SPL testing however the c-ESG and f-ESG model usage 

directly fits into the SPL testing since each feature is modelled individually and this 

allows tailored product configurations. 

The traceability of FESG models contributes updating both the features and the 

product configurations easily. Comparing the large ESG models, adding, removing and 

updating vertices are quite easier. Also, updating the vertices of one f-ESG does not 

affect other f-ESGs except for the vertices that will be connected by other f-ESGs. 
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Consequently, ESGs are extended to FESGs to fit the SPL paradigm and to create more 

traceable and easily updatable small models. 

 

 

4.3. Full Test Sequence Composition 

 

 

The Feature Model (FM) with product configurations corresponding to feature 

diagram, Featured Event Sequence Graphs to model behavior of the SPL and a mapping 

between features and FESGs are required for test sequence composition technique 

(Tuglular, Beyazıt, and Öztürk 2019). The Feature Model and Featured Event Sequence 

Graphs are explained in previous sections. A product FESG tree is obtained by using the 

mapping of features with FESGs by using the selected features for a particular product 

configuration (Tuglular, Beyazıt, and Öztürk 2019). The root stores a link to the SPL’s 

c-ESG and the leaves store links to the selected features’ corresponding f-ESG in a 

product FESG tree (Tuglular, Beyazıt, and Öztürk 2019). 

f-ESGs could include events that are not in the product configuration (Tuglular, 

Beyazıt, and Öztürk 2019). First of all, these events should be removed (Tuglular, 

Beyazıt, and Öztürk 2019). A product FESG lattice is constructed using the product 

FESG tree, where all connection relationships are ordered (Tuglular, Beyazıt, and 

Öztürk 2019). The Algorithm 4.1 is proposed in order to construct the product FESG 

lattice (Tuglular, Beyazıt, and Öztürk 2019). In order to notate either a c-ESG or an f-

ESG, x-ESG is used (Tuglular, Beyazıt, and Öztürk 2019).  

 

Algorithm 4.1 Construction of product FESG lattice 

1. for each f-ESG 

2.      if it contains events, which are not in the product 

configuration, remove them 

3. for each f-ESG (f) 

4.      if it has connection point(s) to c-ESG (c), build f  c 

5.      if it has connection point(s) to other one or more 

f-ESGs (g, h, etc.), build f  g , f  h , etc. 

6.      loop back 

 

The output of the Algorithm 4.1 for bank account SPL’s daily limit product is 

the hierarchical product FESG lattice and given in Figure 4.3. In this figure, c-ESG is at 

the top level (level 0) and the f-ESGs with connection points are children of the root 
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(level 1, level 2 and level 3). Note that, the number of leaves could be increased 

according to the product configuration’s number of features. 

The feature ESG of daily limit feature is demonstrated in Figure 4.4. Consider 

the daily limit bank account product that includes this feature which is given in Figure 

4.5. Since the daily limit feature requires withdraw and cancel withdraw features, this 

product includes also these features and the feature cancel deposit. The configured 

features of this product do not contain any event that does not belong to daily limit bank 

account product. Therefore, the step 2 of Algorithm 4.1 is omitted for this product 

configuration.  

 

 

 

Figure 4.3. Product FESG lattice for daily limit product 

 

 

The ESs of length 2 of each different path in the product FESG lattice for 

product daily limit that are covered by the partial test cases are as in the following: 

PTS1: get balance, …, select deposit, enter deposit amount, put money 

PTS2: get balance, …, select withdraw, enter withdraw amount, take money 

PTS3: …, select withdraw, cancel withdraw 

PTS4: …, enter withdraw amount, confirm daily limit excess, enter withdraw amount,… 

PTS5: … confirm daily limit excess, cancel withdraw  

PTS6: …, enter daily withdraw limit 

 

 

 

Figure 4.4. daily limit f-ESG of bank account SPL 
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PTS1 is obtained from the path deposit→core, PTS2 is obtained from the path 

withdraw→core, PTS3 is obtained from cancelWithdraw→core, PTS4 is obtained 

from dailyLimit→withdraw, PTS5 is obtained from dailyLimit→cancelWithdraw 

and PTS5 is obtained from dailyLimit→core.  

In order to compose the test sequences, the PTs should be connected in all 

possible ways (Tuglular, Beyazıt, and Öztürk 2019). In order to achieve this purpose, 

the Algorithm 4.2 is proposed (Tuglular, Beyazıt, and Öztürk 2019). 

 

Algorithm 4.2. Composition of product test sequences 

1. find connection points in partial test sequences 

2. order them w.r.t their levels in product FESG lattice, c-ESG  

    having the highest order 

3. starting from lowest order for each connection point 

4.      find PTSs from PTS list and classify them as preceding and  

         succeeding sequences with respect to this connection point 

5.      combine with all preceding sequences and add to PTS list 

6.      combine with all succeeding sequences and add to PTS list 

 

The running example’s partial test sequences have connection points which are 

the [,], get balance, select withdraw, enter withdraw amount and cancel withdraw 

events. Whenever they are composed, the following test sequences or CESs in other 

words, are obtained: 

CES1: get balance 

CES2: select deposit, enter deposit amount, put money, get balance, select deposit, 

enter deposit amount, put money 

CES3: select withdraw, enter withdraw amount, take money, get balance, select 

withdraw, enter withdraw amount, take money 

CES4: enter daily withdraw limit, enter daily withdraw limit 

CES5: select deposit, cancel deposit 

CES6: select withdraw, cancel withdraw 

CES7: select withdraw, enter withdraw amount, confirm daily limit excess 

CES8: select withdraw enter withdraw amount, confirm daily limit excess, enter 

withdraw amount, confirm daily limit excess, cancel withdraw 

 

 The composed test sequences cover the same ESs of length 2 with the test 

sequences generated from the ESG given in Figure 4.5. 

 Test sequence composition from FESGs allows us to obtain the test sequences 

that are equivalent with the complete product model’s test sequences in terms of 
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coverage of length 2-ESs (Tuglular, Beyazıt, and Öztürk 2019). The product FESG 

enables reusing of generated partial test sequences for new-coming product 

configurations, which makes this approach efficient[5]. 

 

 

 

Figure 4.5. ESG of bank account SPL - daily limit product 

 

 

 The next chapter will introduce the incremental test sequence composition 

approach which is established on the base of the test sequence composition approach. 
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CHAPTER 5  

 

 

INCREMENTAL TEST SEQUENCE COMPOSITION 

FROM FEATURED EVENT SEQUENCE GRAPHS 

 

 

The incremental test sequence composition approach is explained in this chapter. 

The approach is model based; that is, it is based on the use of featured ESGs (FESGs). It 

exploits the fact that test cases for certain products already exist and they can be 

employed to obtain test cases of new products which are related to the existing products 

as implied by the corresponding feature diagram on a software product line. Therefore, 

the purpose of incremental test sequence composition is to reuse the FESG model and 

the test cases of an existing product in order to obtain test cases of a new product which 

is constructed by including new features to the existing product. 

 

 

5.1. Incremental Test Sequence Composition 

 

 

 In the incremental test generation approach, the employed models are based on 

the definition of an ESG (Definition 3.3) and definition of an FESG (Definition 4.1). 

The following example is given in order to explain the components of FESGs on the 

base product of bank account SPL.  

Example 5.1: The base product of bank account SPL ESG which is given in 

Figure 3.3 includes deposit and withdraw features, the FESG (F, c, Ξ, Γ) of this product 

is given in the following: 

 F = {f1, f2} 

 f1 = deposit f-ESG (Figure 5.1) 

V1 = {(core, [), (core,get balance), select deposit, enter deposit amount, put 

money, (core,])}, E1 = {((core,[), select deposit),((core, get balance), select deposit), 

(select deposit, enter deposit amount), (enter deposit amount, put money), (put money, 

(core,])) },     

Ξ1 = {select deposit} 
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Γ1 = {put money} 

 f2 = withdraw f-ESG (Figure 4.2) 

V2 = {(core, [), (core, get balance), select withdraw, enter withdraw amount, 

take money, (core,])} 

E2 = {((core, [), select withdraw), ((core, get balance), select withdraw), (select 

withdraw, enter withdraw amount), (enter withdraw amount, take money), (take money, 

(core,]))}   

Ξ2 = {select withdraw} 

Γ2 = {take money} 

 c = c-ESG of bank account with Vcore = {get balance}, Ecore = ∅, Ξcore = Γcore = 

{get balance} 

 Ξ = Ξ1  Ξ2  Ξcore therefore, Ξ = { select deposit, select withdraw, get balance } 

 Γ = Γ1  Γ2 Γcore therefore, Γ = { put money, take money, get balance} 

 

 

 

Figure 5.1. deposit f-ESG of bank account SPL 

 

 

The incremental test sequence composition approach is more efficient than the regular 

test sequence composition approach, which is mentioned in CHAPTER 4, in terms of 

composition time, since the test sequences are not composed from scratch each time a 

new feature is added to the product configuration. The existing test sequences of the 

product are used, and test sequences for the new features are composed with the existing 

ones. Algorithm 5.1 demonstrates the main steps of incremental sequence generation. 

Algorithm 5.1 assumes that T, i.e. a set of complete sequences for G achieving 

k-sequence coverage, achieves k-sequence coverage for the existing FESG. Therefore, it 

only transforms the new f-ESGs (incremental transformation), generates test sequences 

(partial sequences) from the transformed f-ESGs and compose these sequences with the 

existing ones in order to obtain a set of sequences achieving k-sequence coverage for 

the new FESG that is obtained by adding the new f-ESGs to the existing FESG 

properly. 
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Algorithm 5.1. Incremental Sequence Generation 

Input:  G = (F, c, Ξ, Γ) – an FESG 

 T – a set of complete sequences for G achieving k-sequence coverage 

 (Fnew, Ξnew, Γnew) – sets of new f-ESGs, and start and finish vertices to be added to G 

 k – integer coverage parameter for k-sequence coverage 

Output:  T' – a set of complete sequences for the new FESG G' = (F  Fnew, c, Ξ  Ξnew, Γ  Γnew)     

achieving k-sequence coverage 

 Fnew_k = transformIncremental(Fnew, F, k) // See Algorithm 5.2 

 Tnew = generateSequences(Fnew_k, k) // See Algorithm 5.3 

 T' = composeSequences(T, Tnew, Ξ  Ξnew, Γ  Γnew) // See Algorithm 5.4 

 

 

Example 5.2: The Algorithm 5.1 is explained using the input G = base product-

FESG exemplified in Example 5.1. k is chosen as 3 which means that the event triples 

will be covered. T = {CES1, CES2, CES3, CES4, CES5} which is the set of complete 

test sequences for G where CESs are given in the following: 

CES1: select deposit, enter deposit amount, put money, get balance, select deposit, 

enter deposit amount, put money 

CES2: select deposit, enter deposit amount, put money, get balance, select withdraw, 

enter withdraw amount, take money, get balance, select withdraw, enter withdraw 

amount, take money 

CES3: select withdraw, enter withdraw amount, take money, get balance, select 

deposit, enter deposit amount, put money 

CES4: get balance, select deposit, enter deposit amount, put money 

CES5: select deposit, enter deposit amount, put money 

G is incrementally updated to the daily limit product-FESG of the bank account 

SPL by addition of cancelDeposit, cancelWithdraw and dailyLimit (Figure 4.4) features. 

Therefore, Fnew = {cancelDeposit f-ESG, cancelWithdraw f-EGS, dailyLimit f-ESG}, 

Ξnew = {enter daily withdraw limit} and Γnew = {cancelDeposit, cancelWithdraw, enter 

daily withdraw limit}. Note that, the elements of Ξ and Γ are event names, not the 

feature names. 

The output of the Algorithm 5.1 for T'= {CES1, CES2, CES3, CES4, …., 

CES15} is given as follows: 

CES1: select deposit, enter deposit amount, put money, get balance, select deposit, 

enter deposit amount, put money 

CES2: enter daily withdraw limit, enter daily withdraw limit, enter daily withdraw limit 

CES3: enter daily withdraw limit 
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CES4: select deposit, enter deposit amount, put money, get balance, select withdraw, 

enter withdraw amount, take money, get balance, select withdraw, enter withdraw 

amount, take money 

CES5: select deposit, cancel deposit 

CES6: select deposit, enter deposit amount, put money, get balance, select deposit, 

cancel deposit 

CES7: select withdraw, cancel withdraw 

CES8:  select deposit, enter deposit amount, put money, get balance, select withdraw, 

cancel withdraw 

CES9: select withdraw, enter withdraw amount, confirm daily limit excess, enter 

withdraw amount, take money 

CES10: select withdraw, enter withdraw amount, confirm daily limit excess, cancel 

withdraw 

CES11: select withdraw, enter withdraw amount, confirm daily limit excess, enter 

withdraw amount, confirm daily limit excess, cancel withdraw 

CES12: select withdraw, enter withdraw amount, take money, get balance, select 

deposit, enter deposit amount, put money 

CES13: get balance, select deposit, enter deposit amount, put money 

CES14: select deposit, enter deposit amount, put money 

CES15: select withdraw, enter withdraw amount, take money 

The “transformIncremental”, “generateSequences”, and “composeSequences” 

procedures are explained in Algorithm 5.2, Algorithm 5.3, and Algorithm 5.4, 

respectively.  

 Algorithm 5.2 demonstrates how f-ESGs of the new features are incrementally 

transformed before generating sequences using them. Note that elements of the sets are 

accessed by using index values and it is assumed that insertion order is preserved in 

sets. This is done to obtain an f-ESG and its corresponding transformed form with less 

effort. 

 Algorithm 5.2 transforms each new f-ESG, i.e. f, k-2 times by using 

1. f itself, 

2. all the other f-ESGs which come before f and 

3. all the base f-ESGs. 

 Remember that the length of the ES, determines the value of k. In order to cover 

event triples, for example, the ESG is transformed once so that it could have ESs of 
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length 2 in its vertices. In the case that event triples are covered, k is 3 and the number 

of transformations is 1. Therefore, Algorithm 5.2 transforms each new f-ESG k-2 times. 

 

Algorithm 5.2. Incremental Transformation of f-ESGs 

Input:  F – a set of new f-ESGs to be transformed 

 B – a set of base f-ESGs to be used to trasform the new f-ESGs 

 k – integer transformation parameter 

Output:  Fk – a set of transformed features 

 Fk = F 

 for n=2 to k-1 incrementing by 1 do 

  H = {} 

  for i=1 to |F| incrementing by 1 do 

   h = create an empty f-ESG to store the transformed f 

   f = get the ith f-ESG in Fk 

   g = get the ith f-ESG in F which is the f-ESG corresponding to Fk 

   transformfESG(f, g, h) // Transform f using g updating h 

   for j=i-1 to 1 decrementing by 1 do 

    g = get the jth f-ESG in F 

    transformfESG(f, g, h) // Transform f using g updating h 

   endfor 

   for j=|B| to 1 decrementing by 1 do 

    g = get the jth f-ESG in B 

    transformfESG(f, g, h) // Transform f using g updating h 

   endfor 

   H = H  {h} 

  endfor 

  Fk = H 

 endfor 

 

Each time f is transformed, "transformfESG" procedure is carried out. A separate 

algorithm is not given for this procedure because it is extended from the one given in 

Algorithm 3.2 by the following points. 

 

1. "transformfESG" procedure used in Algorithm 5.2 also adds edges into the 

transformed f-ESG h to generate sequences with length <k in case such 

sequences cannot be included in sequences of length k. 
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2. Intermediate sequences which appear during "transformfESG" procedure are 

extended at both head and tail ends whereas those that appear in Algorithm 3.2 

are extended at only tail end. This stems from the fact that, when an f-ESG f is 

transformed using an f-ESG g, g is not transformed using f to avoid 

repeated/redundant sequences and increase efficiency by reducing the number 

for transformations. 

 Algorithm 5.2 is explained in the following example. Here, the f-ESGs to be 

transformed are those given in  Example 5.2.  

 Example 5.3: F = {cancelDeposit f-ESG, cancelWithdraw f-EGS, dailyLimit f-

ESG} and  B = {deposit f-ESG, withdraw f-ESG} are inputs of Algorithm 5.2. The 

integer transformation parameter is 1 since k = 3 in Example 5.2 and the number of 

transformations ,i.e., integer transformation parameter, is k - 2. Therefore, the f-ESGs 

are transformed once. In the execution of this algorithm, the f-ESG elements of F are 

transformed by exploiting the pre-transformed f-ESG elements of B. The one-time 

transformed version of daily limit f-ESG is given in Figure 5.2. Also, this algorithm 

allows us to generate sequences that have length smaller than k. For instance, CES3, 

CES5 and CES7 which are given in Example 5.2  have length 1 or 2 when k=3.  

 

Algorithm 5.3. Sequence Generation of Transformed f-ESGs 

Input:  F – a set of transformed f-ESGs 

 k – integer transformation parameter 

Output:  T – a set of partial sequences for f-ESGs in F achieving k-sequence coverage 

 T = {} 

 for each f  F do 

  Tf = generateSequences(f) 

  Tf = removeRepetitions(Tf, k) 

  T = T  Tf 

 endfor 

 

After the new f-ESGs are transformed, Algorithm 5.3 can be used to generate 

partial sequences from the transformed f-ESGs to achieve k-sequence coverage. 

 In Algorithm 5.3 for each transformed f-ESG, sequences are generated from the 

f-ESG by covering all its edges (achieving edge coverage) using "generateSequences" 

procedure. After sequences are generated, they need to be processed in order to remove 



 

35 

 

repetitions due to using transformed models, which is done by "removeRepetitions" 

procedure considering the value of k. Following this step, obtained sequences are 

inserted into a single set.  

 The following example explains “generateSequences” procedure of Algorithm 

5.1, which is Algorithm 5.3. The input F of Algorithm 5.3 is the one which is given in 

Example 5.3. 

 

 

 

Figure 5.2. The one-time transformed daily limit f-ESG 

 

 

 Example 5.4: The test sequences of elements of the set F are generated in 

Algorithm 5.3. The output of Algorithm 5.3 is Tnew = { TtransformedDailyLimit  

TtransformedWithdraw  TtransformedCancelWithdraw }. The sequence generation  TtransformedDailyLimit = 

{CES1, CES2,...,CES8} of one-time transformed daily limit f-ESGs (Figure 5.2) is 

given as in the following: 

CES1: (withdraw,enter withdraw amount), confirm daily limit excess, (withdraw,enter 

withdraw amount), (withdraw,take money) 

CES2: enter daily withdraw limit, enter daily withdraw limit, enter daily withdraw limit 

CES3: (withdraw,enter withdraw amount), confirm daily limit excess, 

(cancelWithdraw,cancel withdraw) 
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CES4: (withdraw,select withdraw) 

CES5: (withdraw,enter withdraw amount), (withdraw,take money) 

CES6: (withdraw,select withdraw), (withdraw,enter withdraw amount), confirm daily 

limit excess 

CES7: enter daily withdraw limit 

CES8: (withdraw,enter withdraw amount), confirm daily limit excess, (withdraw,enter 

withdraw amount), confirm daily limit excess, (cancelWithdraw,cancel withdraw) 

After partial sequence achieving k-sequences coverage are generated for the new 

f-ESGs, can be used to compose them with the existing complete sequences which are 

generated for the FESG model. 

 

Algorithm 5.4. Sequence Composition 

Input:  T – a set of existing complete sequences 

 Tnew – a set of new partial sequences 

 Ξ – a set of start vertices 

 Γ – a set of finish vertices 

Output:  CS – a set of composed complete sequences 

 SS = initializeStartSequences(T, Tnew, Ξ) 

 notfinished = true 

 while notfinished is true do 

  notfinished = updateStartSequences(Tnew, SS) 

 endwhile 

 CS = initializeCompleteSequences(SS, Γ) 

 notfinished = true 

 while notfinished is true do 

  notfinished = updateCompleteSequences(SS, CS) 

 endwhile 

 

Algorithm 5.4 uses four different procedures in order to perform sequence 

composition: "initializeStartSequences", "updateStartSequences", "initializeComp-

leteSequences" and "updateCompleteSequences". 

 "initializeStartSequences" constructs a set of start sequences SS. For 

each sequence s  T  Tnew, if s is a start sequence, it is removed from 

the set that contains it. s is included in SS if it increases the coverage. 
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Note that all sequences in T are complete sequences; whereas Tnew may 

or may not contain start sequences. 

 "updateStartSequences" goes through the remaining partial sequences in 

Tnew. For each partial sequence s  Tnew, it tries to find a start sequence 

seq  SS such that s and seq can be composed to obtain a new sequence 

seq_new; that is, s can be completed to a start sequence by using a prefix 

of seq. If this is possible, s is removed from Tnew and, if seq_new 

increases coverage, it is included in SS. Furthermore, if seq is a prefix of 

seq_new, seq is removed from SS. "updateStartSequences" is repetitively 

called until no more sequences remain in Tnew. 

 "initializeCompleteSequences" constructs a set of complete sequences 

CS. For each sequence s  SS, if s is also a finish sequence, it is 

removed from SS and included in CS. 

 "updateCompleteSequences" goes through the remaining start sequences 

in SS. For each start sequence s  SS, it tries to find a complete sequence 

seq  SS such that s and seq can be composed to obtain a new sequence 

seq_new; that is, s can be completed to a finish sequence by using a 

suffix of seq. If this is possible, s is removed from SS and seq_new is 

included in CS. " updateCompleteSequences " is repetitively called until 

no more sequences remain in SS. 

The following example explains “composeSequences” procedure of Algorithm 

5.1, that is Algorithm 5.4.  

Example 5.5:  In this example, the input T of Algorithm 5.4 is the one that is 

given in Example 5.2. Also, the input Tnew of Algorithm 5.4 is the one that is given in 

Example 5.4. All four procedures are explained with a simple instance of T, Tnew, or T 

 Tnew. 

initializeStartSequences procedure : There is SS = { s1, s2, s3, s4, s5} for the 

given  FESG in Example 5.2 with Fnew ,Ξnew and Γnew , where, 

s1: get balance 

s2: select deposit, enter deposit amount, put money, get balance, select deposit, 

enter deposit amount, put money 

s3: select withdraw, enter withdraw amount, take money, get balance, select 

deposit 
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s4: enter daily withdraw limit, enter daily withdraw limit, enter daily withdraw 

limit 

s5: enter daily withdraw limit 

These sequences are added to SS since they all start with an element of Ξ  

Ξnew.  

updateStartSequences procedure: For this procedure, a sequence of daily limit f-

ESG is chosen in order to explain the procedure in a simpler way. 

S  (TtransformedDailyLimit   Tnew) = (withdraw,enter withdraw amount), confirm 

daily limit excess, (withdraw,enter withdraw amount), (withdraw,take money) 

seq = s3  SS =  select withdraw, enter withdraw amount, take money, get 

balance, select deposit 

seq_new = select withdraw, enter withdraw amount, confirm daily limit excess, 

enter withdraw amount, take money 

seq_new increases coverage, therefore, it is included in SS = { s1, s2, s3, s4, s5, 

seq_new}. Furthermore, seq is not a prefix of seq_new, therefore, it is not removed 

from SS.  

initializeCompleteSequence procedure: For each sequence s  SS = { s1, s2, s3, 

s4, s5, seq_new}, each sequence is investigated in terms start and finish events. If start 

event is an element of Ξ and finish event is an element of Γ, s is included in CS. CS is 

given in the following: 

CS = { s1, s2, seq_new} 

updateCompleteSequences procedure: This procedure is called repetitively 

called until no more sequences remain in SS. 

s  SS = select deposit, enter deposit amount, put money, get balance, select 

deposit, enter deposit amount, put money which is a CES, is composed with the 

following: 

seq = s3  SS = select withdraw, enter withdraw amount, take money, get 

balance, select deposit 

And yet, seq_new = select withdraw, enter withdraw amount, take money, get 

balance, select deposit, enter deposit amount, put money is obtained.  

 In this chapter, the incremental test sequence composition approach that is based 

on the FESG usage is explained in detail. This approach exploits the fact that the 

existing FESGs and their corresponding test sequences are reusable. Therefore, in order  
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to build a new product with new features from an existing product, this approach is 

advantageous and efficient. In the next chapter, a helper graph to apply the incremental 

test sequence generation is introduced.    
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CHAPTER 6  

 

 

FEATURE-BASED INCREMENTAL PRODUCT GRAPH 

 

 

The feature-based incremental product graph is introduced in this chapter. Also, 

the ‘base product’ notion for SPLs is introduced in this chapter. A feature-based 

incremental product graph is a graph that helps to generate the test sequences of 

products within an SPL incrementally and automatically. 

 

 

6.1. Feature-Based Incremental Product Graph 

 

 

 A feature-based incremental product graph, short for IPG is a directed graph that 

holds the FESGs of products within the SPL. It holds f-ESGs in its edges. By traversing 

this graph, the CESs of corresponding products are obtained automatically. 

Furthermore, by traversing the edges of this graph, a product configuration could be 

validated.   

 The novelty of the feature-based incremental product graph is producing the 

complete event sequences of each product variant within an SPL and validating these 

variants automatically by holding each product variant’s configuration in its vertices. 

Also, it could be traversed via Breadth First Traversal by using the features which are 

held by the feature-based incremental product graph’s edges.  

 In this thesis work, the usage of the IPG makes contribution in experimenting of 

incremental test sequence composition approach. Thanks to this graph, for four different 

case studies which will be mentioned in the next chapter, different experimenting 

scenarios are built. These scenarios include, generating the CESs of, for example, the 

credit product, from reusing the base product FESG model or from reusing the interest 

product FESG model. Therefore, the CESs of different product variants’ configurations 

are obtained via different scenarios. The CESs of each product variant are obtained at 

one run by employing the incremental test sequence composition approach so, 
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experimenting and getting results becomes quite easier. Also, each product variant’s 

configuration is validated at one run by feature-based incremental product graph. 

 An IPG necessarily holds product FESGs in its vertices, i.e. each vertex 

corresponds to a product within the SPL which the generated CES could be executed 

on. Also, it has a start vertex as a basis product to others which could be any product 

within SPL.  

 In IPGs, there is no limitation to choose a product as a start vertex’s product but 

of course, the selected product should make sense as a basis product. Assume that, the 

running example bank account could have only six products which are depicted in 

Figure 3.2. Since no more product could be configured, the given ones should be used 

between each other to generate CESs of all products. In this scenario, using for example 

overdraft product is not restricted in theory, but in practice it does not make the test 

generation process advantageous. This because, the incremental test sequence 

composition approach does not support feature removal yet and the only product that 

has the overdraft feature is the overdraft product of Bank Account SPL. The feature-

based incremental product graph of running example is given in Figure 6.1.  

 In order to build a feature-based incremental product graph, the feature model of 

the SPL under consideration and the configuration file of each product variant within 

the SPL which could be created depending on the feature model and its constraints are 

parsed. The feature model and its corresponding configuration files are built by using a 

tool which is called FeatureIDE (“FeatureIDE” n.d.).  

 Three characteristics of features in the feature model are parsed: the name of the 

feature, being mandatory/optional and being abstract/concrete. Also, the constraints 

between features, which are implication, conjunction and disjunction, are parsed. The 

parsed information is used while building the incremental product graph. For instance, 

if a feature implies another feature this means the vertex that includes the implying 

feature should include the implied feature as well; or, if there is a disjunction constraint 

between two features, this means that these features should not be included in the same 

vertex or there should be no edge that directs the vertices so that these vertices include 

both of the features. Furthermore, each product variant’s configuration file is parsed. By 

this way, each product’s configuration is obtained and the FESGs of these 

configurations could be created.   

 Each vertex of the graph that is given in Figure 6.1 is traversed by the Breadth-

First Traversal starting from the base product and the CESs of each product are 
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generated automatically by exploiting incremental test sequence composition approach. 

Here the start vertex includes the ‘base product’ FESG of the SPL, which is named as 

base product. The ‘base product’ notion is defined in the following to prevent 

intangibility.  

 

 

 

Figure 6.1. Feature-Based Incremental Product Graph of Bank Account SPL 

 

 

 Definition 6.1: A base product is a product that its configuration is up to the 

SPL domain and up to the developer who models the products within SPL. A product 

could be a base product in one of the following cases:  

1. If the c-ESG of the SPL resembles a product within the domain (see Figure B.1 

of Email SPL) 

2. The product that is constituted from the c-ESG and non-excluding mandatory 

features (see Figure 3.3 of Bank Account SPL).  

Furthermore, an SPL could not have a base product, either. If mandatory featu- 
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res are related by XOR, i.e., only one of them should be selected within a product 

configuration, the base product could not be constituted.  

 Example 6.1: Consider the feature model of the Student Attendance System 

case study (see Figure 7.26). All of the grouping mandatory features of this feature 

model are mandatory, however, two of them group alternative features via XOR relation 

(see SubmitAttendanceMethod and Notification features). Since selecting one of these 

alternative features omit the rest of the features, a base product could not be decided for 

this SPL.  

 For the example above, the products could be incremented from 8 different basis 

products due the existence of SubmitAttendanceMethod which has 4 alternative sub-

features and Notification which has 2 alternative sub-features that could be combined 

into 8 different basis products. Therefore, in order to generate test sequences of all the 

product variants within Student Attendance System SPL, there needs to be at least 8 

different IPG with 8 different start vertices.  

 In order to traverse the graph, the product FESG of the start vertex should be 

decided and by using the start vertex with other vertices’ product FESGs and the edges, 

the IPG should be build. The definition of the IPG is given in the following. 

 Definition 6.2: A Feature-Based Incremental Product Graph  IPG(V(FESG),E(f-

ESG), ) is a directed graph where V ≠ ∅ is a finite set of nodes (vertices) that each 

node contains a Featured ESG and E ⊆ V ×V is a finite set of arcs (edges) that each 

edge contains a set of feature ESG (f-ESG). ∈ V is the start vertex of the graph and it 

holds the product FESG that is decided as a basis product to generate the CESs of 

products within the SPL incrementally. 

 

 

6.2. The Connectivity of Feature-Based Incremental Product Graph   

 

 

 Let   is the set of features within the SPL and 

is denoted as  with the cardinality . Remember that the c-

ESG is a special f-ESG. The power set of F which is 

 which has the cardinality . In an ,each vertex  
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corresponds to one of the elements of  

 where  are excluding 

features and  where . The edge set 

. This means that each vertex 

corresponds to one of the elements of  and   contains the element pairs of . 

Therefore, a feature-based incremental product graph forms a partial order over subset 

relation  on power set of F. This means that it is an inf-semilattice. The related 

definitions and examples to explain the details of being an inf-semilattice are given 

below.  

 Definition 6.3: A partial order is a relation with certain properties (Garg 2015). 

 The properties of a partial order could be Reflexivity, Irreflexivity, Symmetry, 

Antisymmetry, Asymmetry and Transitivity (Garg 2015; “Readings of Mathematics for 

Computer Science  MIT OpenCourseWare - Chapter 7” n.d.). Also, a partially ordered 

set is called a poset (Garg 2015; “Readings of Mathematics for Computer Science  MIT 

OpenCourseWare - Chapter 7” n.d.).  

 Definition 6.4: A reflexive partial order which is also called a non-strict partial 

order is a relation which is reflexive, antisymmetric and transitive (Garg 2015). It is 

symbolized as (X, ). 

 Definition 6.5: An irreflexive partial order which is also called a strict partial 

order is a relation which is irreflexive, antisymmetric and transitive (Garg 2015). It is 

symbolized as (X, <). 

 Throughout this section, a poset means a set X with either a reflexive partial 

order or an irreflexive partial order. 

 Two operations are defined on the set X’s subsets which are meet or infimum 

(inf) and join or supremum(sup) (Garg 2015).   

 Definition 6.6: To define meet operator ( ) let Y⊆X, where (X,≤) is a poset. 

For any m ∈X,we say that m=inf Y iff ∀y ∈Y:m ≤y and ∀m'∈X: (∀y ∈ Y:  m^'≤y) 

⟹m' ≤ m. This means that m is the greatest lower bound of Y (Garg 2015).  

 Definition 6.7: To define join operator ( ) let Y⊆X, where (X,≤) is a poset .For 

any s ∈X, s=sup Y iff ∀y ∈Y:y ≤s and ∀s^'∈X:(∀y ∈ Y:  y≤s' )  ⟹ s≤s'. This means 

that s is the lowest upper bound of Y. 
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 Definition 6.8: A lattice is a poset in which any two elements have an inf and a 

sup (“Readings of Mathematics for Computer Science  MIT OpenCourseWare - Chapter 

7” n.d.). Also, if  exists, then it is called sup-semilattice. If  

 exists, then it is called inf-semilattice (Garg 2015). 

 Since an incremental product graph has the , which is used as the basis vertex 

to reach other vertices, and SPLs generally has excluding features, which prevent to 

have a product configuration, an incremental product graph is an inf-semilattice, where 

∀ x,y ∈ Y∶x⋂y exists. The inf-semilattice form of the IPG is demonstrated in Figure 

6.2.  

 

 

 

Figure 6.2. inf-semilattice from of the IPG 

 

 

 Example 6.2: F = {core, withdraw, deposit, cancelWithdraw, cancelDeposit, 

interest, interestEstimation, dailyLimit, overdraf, credit} is the feature set of Bank 

Account SPL where the credit and overdraft features are excluding. Therefore, P(X) = 

{{core, withdraw, deposit}, {core, withdraw, deposit, cancelDeposit, cancelWithdraw}, 

{core, withdraw, deposit, cancelDeposit, cancelWithdraw, credit, interest, 

interestEstimation}, {core, withdraw, deposit, cancelDeposit, cancelWithdraw, 

dailyLimit}, {core, withdraw, deposit, interest, interestEstimation}, {core, withdraw, 

deposit ,cancelWithdraw, dailyLimit, overdraft}} 
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 {core, withdraw, deposit ,cancelWithdraw, dailyLimit, overdraft } 

 

E = {( } 

 

 

6.3. Incremental Test Generation from Feature-Based IPG 

 

 

 The runs of incremental test sequence composition approach in case study of 

this thesis are executed by using feature-based incremental product graphs. The 

Algorithm 6.1 is introduced in order to summarize the test sequence generation of 

FESGs in IPG vertices incrementally. The following example explains this algorithm on 

feature based incremental product graph of running example which is demonstrated in 

Figure 6.1.  

 Example 6.3: The vertex set and the edge set of the IPG of running example are 

given as V = {v0(base product FESG), v1(cancellable product FESG), v2(interest 

product FESG), v3(daily limit product FESG), v4(credit product FESG), v5(overdraft 

product FESG)}, E = {[dailyLimit], [credit], [cancelDeposit], [cancelWithdraw], 

[interest, interest Estimation], [cancelWithdraw, overdraft], [cancelDeposit, 

cancelWithdraw, dailyLimit], [interest, interestEstimation, credit] 

 After building the Feature-Based Incremental Product Graph, the incremental 

test sequence composition approach is experimented on this graph at a click. 
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 Algorithm 6.1. Incremental Test Generation from IPG via Breadth First Traversal  

Input:  IPG(V, E, ) – a feature-based incremental product graph 

               

Output:  T – a set of test sequences for each FESG ∈ V 

 T = {} 

               Q ← create an empty queue 

               B ← create a Boolean array that is indexed to V’s vertices 

               enqueue to Q 

                B[ ] ← true 

 while Q is not empty do // perform Breadth First Traversal to traverse each vertex 

  e ← deque Q 

                             if e =  do 

                                  T0  ←  full-test-sequence-composition(  

                             endif 

                             for (e,x)  E do  

                                  enqueue x to Q, B[x] ← true 

                                  F ← get the set of f-ESGs on edge (e,x) 

                                  Te ← incremental-test-sequence-composition(  

                                  assign Te of   

                                  T = T  Te 

                             endfor    

 endwhile 

 

 

6.4. Validation of Product Configurations Using Feature-Based 

Incremental Product Graphs 

  

 As it is shown in  Example 6.3, the edges of this graph contains one-element 

such as ‘dailyLimit’, two-element such as ‘cancelWithdraw, overdraft’ and three-

element such as ‘interest, interestEstimation, credit’ feature sets. These different-size 

feature sets prove that new features could be added to an existing product configuration 

both as a chain or a bulk, incrementally. Also, the test sequences of, for example credit 

product, can be obtained from following either one of the paths below: 

1. base product + ‘interest f-ESG, interestEstimation f-ESG’ → interest product + 

‘credit f-ESG’ → credit product 
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2. base product + ‘interest f-ESG, interestEstimation f-ESG, credit f-ESG’ → credit 

product  

 

Algorithm 6.2. Product Configuration Validator 

Input:  IPG(V, E, ) – a feature-based incremental product graph 

Output:  true – if product configurations in IPG vertices valid, false – otherwise  

               Q ← create an empty queue 

               B ← create a Boolean array that is indexed to V’s vertices 

               enqueue to Q 

               B[ ] ← true 

               v ← true 

 while Q is not empty do // perform Breadth First Traversal to traverse each vertex 

  e ← deque Q 

                             for (e,x)  E do  

                                  enqueue x to Q, B[x] ← true 

                                  F ← get the set of f-ESGs on edge (e,x) 

                                  Fe ← get the f-ESG set of e                                  

                                  Sx ← create an empty set to add f-ESGs 

                                  Sx ← addAll(F + Fe) 

                                  Fx ← get the f-ESG set of x //product configuration 

                                  v ← v  AND (Sx = Fx) 

                             endfor    

 endwhile 

              return v 

 

 In order to validate product configurations in each vertex, Algorithm 6.2 is 

introduced. Traversing each vertex, by following different paths and comparing the set 

of features that come along the path and the destination vertex FESG’s feature set, 

validates the destination vertex’s product configuration.  

 Example 6.4: Assume that we want to validate daily limit product’s 

configuration which has ‘c-ESG, deposit f-ESG, withdraw f-ESG, cancelDeposit f-ESG, 

cancelWithdraw f-ESG, dailyLimit f-ESG’. By following the path below: 

base product + ‘cancelDeposit f-ESG, cancelWithdraw f-ESG, dailyLimit f-ESG’ → 

daily limit product 

 The set of features that come along the path starting from base product becomes 

‘c-ESG, deposit f-ESG, withdraw f-ESG, cancelDeposit f-ESG, cancelWithdraw f-ESG, 
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dailyLimit f-ESG’. Since the product configuration, i.e., the f-ESG set of daily limit 

product is the same, the configuration is determined as valid. Traversing each vertex by 

this algorithm, determines the validation of product configurations within the IPG.  

 In this chapter, the notions feature-based incremental product graph and base 

product are introduced. A feature-based incremental product graph is used to perform 

test sequence composition incrementally with one click for any coverage length. Also, it 

helps to validate the product configurations of products within the SPL. Example case 

studies are given elaborately in the next chapter, in order to show the results of 

proposed approaches. 
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CHAPTER 7  

 

 

CASE STUDY 

 

 

 The test sequence composition approach and incremental test sequence 

composition approach are performed on several SPL examples which are Soda Vending 

Machine SPL, Email SPL, Bank Account SPL and Student Attendance System SPL. 

The results are depicted in this chapter, as well.   

 

 

7.1. Soda Vending Machine SPL 

 

 

 Soda Vending Machine SPL (Tuglular, Beyazıt, and Öztürk 2019), or short for 

SVM SPL, is a small demonstrative SPL example. It has six features and one of them is 

mandatory. The feature model of the corresponding SPL is given in Figure 7.1. Related 

product for example one serving soda in USD, one serving free tea and one serving just 

soda in EUR can be developed using this diagram. 

 

 

 

Figure 7.1. Soda Vending Machine SPL feature diagram 

 

 

 As demonstrated in the feature diagram, the EUR pay and USD pay are 

alternative features, i.e. they cannot be included by the same product. The possible 

product variants are demonstrated in the product matrix given in Figure 7.2.  
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Figure 7.2. Product matrix of the SVM SPL 

 

 

7.1.1. Soda Vending Machine Models 

 

 

 The SVM models are demonstrated and explained in this section. The core ESG 

of the SVM SPL is given in Figure 7.3. Note that, the core ESG is not necessarily a 

connected graph, i.e. some of the vertices could be disconnected. In this c-ESG, the 

select event is disconnected to be reusable and as the core is incremented by features it 

will become connected.  

 

 

 

Figure 7.3. c-ESG of the SVM SPL 

 

 

 In Figure 7.4, the pay EUR feature is shown. The pay EUR event of this f-ESG, 

is connected between the prompt and select events. 

 

  

 

Figure 7.4. pay EUR f-ESG of SVM SPL 
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 Additionally, the serve soda feature of SVM SPL is demonstrated in Figure 7.5. 

This feature changes the course of events by starting from select event to pseudo finish 

event and it makes select event connected. Remember that, if an event is connected to 

pseudo finish event it is a finish event. Therefore, connecting the pseudo finish event of 

the c-ESG makes an event a finish event.  

 

 

 

Figure 7.5. serve soda f-ESG of SVM SPL 

 

 

 In Figure 7.6, the pay EUR serve soda product of SVM SPL is depicted. As it is 

shown in the figure, the payEUR event is connected to the prompt and select events; the 

serveSoda event is connected to the select and pseudo finish events. Also, the cancel 

purchase feature which is shown in Figure 7.7, is also added to the product 

configuration.  

 

 

 

Figure 7.6. ESG of SVM SPL – pay EUR-serve soda product 

 

 All of the other f-ESGs and product ESGs are given in APPENDIX A.  

 

 

 

Figure 7.7. cancel purchase f-ESG of SVM SPL 

 



 

53 

 

7.1.2. Soda Vending Machine Results 

 

 

 The SVM results are depicted in this section. FESG components which contains 

the c-ESG and the f-ESGs are shown in Table 7.1. Since the c-ESG has two vertices 

which are disconnected except for pseudo vertices, the number of edges is zero due to 

the fact that the edges that connect vertices to one of the pseudo vertices are not counted 

as real edges. Also, the number of vertices and edges are shown in this table. The total 

number of vertices is twenty-two and the total number of edges is fourteen of the 

components in this SPL as it is shown in Table 7.1. 

 

 

Table 7.1. Soda Vending Machine SPL FESG Components 

SPL FESG 

Components 

Number of 

Vertices 

Number of 

Edges 

c-ESG 2 0 

cancel f-ESG 5 4 

free f-ESG 3 2 

payEUR f-ESG 3 2 

payUSD f-ESG 3 2 

serveSoda f-ESG 3 2 

serveTea f-ESG 3 2 

TOTAL 22 14 

 

 

 The products of the SVM SPL are demonstrated in Table 7.2 in order to present 

the complexity of the test models as well as their differences. The free product ESG has 

the least number of vertices and edges since it has the least number of features. Also, 

the vertex number and the edge number of payEURServeSoda and payUSDServeTea 

products are equal just like payEUR and payUSD products due to the fact that they have 

the features which are equivalent in terms of vertex number and edge number. 

 “Isolated” means that the existing test generation technique is executed on the 

product ESGs of Table 7.2. The FESG models and isolated products are compared in 

terms of total number of vertices and total number of edges in Table 7.3. In terms of test 

artefacts, the approaches in this thesis agree with the statement that SPL-based 
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development approach is more convenient if the software products are alike. Table 7.3 

depicts this agreement. 

 

 

Table 7.2. Isolated Product ESGs of SVM SPL 

Isolated Product ESGs of SVM 

SPL 

Number of 

Vertices 

Number of 

Edges 

Free product ESG 4 3 

payEURServeSoda product ESG 6 5 

payEUR product ESG 7 6 

payUSDServeTea product ESG 6 5 

payUSD product ESG 7 6 

TOTAL 30 25 

  

 

 Test sequences of SVM products are generated by using the existing ESG test 

generation approach, the full test sequence composition approach and the incremental 

test sequence composition approach. The proposed full test sequence composition and 

incremental test sequence composition approaches are executed on FESGs while the 

existing test generation approach is executed on the isolated product ESG models. 

 

  

Table 7.3. Model Comparison of SPL FESGs and Isolated Products 

 

Number of 

Vertices 

Number of 

Edges 

FESGs of SVM SPL 22 14 

Isolated Product ESGs of SVM SPL 

(5 ESGs) 
30 25 

 

 

  The execution time to obtain complete event sequences (CESs) of these 

approaches are given in Table 7.4, Table 7.6 and Table 7.8 respectively, for the existing 

ESG test generation approach, full test sequence composition approach and incremental 

test sequence composition approach.  

 The results are obtained for 10 runs which are performed on a PC having Intel 

2.60 GHz CPU and 12 GB RAM with 64-bit Windows 10 Enterprise operating system.  

Also, the results are obtained by setting coverage length to 2 for SVM SPL. This means 
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that the CESs that cover event pairs are generated for SVM SPL 

  

 

Table 7.4. Test Generation Time of Isolated Product ESGs of SVM SPL 

 

Coverage Length 2 

Test Generation Time (ms) Min Max Avg 

free ESG 34.44 36.66 35.684 

payEURServeSoda ESG 36.63 38.3 37.459 

payEUR ESG 37.16 39.18 37.982 

payUSDServeTea ESG 36.22 37.53 36.728 

payUSD ESG 36.84 41.83 38.387 

  

 

 The number of CESs and number of events are shown in Table 7.5 and Table 7.7 

for ESG test generation and for full test sequence composition, respectively. The SVM 

SPL case study shows that the full test sequence composition approach provides CESs 

which are approximately 50% longer than the CESs generated by traditional test 

generation approach. This holds for payEUR and payUSD products which have the most 

number of features for this SPL. The rest of the products have the same length and the 

same number of CESs for both approaches. 

 

 

Table 7.5. Complete Event Sequences of Isolated Product ESGs of SVM SPL 

 

Coverage Length 2 

Test Generation CESs 
# of 

CESs 

# of 

Events  

free ESG 1 4 

payEURServeSoda ESG 2 8 

payEUR ESG 3 12 

payUSDServeTea ESG 2 8 

payUSD ESG 3 12 

 

 

  Furthermore, the full test sequence composition approach takes nearly 9% to 

13% more time than existing test generation approach for SVM SPL. Therefore, both 

the size of the test sets and the execution time of existing approach are less than the full 

test sequence composition approach for SVM SPL when the coverage length is 2.  
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Table 7.6. Full Test Sequence Composition Time of FESGs 

 

Coverage Length 2 

Test Sequence 

Composition Time (ms) Min Max Avg  

free FESG 39.39 41.25 40.322 

payEURServeSoda FESG 40.89 45.55 42.067 

payEUR FESG 40.98 44.24 42.05 

payUSDServeTea FESG 41.05 42.54 41.784 

payUSD FESG 40.51 42.88 41.754 

  

 

 Comparing the incremental test sequence composition approach with the other 

mentioned approaches, Table 7.8 indicates that the execution time is drastically smaller 

than both of the approaches and the test set size is greater than the ESG test generation 

approach and equal to the full test sequence composition approach. This because 

incremental test sequence composition approach reuses both the existing test sequence 

of previously configured products and the test models where the full test sequence 

composition approach reuses only the test models and compose the test sequences of 

each from scratch. 

 

 

Table 7.7. Complete Event Sequences of Full Test Sequence Composition FESGs 

 

Coverage Length 2 

Test Sequence 

Composition CESs 
# of CESs # of Events  

free FESG 1 4 

payEURServeSoda FESG 2 8 

payEUR FESG 3 12 

payUSDServeTea FESG 2 8 

payUSD FESG 3 12 

 

   

 For this and the rest of the case studies, the incremental test sequence 

composition approach cannot be applied to all products within the domain. This because 

it requires a basis product that is previously configured and tested, also, the basis 

product is required to have the common features with the one which is will be tested.  
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Table 7.8. Time and CESs of Incremental Test Sequence Composition FESGs 

Incremental Test Sequence Composition (ms) Coverage Length 2 

FESG to be 

reused 

f-ESG(s) to 

be added 

Obtained 

FESG Min Max Avg  

# of 

CESs 

# of 

Events  

payEURServeSoda 

FESG 

serveTea f-

ESG 

payEUR 

FESG 
2.44 2.68 2.55 3 12 

payUSDServeTea 

FESG 

serveSoda 

f-ESG 

payUSD 

FESG 
2.53 2.87 2.64 3 12 

  

 

 This relation is similar to subset relation but it is stricter. For instance, although 

the payEURServeSoda product and free product has serveSoda feature in common, the 

free product cannot be the basis product to be reused since it also has the free feature. 

The feature-based incremental product graphs of two experiments in Table 7.8 are given 

in Figure 7.8. There are two IPGs in this figure, since there are two basis products. 

 

 

 

Figure 7.8. Feature-Based Incremental Product Graph of SVM SPL 

 

 

7.2. Email SPL 

 

 

 The product within the Email SPL, enables the users to compose a new email, 

send an email and to read an incoming email, basically. It also has six features which 

extend the core of the SPL in order to build an address book, auto respond incoming 

emails, forward emails, encrypt emails, get a public key of receiver and sign emails. 
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The feature diagram of Email SPL is given in Figure 7.9. Also, the product diagram 

which shows the product configurations within this SPL is given in Figure 7.10.  

 

 

 

Figure 7.9. Email SPL feature Diagram 

 

 

 All six features of this SPL are optional. The encrypt feature requires keys 

feature. Also, forward feature excludes encrypt and, vice versa. The exclusion could be 

noticed from Figure 7.10 where these two features omit each other in product 

configurations. 

 

 

 

Figure 7.10. Product matrix of Email SPL 

 

 

7.2.1. Email SPL Models  

 

 The core of the SPL is shown in Figure 7.11. The core itself is a product which 

represents the basic functionality of the SPL such as composing an email, sending an 

email and reading an email.  
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Figure 7.11. c-ESG of Email SPL 

  

 

 The addressbook feature allows creating an address book for a contact who has 

more than one email address and sending an email to all of these addresses. The f-ESG 

of this feature is shown in Figure 7.12. 

 

 

 

Figure 7.12. addressbook f-ESG of Email SPL 
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 The autoresponder feature which is given in Figure 7.13, enables composing an 

email body as an auto response and setting the date interval of occurrence.  

 

 

 

Figure 7.13. autoresponder f-ESG of Email SPL 

 

 

 The forward feature allows the user to forward an incoming email. It excludes 

the encrypt feature, i.e., encrypted emails could not be forwarded. The f-ESG of the 

forward feature is given in the following. 

 

 

 

Figure 7.14. forward f-ESG of Email SPL 

 

 

 The keys feature enables the user to determine the receiver’s public key. This 

public key is used to encrypt an email; therefore, this feature is required by encrypt 

feature. The f-ESG of the keys feature is given in the following. 

 

 

 

Figure 7.15. keys f-ESG of Email SPL 
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 The encrypt feature activates the encryption of emails. Since it has a connection 

point to keys f-ESG and the encryption process needs the receivers public key by 

definition, it requires the keys feature. The f-ESG of the keys feature is given in the 

following. 

   

 

 

Figure 7.16. encrypt f-ESG of Email SPL 

 

 

 The sender user’s signature is added by the sign feature. Its f-ESG is given in the  

following.  

 

 

 

Figure 7.17. sign f-ESG of Email SPL 

 

 

7.2.2. Email SPL Results 

 

 

 The Email Software Product Line test generation results are given in this 

section. The c-ESG and the f-ESGs of Email SPL are given in Table 7.9. In this case 

study, the c-ESG corresponds to an existing product namely base product since it 

models the behavior of a basic email product. The total number of vertices which is 

thirty-one and the total number of edges which is thirty-two are given in Table 7.9. 
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Table 7.9. Email SPL FESG Components 

SPL FESG 

Components 

Number of 

Vertices  

Number of 

Edges  

c-ESG 7 13 

addressbook f-ESG 8 6 

autoresponder f-ESG 4 5 

forward f-ESG 3 2 

keys f-ESG 3 2 

encrypt f-ESG 3 2 

sign f-ESG 3 2 

TOTAL 31 32 

 

 

 The sample Email SPL products are shown in Table 7.10. The product number 

of this SPL could be increased, however in order to make the example simple, three of 

them are given in Table 7.10. 

 

 

Table 7.10. Isolated Product ESGs of Email SPL 

Isolated Product ESGs of SVM SPL 
Number of 

Vertices  

Number of 

Edges  

baseProduct ESG 11 17 

addressbookAutoresponderEncryptSign 

ESG 
16 24 

addressbookAutoresponderForward 

ESG 
14 21 

TOTAL 41 62 

  

 

 The FESG models and isolated products are compared in terms of total number 

of vertices and total number of edges in Table 7.11. This table proves the importance of 

modelling an SPL in small features instead of modelling it for each different product. 

The results show that the number of vertices and edges are greater than total of FESG 

components even for three products. Since modelling each product in isolation restrains 

reusability, the vertices and the edges repeat in different products and it increases their 

number.  

 Product test sequences are obtained by executing ESG test generation approach 

on isolated product ESGs and, the full test sequence composition approach and the 

incremental test sequence composition approach on FESGs. Table 7.12, Table 7.14 and 

Table 7.15 demonstrates the execution time to generate CESs from ESG test generation 
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approach, the full test sequence composition approach and the incremental test sequence 

composition approach, respectively. 

 

 

Table 7.11. Model Comparison of SPL FESGs and Isolated Products 

 

Number of 

Vertices 

Number of 

Edges 

FESGs of Email SPL 31 32 

Isolated Product ESGs of Email SPL 

(4 ESGs) 
41 62 

 

 

 Similar to SVM SPL, not only the execution time, but also the number of CESs 

and the number events of ESG test generation of isolated products are less than the ones 

obtained by full test sequence composition approach. Since the difference between 

average execution time is not more than 2.48 milliseconds, also for this SPL, the full 

test sequence composition approach is considerably good for test generation of products 

since it produces a larger test set in a reasonable time.  

 The number of CESs and their total number of events are given in Table 7.13.  

 

 

Table 7.12. Test Generation Time of Isolated Product ESGs of Email SPL 

 

Coverage Length 2 

Test Generation Time (ms) Min Max Avg 

baseProduct ESG 37.24 39.35 38.502 

addressbookAutoresponderEncryptSign 

ESG 
42.36 47.62 44.695 

addressbookAutoresponderForward 

ESG 
42.41 43.9 43.094 

 

 

 

Table 7.13. Complete Event Sequences of Isolated Product ESGs of Email SPL 

 

Coverage Length 2 

Test Generation CESs 
# of 

CESs 

# of 

Events  

baseProduct ESG 4 20 

addressbookAutoresponderEncryptSign ESG 8 35 

addressbookAutoresponderForward ESG 8 33 
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 Here, the addressbook-autoresponder-encrypt-sign product cannot be 

incremented from addressbook-autoresponder-forward product due to the existence of 

encrypt and forward features which are excluding. Even though these features are not 

excluding, the addressbook-autoresponder-encrypt-sign product still, cannot be 

incremented from addressbook-autoresponder-forward product, since the current 

version of the incremental test sequence composition approach does not support feature 

removal and for this case, the forward feature should be removed from addressbook-

autoresponder-forward product. 

 

  

Table 7.14. Full Test Sequence Composition Time of FESGs 

 

Coverage Length 2 

Test Sequence Composition Time (ms) Min Max Avg  

baseProduct FESG 38.94 47.63 40.982 

addressbookAutoresponderEncryptSign FESG 44.37 47.2 45.576 

addressbookAutoresponderForward FESG 43.02 54.44 45.063 

 

   

 When we examine the results of incremental test sequence composition 

approach which are given in Table 7.15, we see that the resulting CESs are longer and 

more in number than both of the previous approaches. Also, it is seen from the results 

that incremental test sequence composition approach performs ~%87 to ~%94 better in 

average execution time. 

 

 

Table 7.15. Time and CESs of Incremental Test Sequence Composition Approach 

Incremental Test Sequence Composition (ms) Coverage Length 2 

FESG to 

be reused 

f-ESG(s) to 

be added Obtained FESG Min Max Avg  

# of 

CESs 

# of 

Events  

baseProduct 

FESG 

autoresponder 

f-ESG addressbookAutoresponder-  

Forward FESG 
2.51 3.08 2.69 9 38 

forward f-

ESG 

baseProduct 

FESG 

autoresponder 

f-ESG 
addressbookAutoresponder-

EncryptSign FESG 
5.54 6.2 5.9 11 53 encrypt f-

ESG 

sign f-ESG 
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7.3. Bank Account SPL  

 

 

 Bank Account SPL which is given as a running example throughout this thesis 

has nine features in which the two of them are mandatory. The feature diagram and the 

product matrix of this software product line are given in Figure 3.1 and Figure 3.2, 

respectively. 

 

  

7.3.1. Bank Account SPL Models 

 

 

 The core behavior of this SPL which is given in the c-ESG in Figure 4.1 

represents the core behavior of a bank account product which is getting the balance of 

the account. The mandatory features of this SPL are deposit and withdraw. The f-ESG 

of deposit feature is given in the following. This feature represents the behavior of 

putting money into the account. The withdraw feature is demonstrated in Figure 4.2 and 

it represents the behavior of taking money from the account. 

 The optional features cancelDeposit and cancelWithdraw represent the cancel 

operations of the depositing and withdrawing. These features make one bank account 

product cancellable. The f-ESG of cancelDeposit is depicted in Figure 7.19, and the f-

ESG of cancelWithdraw is given in Figure 7.20. 

 

 

 

Figure 7.18. deposit f-ESG of Bank Account SPL 

  

  

 The “cancel deposit” event is connected to “select deposit” event of deposit  



 

66 

 

 f-ESG and “]” event of the c-ESG. The connection to the pseudo finish event of c-ESG, 

makes the “cancel deposit” event a finish event. Note that, a f-ESG could contain 

connection points to c-ESG and more than one f-ESGs. 

 

 

 

Figure 7.19. cancelDeposit f-ESG of Bank Account SPL 

 

 

 Since, the cancelDeposit and cancelWithdraw f-ESG has connection points to 

deposit and withdraw f-ESGs, respectively, there is a constraint the feature diagram 

(Figure 3.1) for each of these f-ESGs. These constraints force the product 

configurations to have, for example,the deposit feature if the PC has the cancelDeposit 

feature. Even though the deposit and withdraw are mandatory features, these constraints 

are added because of the existence of connection points.  

 The overdraft and credit features which are grouped under extraMoney abstract 

feature in the feature diagram (Figure 3.1), are alternative features and allow the bank 

account user to take extra money from the account. The user can define a limit to 

exceed the account balance if the bank account product has the overdraft feature. The f-

ESG of overdraft is given in .The overdraft feature requires both the cancelWithdraw 

and dailyLimit (Figure 4.4) features due to the connection points.  

 

 

 

Figure 7.20. cancelWithdraw f-ESG of Bank Account SPL 

 

 

 The credit feature which is given in Figure 7.22 allows the bank account users to 

take extra money as a debt. It has connection points to core, therefore it doesn’t imply 

any other features’ existence. 
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Figure 7.21. overdraft f-ESG of Bank Account SPL 

 

 

 The interest and interestEstimation features enable the users of a bank account 

product to request an interest rate and to determine total gain of interest for particular 

days, respectively. Additionally, interestEstimation requires the interest feature due to 

the connection point to interest f-ESG. 

 

 

 

Figure 7.22. credit f-ESG of Bank Account SPL 

 

 

 The dailyLimit feature (Figure 4.4) helps users of a bank account product to put 

a limitation on the amount of money that could be taken from the account in daily basis. 

It requires the withdraw and cancelWithdraw features in the product configuration. 

 

 

 

Figure 7.23. interest f-ESG of Bank Account SPL 
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 The bank account SPL forty-two possible product configurations. These could 

be configured by employing FESGs easily, however the number of complete product 

ESGs is forty-two. Therefore, six of the complete product ESGs are modelled due to the 

space limitations. 

   

 

 

Figure 7.24. interestEstimation f-ESG of Bank Account SPL 

 

 

 The cancellable product is given as an example in Figure 7.25. Also, the daily 

limit product is given in Figure 4.5. The rest of the product ESGs are given in 

APPENDIX C. 

 

 

 

Figure 7.25. ESG of bank account SPL – cancellable product 

 

 

7.3.2. Bank Account SPL Results 

 

 

 The Bank Account SPL results are given in this section. FESG components 

which contains the c-ESG and the f-ESGs and their corresponding number of vertices 

and edges are shown in Table 7.16. Since the c-ESG has only one vertex except for 

pseudo vertices, the number of edges are zero. The total number of vertices is forty-five 
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and the total number of edges is forty-two of the components in this SPL as it is shown 

in Table 7.16. 

 

 

Table 7.16. Bank Account SPL FESG Components 

SPL FESG Components 

Number of 

Vertices  Number of Edges  

c-ESG 1 0 

deposit f-ESG 6 6 

withdraw f-ESG 6 6 

cancelDeposit f-ESG 3 2 

cancelWithdraw f-ESG 3 2 

overdraft f-ESG 6 6 

credit f-ESG f-ESG 5 5 

dailyLimit f-ESG 6 7 

interest f-ESG 5 5 

interestEstimation f-ESG 4 3 

TOTAL 45 42 

  

 

 The six products of the Bank Account SPL are demonstrated in Table 7.17 in 

order to present their complexity. Since the base product has the least number of 

features, it has the least number of vertices and edges. The total number of vertices is 

sixty-eight and the total number of edges is seventy-six of the isolated products in this 

SPL as it is shown in Table 7.17. This result shows that one has to deal with many more 

vertices and edges in isolated product EGSs which makes updating and maintaining the 

models more difficult. 

 

 

Table 7.17. Isolated Product ESGs of Bank Account SPL 

Isolated Product ESGs of Bank Account SPL 

Number of 

Vertices 

Number of 

Edges 

baseProdcuct ESG 7 8 

cancellable ESG 9 10 

credit ESG 17 16 

dailyLimit ESG 11 14 

interest ESG 12 12 

overdraft ESG 12 16 

TOTAL 68 76 
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 The FESG models and isolated products are compared in terms of total number 

of vertices and total number of edges in Table 7.18. Similar to other case studies, the 

total number of vertices and edges of FESGs are less than the isolated products since 

there are no repeating vertices and edges in FESGs. 

 

 

Table 7.18. Model Comparison of Bank Account SPL and Isolated Products 

 

Number of Vertices Number of Edges 

FESGs of Bank Account SPL 45 42 

Isolated Product ESGs of Bank Account 

SPL (6 Product ESGs) 
68 76 

 

 

 The CESs of the six products of Bank Account SPL are obtained by using ESG 

test generation approach, full test sequence composition approach and incremental test 

sequence composition approach for event pairs, triples and quadruples. The results are 

shown in terms of execution time in milliseconds, number of CESs and the total number 

of events. 

 

 

Table 7.19. Test Generation Time of Isolated Product ESGs of Bank Account SPL 

Test Generation Time (ms) 
Coverage Length 2 Coverage Length 3 Coverage Length 4 

Min Max Avg  Min Max Avg  Min Max Avg  

baseProduct ESG  39 41.79 40.25 42.58 48.02 44.43 48.48 56.54 50.59 

cancellable ESG 38.89 40.77 39.85 45.53 48.42 46.84 46.07 48.97 47.92 

credit ESG 44.18 49.95 45.64 47.22 54.04 49.41 47.34 50.24 48.78 

dailyLimit ESG 41.26 48.13 43.31 46.67 49.14 47.96 49.5 54.38 51.27 

interest ESG 41.92 48.41 43.79 44.71 47.82 46.62 43.8 48.7 45.64 

overdraft ESG 44.17 48.5 45.26 47.59 53.16 49.38 50.9 56.43 52.81 

 

 

 In Table 7.19, the test generation time of isolated product ESGs are 

demonstrated for coverage length 2, 3 and 4. Note that, for coverage length 2 event 

pairs, for coverage length 3 event triples, and, for coverage length 4 event quadruples 

are covered in CESs. It could be resulted from the Table 7.19 that, as the coverage 

length increases, the test generation time also increases. This stems from the case that as 

the coverage length increases, the test sets become larger in general. This deduction 
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could be obtained from Figure 7.20 which shows us as the coverage length increases, 

the number of events increases except for base product and interest product. 

   

 

Table 7.20. Full Test Sequence Composition Time of FESGs 

Test Sequence Composition 

Time (ms) 

Coverage Length 2 Coverage Length 3 Coverage Length 4 

Min Max Avg  Min Max Avg  Min Max Avg  

baseProduct FESG 40.44 44.4 42.38 48.48 56.54 50.59 48.48 56.54 50.59 

cancellable FESG 42.18 47.81 44.29 51.46 56.53 53.35 59.2 63.82 60.82 

credit FESG 44.6 46.68 45.63 57.3 58.91 58.09 76.07 84.28 79.72 

dailyLimit FESG 45.68 47.85 46.55 56.47 59.01 57.71 80.4 88.17 83.49 

interest FESG 42.42 43.67 43.12 53.32 55.96 54.32 58.14 61.38 60.04 

overdraft FESG 46.2 50 47.75 59.31 61.84 60.73 90.1 97.24 94.13 

 

 

 Full test sequence composition time of FESGs are given in   Table 7.20 for 

coverage length 2,3 and 4. Similar to the ESG test generation approach, as the coverage 

length increases the test sequence composition time also increases with the test set size 

except for base product and interest product.  

 

 

Table 7.21. Complete Event Sequences of Full Test Sequence Composition FESGs 

Test Sequence 

Composition CESs 

Coverage Length 2 Coverage Length 3 Coverage Length 4 

# of 

CESs 

# of 

Events  

# of 

CESs 

# of 

Events  

# of 

CESs 

# of 

Events  

baseProduct FESG 3 15 6 39 5 32 

cancellable FESG 5 19 12 61 14 69 

credit FESG 9 29 17 69 19 86 

dailyLimit FESG 8 30 17 76 23 113 

interest FESG 5 21 17 76 9 48 

overdraft FESG 8 36 18 81 24 116 

 

 

 When we compare the results of ESG test generation with full test sequence 

composition approach, we see that full test sequence composition approach performs 

similar to the previous case studies in which the resulting test sets are larger and the 

execution time of algorithms are much more. 
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 Incremental test sequence composition has the best performance comparing with 

the other two approaches, similar to the previous case studies. The results show that, the 

CES set is larger than full test sequence composition approach test sets, approximately 

%42 when coverage length is 2, %155 when coverage length is 3 and %134 when 

coverage length is 4. Therefore, with minimal execution times, severely greater test sets 

could be obtained by exploiting incremental test sequence composition approach. 

   

 

Table 7.22. Incremental Test Sequence Composition Time of FESGs 

 

 

 

 

 

 

Incremental Test Sequence Composition Time 

(ms) 

Coverage Length 

2 

Coverage Length  

3 

Coverage Length  

4 

FESG to be 

reused 

f-ESG(s) to be 

added 

Obtained 

FESG 
Min Max Avg  Min Max Avg  Min Max Avg  

baseProduct 

FESG 

cancelDeposit  cancellable 

FESG 
2.87 3.56 3.24 9.59 11 10.3 17.3 20.7 19 

cancelWithdraw  

baseProduct 

FESG 

interest  interest 

FESG 
1.57 5.27 2.3 6.61 8.22 7.62 10.74 15.1 12.5 

interestEstimation  

baseProduct 

FESG 

cancelDeposit  
dailyLimit 

FESG 
3.77 5.96 4.65 11.41 16.56 14.3 25.6 56.7 31.6 cancelWithdraw  

dailyLimit  

baseProduct 

FESG 

cancelWithdraw  
overdraft 

FESG 
2.87 4.27 3.42 14 21.7 17.6 33.32 43.42 38.1 overdraft  

dailyLimit 

baseProduct 

FESG 

cancelDeposit  

credit 

FESG 
3.46 4.75 3.89 18.48 23.27 20.9 39.1 54.6 47.2 

cancelWithdraw 

credit 

interest  

interestEstimation 

cancelable 

FESG 
dailyLimit 

dailyLimit 

FESG 
4.25 4.67 4.4 5.8 8.64 6.56 15.17 20.08 17.7 

cancelable 

FESG 

credit 
credit 

FESG 
4.46 4.95 4.7 14.96 16.87 16 30.5 36.6 32 interest 

interestEstimation 

interest 

FESG 
credit 

credit 

FESG 
2.96 3.53 3.21 7.08 7.6 7.28 10.64 14.92 12.1 
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Table 7.23. Incremental Test Sequence Composition CESs 

 

 

 

 

 

 

 

Incremental Test Sequence Composition CESs 
Coverage 

Length 2 

Coverage 

Length 3 

Coverage 

Length 4 

FESG to 

be reused 

f-ESG(s) to be 

added 

Obtained 

FESG 

# of 

CESs 

# of 

Events  

# of 

CESs 

# of 

Events  

# of 

CESs 

# of 

Events  

baseProduct 

FESG 

cancelDeposit f-

ESG cancellable 

FESG 
5 19 11 63 13 79 

cancelWithdraw f-

ESG 

baseProduct 

FESG 

interest f-ESG 
interest 

FESG 
5 21 12 61 11 54 interestEstimation f-

ESG 

baseProduct 

FESG 

cancelDeposit f-

ESG 
dailyLimit 

FESG 
8 30 18 104 21 134 cancelWithdraw f-

ESG 

dailyLimit f-ESG 

baseProduct 

FESG 

cancelWithdraw f-

ESG overdraft 

FESG 
9 36 19 114 20 121 overdraft f-ESG 

dailyLimit f-ESG 

baseProduct 

FESG 

cancelDeposit f-

ESG 

credit 

FESG 
9 29 20 86 19 95 

cancelWithdraw f-

ESG 

credit f-ESG 

interest f-ESG 

interestEstimation f-

ESG 

cancelable 

FESG 
dailyLimit f-ESG 

dailyLimit 

FESG 
8 30 19 102 28 157 

cancelable 

FESG 

credit f-ESG 

credit 

FESG 
9 29 22 91 25 110 interest f-ESG 

interestEstimation f-

ESG 

interest 

FESG 
credit f-ESG 

credit 

FESG 
7 25 14 64 15 66 
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7.4. Student Attendance System SPL 

 

 

 The Student Attendance System, short for SAS, is a software product line which 

twenty-four concrete features. The Student Attendance System allows the users to 

submit attendance, to manage class details and class schedule, to monitor and update 

attendance records and to receive notifications. The feature diagram of this SPL is given 

in Figure 7.26 and it has six abstract mandatory features. These abstract features group 

other features as XOR or OR groups. Making these abstract features mandatory 

guarantees that at least one of their sub-features will be included in each product 

configuration within the SPL. 

 

 

 

Figure 7.26. Student Attendance System SPL feature diagram 

 

 

 The number of possible product variations is two hundred forty-eight whenever 

at least one sub-feature of mandatory features is added. The product matrix which is 

given in Figure 7.27 demonstrates only the eleven of these configurations. 

  

 

 

Figure 7.27. Product Matrix of the Student Attendance System SPL 
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7.4.1. Student Attendance System SPL Models 

 

 

 The core of the SAS is given in Figure 7.28. The c-ESG of this is SPL is not a 

connected ESG and the events within this c-ESG will become connected via feature 

connections. The “submit attendance”, “confirm your identity”, “log in”, “open 

notification settings” and “confirm notification settings” are reusable core events in the 

models of this SPL.  

 

 

 

Figure 7.28. c-ESG of SAS SPL 

 

 

 In the Student Attendance System, there are two types of users which are student 

and teacher. The products within this SPL could be configured for the student user, the 

teacher user or both of the users. The userAccess abstract feature groups studentAccess 

and teacherAccess features which represent user credentials. The teacherAccess f-ESG 

is given in Figure 7.29 and it gives a user who is a teacher the permission to edit the 

data stored in the system such as editing the class details, class schedule or student 

attendance records.  

 

 

 

Figure 7.29. teacherAccess f-ESG of SAS SPL 
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 The users who are students in this system, could monitor class, schedule and 

attendance records. However, they do not have the authorization to update classes, class 

schedules and attendance records. The f-ESG of studentAccess feature is given in Figure 

7.30.   

 

 

 

Figure 7.30. studentAccess f-ESG of SAS SPL 

 

 

 The attendance could be submitted to the system via an access card, a barcode, a 

fingerprint or a QR code. Therefore, the attendance methods are gathered under the 

abstract mandatory feature SubmitAttendanceMethod in an XOR relation. This means 

that only one submission could be selected in the product configurations of this system. 

The f-ESGs of these submission methods contain connection points only to c-ESG and 

they demonstrated in APPENDIX D 

 The users of this system could receive notifications via email or SMS. Hence, 

the email and SMS features are alternative features under Notification abstract 

mandatory features. Likewise to attendance submission methods, the f-ESGs of these 

features have connection points only to c-ESG and are given in APPENDIX D. 

 

 

 

Figure 7.31. viewRecord f-ESG of SAS SPL 

 

 

 The viewRecord, updateRecord, monitorAttendanceStatus and 

traceAttendanceActivity are gathered under RecordInformation abstract mandatory 
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feature. The viewRecord  feature which is depicted in Figure 7.31 and 

monitorAttendanceStatus feature which is given in Figure 7.32 requires studentAccess 

feature due to the connection points. These features help the students to view attendance 

records and monitor their current attendance status.  

 

 

 

Figure 7.32. monitorAttendanceStatus f-ESG of SAS SPL 

 

 

 The updateRecord feature implies teacherAccess feature and the 

traceAttendanceActivity feature implies updateRecord feature. Therefore, only the 

teachers could update a student’s or a class of students’ attendance records. The f-ESG 

of updateRecord  is shown in Figure 7.33. Also, the traceAttendanceActivity  which is 

given in Figure 7.34 feature allow a teacher to trace the attendance activity of a class of 

students.  

 

 

 

Figure 7.33. updateRecord   f-ESG of SAS SPL 

 

 

 The ClassManagement abstract mandatory feature groups viewClass, 

addNewClass, updateClassDetail, and, deleteClass features and the ClassSchedule 

abstract mandatory feature groups viewSchedule, addNewSchedule, editSchedule and 
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assignNewSchedule in which the features viewClass and viewSchedule have no user 

credentials and no requirements to other features which are shown in APPENDIX D. 

 

 

 

 

Figure 7.34. traceAttendanceActivity f-ESG of SAS SPL 

 

 

 The rest of the features except viewClass and viewSchedule, are accessible only 

by teachers. Since their names are self-explanatory, e.g., addNewClass feature enable 

adding a new class behavior of the system, addNewClass feature enable adding a new 

schedule behavior of the system, and so on,  they are also given in APPENDIX D 

except for assignNewSchedule feature.  

 The assignNewSchedule feature allows a teacher to assign schedule to an 

editable class by selecting an existing schedule or by adding new schedule to it. Hence, 

it requires updateClassDetail, addNewSchedule and editSchedule features. The f-ESG 

of the assignNewSchedule feature is shown in Figure 7.35. 

 

 

 

Figure 7.35. assignNewSchedule f-ESG of SAS SPL 

 

 

 The complete product ESG of one of the product configurations in product 

matrix (Figure 7.27) is given in Figure 7.36 which enables teacher access, access card 

attendance submission and email notification. The rest of the product ESGs are given in 

APPENDIX D. 
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 Additionally, the complete product ESG in  Figure 7.36 has only fourteen 

features including core. The Figure 7.36 may help the readers to imagine how modelling 

and maintaining the complete product ESGs become difficult as the number of features 

increases and the product configurations gets more complex. As a consequence, 

employing FESGs in SPL testing that the products have great number of features is an 

advantage. 

 

 

 

Figure 7.36. ESG of SAS SPL – teacher user-access card-email product 

 

 

7.4.2. Student Attendance System SPL Results 

 

 

 The Student Attendance System results are depicted in this section. Table 7.24 

shows the FESG components which contains the c-ESG and the f-ESGs and their 

corresponding number of vertices and edges. The c-ESG is a disconnected ESG except 

for two vertices, therefore it has only one edge. The total number of vertices is eighty-
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seven and the total number of edges is ninety-two of the components in this SPL as it is 

shown in Table 7.24. Since this SPL has twenty features including c-ESG, it is a much 

larger example.  

 

 

Table 7.24. SAS SPL FESG Components 

SPL FESG Components 

Number of 

Vertices  

Number of 

Edges  

c-ESG 8 1 

barcode f-ESG 4 6 

fingerPrint f-ESG 3 3 

accessCard f-ESG 3 3 

QRCode f-ESG 3 3 

studentAccess f-ESG 4 4 

teacherAccess f-ESG 5 6 

viewRecord f-ESG 4 3 

updateRecord f-ESG 6 6 

monitorAttendanceStatus f-ESG 3 2 

traceAttendanceActivity f-ESG 3 2 

email f-ESG 3 2 

SMS f-ESG 3 2 

addNewClass f-ESG 6 10 

updateClassDetail f-ESG 5 9 

deleteClass f-ESG 5 5 

viewSchedule f-ESG 4 3 

addNewSchedule f-ESG 6 10 

editSchedule f-ESG 5 9 

assignNewSchedule f-ESG 4 3 

TOTAL 87 92 

 

 

 Ten of the product variants of SAS SPL are given in Table 7.25. Since these are 

large products with at least six features, the total number of vertices and edges in 

isolated products are a lot bigger than the previous case study. The FESG models and 

isolated products are compared in terms of total number of vertices and total number of 

edges in Table 7.26. Similar to previous case studies, the total number of vertices and 

edges of FESGs are less than the isolated products since there are no repeating vertices 

and edges in FESGs. 
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Table 7.25. Isolated Product ESGs of SAS SPL 

Isolated Product ESGs of SVM SPL Number of Vertices Number of Edges 

studentUserBarcodeSMS ESG 18 20 

teacherUserAccessCardEmail ESG 38 62 

limitedStudentUserBarcodeSMS ESG 17 19 

limitedTeacherUserAccessCardEmail ESG 30 43 

limitedTeacherUserFingerprintEmail ESG 30 43 

limitedTeacherUserQRCodeSMS ESG 30 43 

bothUsersAccessCardEmail ESG 43 68 

bothUsersBarcodeSMS ESG 44 71 

bothUsersFingerPrintEmail ESG 43 68 

bothUsersQRCodeSMS ESG 43 68 

TOTAL 336 505 

 

 

Table 7.26. Model Comparison of SAS SPL FESGs and Isolated Products 

  Number of Vertices Number of Edges 

FESGs of SAS SPL  87 92 

Isolated Product ESGs of SAS SPL (10 ESGs) 336 505 

 

 

 The CESs of the product variants of SAS SPL are obtained by using ESG test 

generation approach, full test sequence composition approach and incremental test 

sequence composition approach for event pairs, triples and quadruples similar to the 

other case studies in this thesis. Also, the results are demonstrated in terms of execution 

time in milliseconds, number of CESs and the total number of events. 

 

   

Table 7.27. Test Generation Time of Isolated Product ESGs of SAS SPL 

Min Max Avg Min Max Avg Min Max Avg 

studentUserBarcodeSMS ESG 42.19 44.98 43.16 46.02 49.43 47.4 48.39 50.38 49.18

teacherUserAccessCardEmail ESG 52.27 59.29 55.01 78.11 88.32 82.21 117.3 153.8 133

limitedStudentUserBarcodeSMS ESG 44.44 47.54 46.13 48.06 66.07 54.3 50.69 62.6 53.83

limitedTeacherUserAccessCardEmail 

ESG
53.03 58.23 54.63 64.67 70.93 67.42 88.22 96.11 91.29

limitedTeacherUserFingerprintEmail 49.24 54.42 52.67 43 54.42 49.83 87.63 104.7 93.76

limitedTeacherUserQRCodeSMS ESG
49.54 66.59 53.14 64.23 72.06 67.64 84.75 112.5 93.88

bothUsersAccessCardEmail ESG 59.47 67.48 61.87 82.56 105.1 94.65 130.1 171 141.9

bothUsersBarcodeSMS ESG 63.82 70.19 65.86 88.11 105.2 96.8 133.3 154.5 141

bothUsersFingerPrintEmail ESG 61.73 67.17 64.09 83.92 99.98 93.34 125.8 145 134.3

bothUsersQRCodeSMS ESG 58.45 63.22 60.12 87.54 106.7 96.22 122.3 148.1 135.9

Test Generation Time (ms)
Coverage Length 2 Coverage Length 3 Coverage Length 4
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Table 7.28. Complete Event Sequences of Isolated Product ESGs of SAS SPL 

# of CESs # of Events # of CESs # of Events # of CESs # of Events 

studentUserBarcodeSMS ESG 8 35 12 55 14 66

teacherUserAccessCardEmail ESG 16 116 33 247 64 520

limitedStudentUserBarcodeSMS ESG 7 31 11 51 13 62

limitedTeacherUserAccessCardEmail 

ESG
12 82 23 163 40 312

limitedTeacherUserFingerprintEmail 12 82 23 163 40 312

limitedTeacherUserQRCodeSMS ESG
12 82 23 163 40 312

bothUsersAccessCardEmail ESG 19 130 37 266 68 569

bothUsersBarcodeSMS ESG 21 137 40 278 72 557

bothUsersFingerPrintEmail ESG 19 130 37 266 68 569

bothUsersQRCodeSMS ESG 19 130 37 266 68 569

Test Generation CESs
Coverage Length 2 Coverage Length 4Coverage Length 3

 

 

 

 In Table 7.27, the test generation time of isolated product ESGs are 

demonstrated for coverage length 2, 3 and 4. The test generation time increases, as the 

coverage length increases. For SAS SPL, the test sets become larger as the coverage 

length increases without any exceptions, therefore, the test generation time increases 

accordingly. 

 

 

Table 7.29. Full Test Sequence Composition Time of FESGs of SAS SPL 

Min Max Avg Min Max Avg Min Max Avg 

studentUserBarcodeSMS FESG 50.35 56.41 52.9 55.95 58.17 56.96 73.27 87.99 79.59

teacherUserAccessCardEmail FESG 51.49 57.78 54.39 92.66 100.8 97.1 176 189.1 182.5

limitedStudentUserBarcodeSMS FESG 48.55 51.42 49.99 55.51 59.4 57.12 65.75 73.37 69.49

limitedTeacherUserAccessCardEmail 48.61 49.93 49.38 74.65 79.93 78.1 132.1 144.9 137.3

limitedTeacherUserFingerprintEmail 

FESG 48.21 52.58 49.62 76.85 86.48 81.09 130.9 146.5 137.4

limitedTeacherUserQRCodeSMS 

FESG 48.56 51.52 50.13 74.37 84.47 81.12 121.4 145 133.4

bothUsersAccessCardEmail FESG 52.23 54.82 53.57 92.82 102.4 99.68 179.4 196.8 187.8

bothUsersBarcodeSMS FESG 52.77 62.76 58.39 101.4 114.7 109.2 178.1 196.9 189.2

bothUsersFingerPrintEmail FESG 52.21 56.5 53.87 96.64 107.8 103.2 178.7 196.5 190

bothUsersQRCodeSMS FESG 52.96 56.51 54.72 98.59 111.8 105.1 52.96 111.8 79.96

Test Sequence Composition Time 

(ms)

Coverage Length 2 Coverage Length 3 Coverage Length 4

 

  

 

 Table 7.29 presents the results of full test sequence composition time of FESGs 

for coverage length 2,3 and 4. For coverage length 2, full test sequence composition 

performs better than the ESG test generation approach in terms of both execution time 
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and test set size, unlike the previous case studies. This could stem from the number of 

features and bigger size products of SAS SPL. Since the full test sequence composition 

approach generates each f-ESG’s test sequences from scratch and composes them, for 

small SPLs like previous examples, generating each f-ESG’s test sequences from 

scratch could not make it faster comparing the other examples. However, as the number 

of features increases and the isolated product ESGs get more complex, the exact speed 

performance of full test sequence composition could be understood.  

 

 

Table 7.30. Complete Event Sequences of Full Test Sequence Composition FESGs 

# of CESs # of Events # of CESs # of Events # of CESs # of Events 

studentUserBarcodeSMS FESG 8 35 14 66 17 81

teacherUserAccessCardEmail FESG 19 139 44 319 89 692

limitedStudentUserBarcodeSMS 

FESG
7 31 13 62 16 77

limitedTeacherUserAccessCardEmail 13 87 28 191 46 344

limitedTeacherUserFingerprintEmail 

FESG
13 87 28 191 46 344

limitedTeacherUserQRCodeSMS 

FESG
13 87 28 191 46 344

bothUsersAccessCardEmail FESG 23 159 53 366 95 745

bothUsersBarcodeSMS FESG 25 166 56 378 99 769

bothUsersFingerPrintEmail FESG 23 159 53 366 95 745

bothUsersQRCodeSMS FESG 23 159 53 366 95 745

Test Sequence Composition CESs
Coverage Length 2 Coverage Length 3 Coverage Length 4

 

  

 

 When comparing full test sequence composition approach with ESG test 

generation approach, for coverage length 3 and 4, full test sequence composition 

performs similar to the previous case studies, as the coverage length increases the test 

sequence composition time also increases with the test set size.  

 Incremental test sequence composition has the best performance comparing with 

the other two approaches, similar to the previous case studies. The results show that, the 

CES set is larger than full test sequence composition approach test sets, nearly %16 

when coverage length is 2, %30 when coverage length is 3 and %27 when coverage 

length is 4. Thus, greater test sets could be generated in drastically smaller times in 

incremental test sequence composition approach, comparing to other two approaches. 
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Table 7.31. Incremental Test Sequence Composition Time of FESGs 

FESG to be reused f-ESG(s) to be added Obtained FESG Min Max Avg Min Max Avg Min Max Avg 

limitedStudentUserBarcodeSMS FESG monitorAttendanceStatus f-ESG
studentUserBarcodeSMS 

FESG
2.73 7.76 3.761 5.85 6.44 6.033 11.03 16.07 13.15

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

monitorAttendanceStatus f-ESG

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess f-ESG

viewRecord

monitorAttendanceStatus

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

Incremental Test Sequence Composition Time (ms) Coverage Length 2 Coverage Length 3 Coverage Length 4

limitedStudentUserBarcodeSMS FESG bothUsersBarcodeSMS FESG 7.98 14.84 10.15 74.68

studentUserBarcodeSMS FESG bothUsersBarcodeSMS FESG 12.03 14.49 12.42

205.6

69.05 85.13 79.42 211.3

41.71

33.78 30.29 85.65 116.3

214.6219.3

99.23 85.36 194.5 213.2

102.2

14.99 18.45 17.19 31.89

116.9

limitedTeacherUserAccessCardEmail 

FESG

bothUsersAccessCardEmail 

FESG
4.18 6.98 4.612 26.88

teacherUserAccessCardEmail bothUsersAccessCardEmail 4.08 4.93 4.29 36.23

limitedTeacherUserQRCodeSMS FESG bothUsersQRCodeSMS FESG 6.15 8.48 7.91 39.3

limitedTeacherUserFingerprintEmail 

FESG

bothUsersFingerprintEmail 

FESG
6.24 8.54 7.871

46.4 41.95 110.3 118.8 114

38.21 50.42 42.3 11.7 103.4

37.85 31.59 85.19 98.3 91.59
limitedTeacherUserAccessCardEmail 

FESG

teacherUserAccessCardEmail 

FESG
4.77 5.38 5.026 28.7
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Table 7.32. Incremental Test Sequence Composition CESs of FESGs 

FESG to be reused f-ESG(s) to be added Obtained FESG # of CESs # of Events # of CESs # of Events # of CESs # of Events 

limitedStudentUserBarcodeSMS 

FESG
monitorAttendanceStatus f-ESG

studentUserBarcodeSMS 

FESG
8 35 16 77 22 109

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

monitorAttendanceStatus f-ESG

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess f-ESG

viewRecord

monitorAttendanceStatus

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

limitedTeacherUserQRCodeSMS 

FESG
bothUsersQRCodeSMS FESG

Coverage Length 2 Coverage Length 3 Coverage Length 4

limitedTeacherUserAccessCardEmail 

FESG

bothUsersAccessCardEmail 

FESG

teacherUserAccessCardEmail
bothUsersAccessCardEmail 

FESG

limitedTeacherUserFingerprintEmail 

FESG

bothUsersFingerprintEmail 

FESG

Incremental Test Sequence Composition CESs

limitedStudentUserBarcodeSMS 

FESG
bothUsersBarcodeSMS FESG

studentUserBarcodeSMS FESG bothUsersBarcodeSMS FESG 8 35 58 398 115 855

25 166 60 409 117 865

23 159 53 366 103 797

61 426 115 883

23 159 61 425 116 879

23 159 61 425 116 879

limitedTeacherUserAccessCardEmail 

FESG
82519 139

23 159

teacherUserAccessCardEmail 

FESG
52 379 104

 

 

   

 In this chapter, four case studies are presented and experimented under ESG-

based test generation approach, FESG-based full test sequence composition approach 

and FESG-based incremental test sequence composition approach. Also, the results are 

demonstrated in several tables. In the next chapter, the conclusion and future work of 

this thesis are presented.  
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CHAPTER 8  

 

 

CONCLUSION AND FUTURE WORK 

 

 

 In this chapter, the thesis work is concluded, and the future work which are 

planned as feature interactions, alternative course of events in features and feature 

removal are discussed. 

 

 

8.1. Conclusion 

 

 

 In this thesis, Featured Event Sequence Graphs (FESGs) are introduced as 

variable testing models which are used to explicitly represent the variability of 

behaviors in SPLs. A FESG is constituted from the core ESG (c-ESG) which models the 

core behavior of the SPL and feature ESGs (f-ESGs) which model selectable features’ 

behaviors and enables variability in SPL. In order to express a particular product within 

the SPL, the c-ESG and selected f-ESGs are combined into a FESG. Moreover, this 

thesis presents two different model-based test sequence generation approach for 

software product lines which are test sequence composition and incremental test 

sequence composition. Both of the approaches exploit FESGs as reusable test models. 

The incremental test sequence composition approach reuses the existing test sequences 

as well. 

 The test sequence composition approach introduces Algorithm 4.1 Construction of 

product FESG lattice to construct a product FESG lattice and Algorithm 4.2. Composition 

of product test sequences to compose partial test sequences of f-ESGs through the usage 

of product FESG lattice. This approach resembles divide-and-conquer strategy in the 

sense that each simple test models’ partial test sequences are generated and composed 

from scratch in order to obtain a product’s test sequences. This approach is more 

efficient than the traditional test generation of full-ESG model since the full-ESG model 



 

87 

 

is more complex in terms of number of vertices and edges. Also, traceability and 

maintainability of FESG models are easier. 

 The incremental test sequence composition approach is considered as an 

enhanced version of aforementioned test sequence composition approach. This 

approach introduces Algorithm 5.1. Incremental Sequence Generation which compose 

the test sequences of additional features with the existing test sequences of product 

variant. Algorithm 5.2. Incremental Transformation of f-ESGs, Algorithm 5.3. Sequence 

Generation of Transformed f-ESGs and Algorithm 5.4. Sequence Composition are 

introduced in the approach since they formalize incremental transformation of f-ESGs, 

sequence generation of transformed f-ESGs and sequence composition of generated 

sequences, respectively. The difference of this approach is that not only the test models 

but also the existing test cases are reusable. Therefore, whenever a new feature (or 

features) is used to increment an existing variant, the generated test sequences of variant 

and the new feature’s test cases are composed. Since the existing test sequences are 

reused, the composition is not realized from scratch. Thus, incremental test sequence 

composition approach is more efficient than the compositional approach. 

 

 

8.2. Future Work 

 

 

 The test sequence composition and incremental test sequence composition are 

based on considering a feature as an increment in functionality of the product and each 

product as a peerless feature-combination. One of the major problems in feature-based 

development is consideration of feature interactions where features could replace 

existent features (Uzuncaova, Khurshid, and Batory 2010). A feature not only extends 

but also replaces the existent constraint, whenever a feature interaction occurs 

(Uzuncaova, Khurshid, and Batory 2010). This means that the behavior of one or both 

of the features which are integrated in a product would be modified by each other. Two 

forms of featuıre interactions are introduced: intentional and unintentional feature 

interactions (Benz 2009). A thesis work which focuses on test generation for feature 

interactions and takes automative information system of a 2009 model BMW vehicle 

which combines a multimedia player, navigation system, telephony, telematic services, 
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and internet access as an example. This work gives the situation when the CD playback 

is interfered by an incoming phone call as an intentional feature interaction 

example(Benz 2009). Also, the situation when the increased bus load delays messages 

between graphical user interface (GUI) of the automative information system (AIS) and 

the navigation system of the AIS is given as an unintentional feature interaction 

between the feature seat adjustment and feature navigation (Benz 2009).  

 Since unintentional feature interactions are foundations of a fault model and are 

more difficult to predict and/or detect (Benz 2009), especially unintentional feature 

interactions could be an interesting future research because features transform a 

characteristic of a system for example an existing constraint is replaced with another 

and for this reason, it disrupts the monotonic increment in feature composition. In such 

cases, our full test sequence composition approach and incremental test sequence 

composition approach cannot be applied directly because of the existence of the feature 

requirement constraints that originates from connection points.  As a consequence, 

feature interactions could be an intriguing topic for our future work. 

 In addition to the feature interactions, depending on the product domain, 

whenever a feature is connected between two events of core (or another feature), it 

sometimes brings an alternative course of events between corresponding two events; 

and sometimes, it becomes the only course of events between the two by removing the 

edge between them. Since this property comes from the domain knowledge and depends 

on the model, it could be interesting to try to solve this issue on the modelling level. 

 Finally, the feature removal could be suggested as a future work for this study. 

In feature removal, the features that have connection points only to the pseudo start and 

pseudo finish events of the c-EGS, could be removed directly because the CESs of the 

feature to be removed does not affect any other sequence of the product. The interest 

feature of Bank Account SPL that is given in Figure 7.23 is a good example to the direct 

feature removal.  However, the features that have connection points to the features that 

could be removed directly, should also be removed with these features such as 

interestEstimation feature which has a connection point to interest feature and is given 

in Figure 7.24.  For other feature removal cases such that the connection points to the 

core events and/or other features’ events, the CESs of the feature to be removed should 

be decided and then removed. At this point, it is important that if the removed feature’s 

CESs are in-between the remaining events and there is no alternative edge therefore, no 

CESs between these remaining events, the CES should be added to the test suite after 
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removal. For example, let’s focus on the daily limit product of Bank Account SPL 

which is demonstrated in Figure 4.5. When we remove the daily limit feature from this 

product, the “enter withdraw amount, confirm daily limit excess, enter withdraw 

amount, confirm daily limit excess” event sequence of the CES “select withdraw, enter 

withdraw amount, confirm daily limit excess, enter withdraw amount, confirm daily 

limit excess, cancel withdraw” is removed and the “select withdraw, cancel withdraw” 

CES is decided to be added to the test suite of the remaining product. However, since, 

there is an edge between select withdraw and cancel withdraw events, this CES is 

already on the test suite and a duplication occurs and the decision is not applied. Now, 

assume that there is no edge between select withdraw and cancel withdraw events. The 

“select withdraw, cancel withdraw” CES should be added to the test suite of the 

remaining product. Consequently, the feature removal operation could be defined as 

future work and could be examined, researched and experimented elaborately. 
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APPENDIX A 

 

 

SODA VENDING MACHINE SOFTWARE PRODUCT 

LINE 

 

 

 

Figure A.1. free f-ESG of SVM SPL 

 

 

 

Figure A.2. payUSD f-ESG of SVM SPL 

 

 

 

Figure A.3. serveTea f-ESG of SVM SPL 

 

 

 

Figure A.4. ESG of SVM SPL – serve soda-free product 

 

 

 

Figure A.5. ESG of SVM SPL –pay EUR product 



 

97 

 

 

Figure A.6. ESG of SVM SPL – pay USD-serve soda product 

 

 

 

Figure A.7. ESG of SVM SPL – pay USD product 
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APPENDIX B 

 

 

EMAIL SOFTWARE PRODUCT LINE 

 

 

 

Figure B.1. ESG of Email SPL – base product 

 

 

 

Figure B.2. ESG of Email SPL – address book 



 

99 

 

 

Figure B.3. ESG of Email SPL – autoresponder 

 

 

 

Figure B.4. ESG of Email SPL – forward 
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Figure B.5. ESG of Email SPL – encrypt 

 

 

 

Figure B.6. ESG of Email SPL – address book-autoresponder-forward 
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Figure B.7. ESG of Email SPL – address book-autoresponder-encrypt 

 

 

 

Figure B.8. ESG of Email SPL – address book-autoresponder-encrypt-sign product 
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APPENDIX C 

 

 

BANK ACCOUNT SOFTWARE PRODUCT LINE 

 

 

 

Figure C.1. ESG of bank account SPL – credit product 

 

 

 

Figure C.2. ESG of bank account SPL – interest product 
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Figure C.3. ESG of bank account SPL – overdraft product 
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APPENDIX D 

 

 

STUDENT ATTENDANCE SYSTEM SOFTWARE 

PRODUCT LINE 

 

 

 

Figure D.1. accessCard f-ESG of SAS SPL 

 

 

 

Figure D.2. barcode f-ESG of SAS SPL 

 

 

 

Figure D.3. fingerprint f-ESG of SAS SPL 

 

 

Figure D.4. QRCode f-ESG of SAS SPL 
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Figure D.5. viewClass f-ESG of SAS SPL 

 

 

 

Figure D.6. addNewClass f-ESG of SAS SPL 

 

 

 

Figure D.7. deleteClass f-ESG of SAS SPL 

 

 

 

Figure D.8. updateClassDetails f-ESG of SAS SPL 
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Figure D.9. viewSchedule f-ESG of SAS SPL 

 

 

 

Figure D.10. editSchedule f-ESG of SAS SPL 

 

 

 

Figure D.11. addNewSchedule f-ESG of SAS SPL 

 

 

 

Figure D.12. ESG of SAS SPL –  limited student user-barcode-SMS 



 

107 

 

 

Figure D.13. ESG of SAS SPL –  both users-access card email 
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Figure D.14. ESG of SAS SPL – limited teacher user-access card 

 

 

 

 


