

A MODEL-BASED TEST GENERATION

APPROACH FOR AGILE SOFTWARE PRODUCT

LINES

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Dilek ÖZTÜRK

July 2020

İZMİR

ACKNOWLEDGEMENTS

 First of all, I would like to express my sincere thanks to my supervisor Assoc.

Prof. Dr. Tugkan Tuglular for his support, motivation and patience. I am grateful for

sharing his experiences and knowledge with me. I also would like to thank Assist. Prof.

Dr. Mutlu Beyazit sincerely for his support, motivation, advices and comments on my

studies.

 My thanks also go to my friends for all of their support and motivation. Finally,

I would like to offer my infinite thanks to my family who gave me moral support

unconditionally all of these years. This thesis study is dedicated to my dearest family.

 This thesis is supported by The Scientific and Technological Research Council

of Turkey (TUBITAK) under the grant 117E884.

iii

ABSTRACT

A MODEL-BASED TEST GENERATION APPROACH FOR AGILE

SOFTWARE PRODUCT LINES

 Achieving fast development of good-quality software products is as important as

achieving pure functionality. Qualified software development provides client

satisfaction, reduces post-deployment costs and certificates the products. In addition to

increasing quality, clients expect to tailor the products according to their needs and

therefore, product configurability becomes more and more critical. Hence, the software

manufacturing is required to adapt this configurable development process

correspondingly. Software product line is a paradigm that purposes faster development

of qualified software products that belongs to a particular domain. This thesis

concentrates on quality assurance in software product lines and provides novel model-

based approaches which are full test sequence composition and incremental test

sequence composition approaches that aim to reuse existent test artefacts. Full test

sequence composition approach reuses the existing test models and the test sequences

are composed from scratch each time a product variant’s test sequences are generated.

Incremental test sequence composition approach reuses both of the test models and the

existing test sequences of product variants. Whenever a product variant’s test sequences

are generated, existing test sequences and features which are incrementing the existing

product are composed. The proposed approaches and the classical test generation of

ESGs are compared, the results show that the incremental test sequence composition is

the best in terms of both test set size and test generation time, the full test sequence

composition is better than the single model ESG test generation in terms of test suite

size but not in terms of test generation time.

iv

ÖZET

ÇEVİK YAZILIM ÜRÜN HATLARI İÇİN BİR MODEL TABANLI

TEST ÜRETİM YAKLAŞIMI

 Yazılım ürünleri geliştirilmesinde, kaliteli ve hızlı bir şekilde ürün

geliştirebilmek, ürünlerden beklenen işlevselliği elde etmek kadar önemlidir. Yüksek

kaliteli yazılım ürünleri, müşteri memnuniyetini artırırken dağıtım sonrası maliyetleri

azaltır. Günümüzde, yazılım ürünlerinin alıcıları, sadece yüksek kaliteli değil, aynı

zamanda ihtiyaçlarına göre uyarlanabilen ürünleri de beklemektedir. Bu nedenle, ürün

yapılandırılabilirliği, ensdütriyel anlamda daha önemli hale gelmiştir. Yazılım

üretiminin, bu yapılandırılabilir geliştirme sürecine uyum sağlaması gerekmektedir.

Yazılım ürün hattı (YÜH), belirli bir alana ait yazılım ürünlerinin, yüksek kaliteli bir

şekilde ve daha hızlı geliştirilmesini amaçlayan bir paradigmadır. Bu tez, yazılım ürün

hatlarında kalite güvencesi üzerine yoğunlaşmakta ve mevcut test paydaşlarını yeniden

kullanmayı amaçlayan, tam test sırası birleştirme ve artırımlı test sırası birleştirme

isimli model tabanlı yaklaşımlar sunmaktadır. Tam test sırası birleştirme yaklaşımında,

yalnızca mevcut test modelleri yeniden kullanılmaktadır ve bir ürün varyantının test

sıraları her oluşturulduğunda, test modellerine ait test sıraları sıfırdan birleştirilmektedir.

Artırımlı test sırası birleştirme yaklaşımında ise hem test modelleri hem de ürün

varyantlarının mevcut test sıraları yeniden kullanılabilir ve bir ürün varyantının test

sıraları birleştirilirken, bu yeni ürünün elde edilmesini sağlayan taban ürüne ait test

sıraları ve bu mevcut ürünü artıran özelliklere ait test sıraları birleştirilmektedir. Bu tez

kapsamında önerilen iki yaklaşımı ve klasik, tek-model test üretim yaklaşımlarını

karşılaştırırken, sonuçlar, artırımlı test sırası birleştirme yaklaşımının hem test kümesi

boyutu hem de test üretim süresi açısından en iyi olduğunu; ful test sırası birleştirme

yaklaşımının ise test kümesi boyutu bakımından tek-model test üretimi yaklaşımından

daha iyiyken, test üretim süresi açısından daha kötü olduğunu göstermektedir.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZET ... iv

LIST OF FIGURES .. vii

LIST OF TABLES .. x

CHAPTER 1 INTRODUCTION .. 1

1.1. Motivation ... 2

1.2.Major Contributions of the Thesis ... 3

1.3.Outline of Thesis .. 5

CHAPTER 2 RELATED WORK ... 6

CHAPTER 3 FUNDAMENTALS .. 9

3.1. Software Product Line and Feature Modeling .. 9

3.2. Event Sequence Graph .. 12

3.3. Test Generation from Event Sequence Graphs 15

3.4. ESG Transformation ... 19

CHAPTER 4 FULL TEST SEQUENCE COMPOSITION FROM FESG 21

4.1. Featured Event Sequence Graph ... 21

4.2. Discussion ... 23

4.3. Full Test Sequence Composition .. 25

CHAPTER 5 INCREMENTAL TEST SEQUENCE COMPOSITION FROM FESG .. 29

5.1. Incremental Test Sequence Composition .. 29

CHAPTER 6 FEATURE-BASED INCREMENTAL PRODUCT GRAPH 40

6.1. Feature-Based Incremental Product Graph ... 40

6.2. The Connectivity of Feature-Based Incremental Product Graph 43

6.3. Incremental Test Generation from Feature-Based IPG 46

6.4. Validation of Product Configurations Using Feature-Based Incremental

Product Graphs .. 47

CHAPTER 7 CASE STUDY .. 50

7.1. Soda Vending Machine SPL ... 50

7.1.1. Soda Vending Machine Models .. 51

7.1.2. Soda Vending Machine Results ... 53

7.2. Email SPL ... 57

7.2.1. Email SPL Models ... 58

vi

7.2.2. Email SPL Results ... 61

7.3. Bank Account SPL .. 65

7.3.1. Bank Account SPL Models ... 65

7.3.2. Bank Account SPL Results.. 68

7.4. Student Attendance System SPL .. 74

7.4.1. Student Attendance System SPL Models .. 75

7.4.2. Student Attendance System SPL Results .. 79

CHAPTER 8 CONCLUSION AND FUTURE WORK ... 86

8.1. Conclusion .. 86

8.2. Future Work .. 87

REFERENCES ... 90

APPENDIX A SVM SOFTWARE PRODUCT LINE 96

APPENDIX B EMAIL SOFTWARE PRODUCT LINE 98

APPENDIX C BANK ACCOUNT SOFTWARE PRODUCT LINE .. 102

APPENDIX D SAS SOFTWARE PRODUCT LINE 104

vii

LIST OF FIGURES

Figure Page

Figure 3.1. Bank account SPL feature diagram .. 10

Figure 3.2. Product matrix of the bank account SPL .. 11

Figure 3.3. ESG of bank account SPL-base product .. 13

Figure 3.4. Strongly connected ESG of bank account SPL - base product 16

Figure 3.5. Vertex degrees of the bank account SPL - base product 17

Figure 3.6. Strongly connected and balanced ESG of bank account SPL base product 18

Figure 4.1. c-ESG of bank account SPL ... 22

Figure 4.2. withdraw f-ESG of bank account SPL ... 23

Figure 4.3. Product FESG lattice for daily limit product .. 26

Figure 4.4. daily limit f-ESG of bank account SPL .. 26

Figure 4.5. ESG of bank account SPL - daily limit product ... 28

Figure 5.1. deposit f-ESG of bank account SPL ... 30

Figure 5.2. The one-time transformed daily limit f-ESG .. 35

Figure 6.1. Feature-Based Incremental Product Graph of Bank Account SPL 42

Figure 6.2. inf-semilattice from of the IPG .. 45

Figure 7.1. Soda Vending Machine SPL feature diagram .. 50

Figure 7.2. Product matrix of the SVM SPL .. 51

Figure 7.3. c-ESG of the SVM SPL .. 51

Figure 7.4. pay EUR f-ESG of SVM SPL .. 51

Figure 7.5. serve soda f-ESG of SVM SPL .. 52

Figure 7.6. ESG of SVM SPL – pay EUR-serve soda product 52

Figure 7.7. cancel purchase f-ESG of SVM SPL ... 52

Figure 7.8. Feature-Based Incremental Product Graph of SVM SPL 57

Figure 7.9. Email SPL feature Diagram ... 58

Figure 7.10. Product matrix of Email SPL ... 58

Figure 7.11. c-ESG of Email SPL ... 59

Figure 7.12. addressbook f-ESG of Email SPL .. 59

Figure 7.13. autoresponder f-ESG of Email SPL ... 60

viii

Figure Page

Figure 7.14. forward f-ESG of Email SPL ... 60

Figure 7.15. keys f-ESG of Email SPL ... 60

Figure 7.16. encrypt f-ESG of Email SPL .. 61

Figure 7.17. sign f-ESG of Email SPL ... 61

Figure 7.18. deposit f-ESG of Bank Account SPL ... 65

Figure 7.19. cancelDeposit f-ESG of Bank Account SPL .. 66

Figure 7.20. cancelWithdraw f-ESG of Bank Account SPL .. 66

Figure 7.21. overdraft f-ESG of Bank Account SPL .. 67

Figure 7.22. credit f-ESG of Bank Account SPL ... 67

Figure 7.23. interest f-ESG of Bank Account SPL ... 67

Figure 7.24. interestEstimation f-ESG of Bank Account SPL 68

Figure 7.25. ESG of bank account SPL – cancellable product 68

Figure 7.26. Student Attendance System SPL feature diagram 74

Figure 7.27. Product Matrix of the Student Attendance System SPL 74

Figure 7.28. c-ESG of SAS SPL ... 75

Figure 7.29. teacherAccess f-ESG of SAS SPL ... 75

Figure 7.30. studentAccess f-ESG of SAS SPL .. 76

Figure 7.31. viewRecord f-ESG of SAS SPL ... 76

Figure 7.32. monitorAttendanceStatus f-ESG of SAS SPL .. 77

Figure 7.33. updateRecord f-ESG of SAS SPL .. 77

Figure 7.34. traceAttendanceActivity f-ESG of SAS SPL .. 78

Figure 7.35. assignNewSchedule f-ESG of SAS SPL .. 78

Figure 7.36. ESG of SAS SPL – teacher user-access card-email product 79

Figure A.1. free f-ESG of SVM SPL .. 96

Figure A.2. payUSD f-ESG of SVM SPL .. 96

Figure A.3. serveTea f-ESG of SVM SPL .. 96

Figure A.4. ESG of SVM SPL – serve soda-free product .. 96

Figure A.5. ESG of SVM SPL –pay EUR product ... 96

Figure A.6. ESG of SVM SPL – pay USD-serve soda product 97

Figure A.7. ESG of SVM SPL – pay USD product .. 97

Figure B.1. ESG of Email SPL – base product .. 98

Figure B.2. ESG of Email SPL – address book .. 98

ix

Figure Page

Figure B.3. ESG of Email SPL – autoresponder .. 99

Figure B.4. ESG of Email SPL – forward .. 99

Figure B.5. ESG of Email SPL – encrypt ... 100

Figure B.6. ESG of Email SPL – address book-autoresponder-forward 100

Figure B.7. ESG of Email SPL – address book-autoresponder-encrypt 101

Figure B.8. ESG of Email SPL – address book-autoresponder-encrypt-sign product 101

Figure C.1. ESG of bank account SPL – credit product ... 102

Figure C.2. ESG of bank account SPL – interest product .. 102

Figure C.3. ESG of bank account SPL – overdraft product ... 103

Figure D.1. accessCard f-ESG of SAS SPL ... 104

Figure D.2. barcode f-ESG of SAS SPL .. 104

Figure D.3. fingerprint f-ESG of SAS SPL .. 104

Figure D.4. QRCode f-ESG of SAS SPL .. 104

Figure D.5. viewClass f-ESG of SAS SPL ... 105

Figure D.6. addNewClass f-ESG of SAS SPL ... 105

Figure D.7. deleteClass f-ESG of SAS SPL ... 105

Figure D.8. updateClassDetails f-ESG of SAS SPL .. 105

Figure D.9. viewSchedule f-ESG of SAS SPL .. 106

Figure D.10. editSchedule f-ESG of SAS SPL ... 106

Figure D.11. addNewSchedule f-ESG of SAS SPL .. 106

Figure D.12. ESG of SAS SPL – limited student user-barcode-SMS 106

Figure D.13. ESG of SAS SPL – both users-access card email 107

Figure D.14. ESG of SAS SPL – limited teacher user-access card 108

x

LIST OF TABLES

Table Page

Table 7.1. Soda Vending Machine SPL FESG Components .. 53

Table 7.2. Isolated Product ESGs of SVM SPL ... 54

Table 7.3. Model Comparison of SPL FESGs and Isolated Products 54

Table 7.4. Test Generation Time of Isolated Product ESGs of SVM SPL 55

Table 7.5. Complete Event Sequences of Isolated Product ESGs of SVM SPL 55

Table 7.6. Full Test Sequence Composition Time of FESGs ... 56

Table 7.7. Complete Event Sequences of Full Test Sequence Composition FESGs 56

Table 7.8. Time and CESs of Incremental Test Sequence Composition FESGs 57

Table 7.9. Email SPL FESG Components .. 62

Table 7.10. Isolated Product ESGs of Email SPL .. 62

Table 7.11. Model Comparison of SPL FESGs and Isolated Products 63

Table 7.12. Test Generation Time of Isolated Product ESGs of Email SPL 63

Table 7.13. Complete Event Sequences of Isolated Product ESGs of Email SPL 63

Table 7.14. Full Test Sequence Composition Time of FESGs 64

Table 7.15. Time and CESs of Incremental Test Sequence Composition Approach 64

Table 7.16. Bank Account SPL FESG Components .. 69

Table 7.17. Isolated Product ESGs of Bank Account SPL ... 69

Table 7.18. Model Comparison of Bank Account SPL and Isolated Products 70

Table 7.19. Test Generation Time of Isolated Product ESGs of Bank Account SPL 70

Table 7.20. Full Test Sequence Composition Time of FESGs 71

Table 7.21. Complete Event Sequences of Full Test Sequence Composition FESGs 71

Table 7.22. Incremental Test Sequence Composition Time of FESGs 72

Table 7.23. Incremental Test Sequence Composition CESs .. 73

Table 7.24. SAS SPL FESG Components .. 80

Table 7.25. Isolated Product ESGs of SAS SPL ... 81

Table 7.26. Model Comparison of SAS SPL FESGs and Isolated Products 81

Table 7.27. Test Generation Time of Isolated Product ESGs of SAS SPL 81

Table 7.28. Complete Event Sequences of Isolated Product ESGs of SAS SPL 82

Table 7.29. Full Test Sequence Composition Time of FESGs of SAS SPL 82

xi

Table Page

Table 7.30. Complete Event Sequences of Full Test Sequence Composition FESGs 83

Table 7.31. Incremental Test Sequence Composition Time of FESGs 84

Table 7.32. Incremental Test Sequence Composition CESs of FESGs 85

1

CHAPTER 1

INTRODUCTION

 System quality is one of the most important aspects of software development as

much as achieving pure functionality (Mistrik et al. 2014). It provides client

satisfaction, reduces post-deployment costs and certificates the products (Mistrik et al.

2014) In addition to increasing quality, customers expect to tailor the products

according to their needs therefore, product configurability becomes more and more

critical (Mistrik et al. 2014). Hence, the software manufacturing is required to adapt this

configurable development process correspondingly. Paradigm for software product lines

is proposed for configurable systems production (Mistrik et al. 2014) hence, this thesis

focuses on quality assurance in software product lines.

 Software product line paradigm states that most software systems are not new

(Kang, Sugumaran, and Park 2009). More commonalities are shared by software

systems in application domain (Kang, Sugumaran, and Park 2009). In fact, most

companies tend to build modular software systems from reusable parts instead of

designing software systems from scratch (Apel et al. 2013). For example, world-wide

known companies Boeing, Bosch, Toshiba, General Motors etc. have software product

line development success stories (Apel et al. 2013). Software product lines promises

different advances such as tailor-made products, reduced costs, shorter development

cycles and higher quality through the systematic reuse of software assets (Apel et al.

2013; Devroey et al. 2012). Agile software product lines are obtained from the

transformation of classical software product lines with agile methods.

 Comparing the monitored behavior of system to the expected one by stimulating

the system with the pre-defined inputs is the idea behind the testing (Mistrik et al.

2014). User-centered testing examines the behavior of the system as it checks whether

the software does what it is expected to do (positive testing) or not what it is not

expected to do (negative testing) (Linschulte 2013). Since the number of to-be-applied

tests can be infinite, the distinction between positive functioning and negative

functioning, which is known as Oracle Problem (Memon, Pollack, and Soffa 2001),

2

comes into question. In order to overcome this problem, formal methods which model

the behavior that is desired and undesired are proposed. These methods are called as

model-based testing (MBT) methods. In model-based testing, a formal model is derived

from the requirements (Mistrik et al. 2014). Furthermore, it is required to employ

models from which test cases are obtained automatically (Mistrik et al. 2014). The

software system’s source code for test case generation does not have to be available for

MBT and this makes it attractive to the industry since most of the products’ source

codes are not shared (Linschulte 2013).

 In this thesis, a model-based approach is proposed for systematic and automatic

testing of agile software product lines (SPLs). The software systems’ behavior is

represented by using the event sequence graphs (ESG) under consideration of user

actions, i.e., events and features of a software product line are represented featured

event sequence graphs (FESG).

1.1. Motivation

For majority of the projects, the testing costs range from 20 to 50 per cent of the

comprehensive system development costs (Mistrik et al. 2014). Moreover, these costs

can reach up to 80% easily for safety-critical systems (Jones 1991). One study on the

ground of data gathered from Rolls-Royce shows that nearly 52 per cent of the overall

development activities of a system are on testing activities (Mistrik et al. 2014; Nolan et

al. 2011). It has been argued that software product line paradigm reduces the

development costs but not necessarily the testing costs, in the aforementioned study.

Also, it has been reported that, 72% of overall product development activities are on

validation and verification in software product line context and this percentage can

reach 90 in theory, because of high reuse (Nolan et al. 2011). It has been concluded that

this percentage rises not because the testing effort has increased but because the

development effort has decreased thanks to the reusable assets and this raises the testing

effort compared to the overall effort, nevertheless, testability becomes more important

for software product lines (Nolan et al. 2011). Hence, automatic and systematic testing

methods become a must-have in software product line development.

3

 Automation could be applied to test execution and test design. To implement test

design automation, a formal model from requirements is derived and a test case set

based on that model are generated which leads us to model-based testing. A high

potential to exploit reuse opportunities for SPL testing is provided by MBT (Olimpiew

2008; Tuglular, Beyazıt, and Öztürk 2019). Various model MBT techniques has been

proposed for SPLs which are explained in

. Nevertheless, most of the current SPL testing approaches cannot remedy the following

two deficiencies, potentially (Lochau et al. 2016). Firstly, for some approaches, one

overlaying specification with all possible variants of the software product line is

required and because of computational overhead, this becomes unwieldy for large-scale

software product lines (Tuglular, Beyazıt, and Öztürk 2019; Lochau et al. 2016;

Czarnecki and Antkiewicz 2005). Secondly, instead of considering behavioral impact of

variations, the emphasis is on structural and syntactical variability (Apel and Hutchins

2010). Therefore, there is no systematic propagation of behavioral properties from one

product form (variant) to another (Lochau et al. 2016).

 To decrease the test cost of SPLs with the aid of automatic MBT techniques, this

thesis which proposes a test generation approach for agile SPLs and remedies the

potential deficiencies of model-based techniques is presented.

1.2. Major Contributions of the Thesis

This thesis aims to develop a model-based test generation approach for agile

software product lines and addresses the following questions:

1. How to build variable testing models in order to explicitly represent the

variability of behaviors in SPLs?

2. How can the exertion of test generation and thus the test cost be decreased while

the number of product variants and their complexity continuously increasing?

3. How can the existing test cases be reused in extension of a product with new

features?

 To answer the first question, this thesis utilizes Featured Event Sequence Graphs

(FESGs) as variable testing models which are used to explicitly represent the variability

4

of behaviors in SPLs. The core of the SPL and each feature are modelled as partial or

full ESGs which are independent and named as c-ESG and f-ESG, respectively. Then,

the combination of core ESG and selected feature ESGs represent the behavior of the

corresponding product.

 To answer the second question, this thesis employs a full test sequence

composition approach which exploits the FESGs. The implementation of this approach

resembles as divide-and-conquer strategy in the sense that the core of the SPL and

existing features of each SPL variant are modelled separately. Prepared test models

together constitute the FESG of a product. Comparing to the single ESG model of each

product variant which is called as full-ESG model, the FESG constituents are quite

simple models in terms of number of vertices and edges. This because, a full-ESG

model includes both the core’s and selected features’ behaviors and it is a more

complex model. Therefore, test generation is faster and traceability and maintainability

of these models are easier.

 One can simply prepare test models of the core and all the features within the

SPL and then combine these models for different products’ test generation. New

features could be added easily, or existing features could be updated without interfering

other features. In the test sequence composition approach, existing test models are

reused and each time a new variant is obtained their test sequence are composed from

scratch. Even though the test composition from scratch, this approach is more efficient

than the traditional test generation approach of full-ESG models.

 To answer the third question, this thesis utilizes another approach called

incremental test sequence composition approach. This approach is an enhanced version

of test sequence composition approach and it also exploits the FESGs. The aim of this

approach is reusing both the test models and the existing test cases. Thus, each time a

new feature (or features) is added to an existing variant, the test model of the new

feature is prepared, and its corresponding test sequences are generated. The existing test

cases of the product and the new test sequences are composed in order to generate the

test cases of a new product variant. Therefore, the test models and their corresponding

test cases are reusable and configurable for different variants within the SPL.

 Additionally, another contribution of this thesis is a directed graph which is

called Feature-Based Incremental Product Graph. The Feature-based Incremental

Product Graph holds FESGs in its vertices and feature sets in its edges. The structure of

the Feature-based Incremental Product Graph allows to automatically run the

5

incremental test sequence composition approach very easily and automatically. The

Feature-based Incremental Product Graph is used to experiment on SPL product

variants by using incremental test sequence composition approach. This graph is used to

validate the configurations of these product variants. In order to achieve these

operations two different algorithms are proposed in which the graph is traversed via

Breadth First Traversal.

1.3. Outline of Thesis

This thesis is organized according to the following. The next chapter provides an

overview of the literature. CHAPTER 3 provides context on software product lines,

feature modeling, event sequence graphs and related algorithms. CHAPTER 4 includes

the detailed explanation of the model-based full test sequence composition approach. In

CHAPTER 5, the incremental test sequence composition approach is proposed which is

an improved version of test sequence composition approach. The feature-based

incremental product graph is introduced in CHAPTER 6. Case study of this thesis work

is presented in CHAPTER 7. Finally, CHAPTER 8 provides final comments and future

work.

6

CHAPTER 2

RELATED WORK

 In model-based testing (MBT), the specifications of the software to be tested are

defined by a model in accordance with the specification. These models are usually

graph-based. Examples of these models can be given as finite state machines (Chow

1978; Fujiwara et al. 1991), petri nets (Xu 2011) and event sequence graphs (Belli

2001). An algorithm for test generation that takes this model as input creates a test set

using a test selection criterion (Belli 2001).

 Whittaker (Whittaker 1997) suggested that models used in MBT could be

decomposed or combined, and showed that test cases can be generated from partial

models or model parts and also from the combined large model, and then compared the

results. El-Far and Whittaker (El-Far and Whittaker 2002) examined the issue of test

generation from hierarchical models. They showed how the main finite state machine

can be expanded by replacing a state with a finite state machine. They made the

definition of a hierarchical finite state machine and discussed test generation from

hierarchical finite state machines. Belli et al. (Belli, Guler, and Linschulte 2011)

proposed a method for test generation from hierarchical models that use event sequence

graphs. However, these ideas have not been applied to MBT of SPLs.

 Scenario based TEst case Derivations (ScenTED) was one of the initially

proposed approaches in model based testing of software product lines that exploits reuse

of the core properties and components in order to reuse of the test cases (Reuys et al.

2005). Customizable Activity diagrams, Decision tables and Test specifications

(CADeT) method was also another significant research on model based testing of

software product lines (Olimpiew 2008) which generates feature-based test suites by

employing UML use case and activity diagrams. In order to model variability and

generate test cases, decision tables are used. A method named as 150% finite state

machines, which employs an overlaying model for the software product line under

consideration and includes a coverage-driven method for SPL testing was proposed by

Cichos et al. (Cichos et al. 2011). Another model-based testing method for software

7

product lines is model-checking. Kishi and Noda (Kishi and Noda 2006) suggested

modelling the design as a finite machine and checking if the product has the determined

features indeed, by using model checking. In order to apply model checking to SPLs

several approaches has been suggested (Gruler, Leucker, and Scheidemann 2008;

Classen 2011; Classen et al. 2011) .

 Additionally, Olimpiew and Gomaa (Olimpiew and Gomaa 2005) suggested the

Product Line UML based Software engineering (PLUS) method that maps the software

product line models to functional test cases to generate and select the functional tests

automatically for the corresponding SPL applications. PLUS has outlined that how to

build specifications, analyzes and the design for an SPL. A feature model and a use case

model are included in the requirement models; a class, state chart and object interaction

model are included by an analysis models; component-based software architecture

models are included by design models. All of the requirement, analysis and design

models are based on UML 2.0 notation. Another approach for testing in SPLs was

proposed by Lamancha et al. (Lamancha, Usaola, and de Guzman 2009) which is based

on familiar standards for instance UML 2.0, the UML testing profile and QVT

Language in which the traceability is preserved between different levels of abstraction,

as well as between levels of domain and product engineering.

 Moreover, Geppert et al. (Geppert 2004) proposed a method for SPL testing that

employs a decision model to guide feature selection during derivation of an application,

test selection and customization. In this method, test parameters are contained by

generic test templates and corresponds to points of variation or groups of feature in an

SPL. To assign a value to the test parameter, a feature of the SPL is selected. Gebizli

and Sözer (Gebizli and Sözer 2016) suggested a method for product family testing

which models the system functionality by using Markov chains in which the behavioral

variability is depicted via a feature model. The Markov chains are employed to capture

usage scenarios for products within the SPL and testing is performed on an industrial

case study which shows that testing even a small number of products redeem the cost of

SPL engineering adoption.

 Furthermore, Oster et al. (Oster et al. 2011) proposed a tool chain that realizes

Model-based Software Product Line Testing (MoSo-PoLiTe) concept which combines

model-based and combinatorial testing of SPLs. Variant management tool pure::variants

for Rational Rhapsody and the Rational Rhapsody Plugin ATG underlies the tool chain

8

for test case generation and a plugin for pure::variants is implemented that realizes the

pairwise algorithm of the MoSo-PoLiTe concept.

 To reduce redundancies in SPL testing, regression-based and subset selection

heuristics are two research directions (Lochau et al. 2016). Since this thesis is on

regression-based testing of SPLs, the related literature is covered. Uzuncaova et al.

(Uzuncaova, Khurshid, and Batory 2010) suggested a method using SAT-based analysis

to produce test inputs for each software product line variant. Incremental enhancement

of test cases for a specific variant is enabled by their approach. Neto et al. (Neto et al.

2010) suggested a method that decreases the effort of testing by reusing test suites

which requires exploiting similarities in the architecture of the SPL. Additionally, an

approach for reuse of test artifacts between product variants was proposed by Lochau et

al. (Lochau et al. 2012). All these studies are based on finite state machines (FSMs),

without explicit mapping of features with FSMs. In other words, how states, transitions,

etc. represent a single feature and how states and transitions representing a single

feature are connected to a product’s FSM are not depicted. In practical terms, these

representations are significant for the techniques to be used by industry for traceability

reasons, all features are represented distinctly and the way how to connect a single

feature to a product is stated clearly. Another novelty of the approaches proposed in this

thesis is that starting with a base product and coming up to other incrementally are not

necessary.

9

CHAPTER 3

FUNDAMENTALS

 This chapter explains the fundamental notions and algorithms that construct the

background of this study. Firstly, the software product line paradigm and feature

modeling are introduced. Secondly, the Event Sequence Graphs (ESGs), which are the

building blocks of this study are presented. The ESG test generation algorithm is

explained in depth. Finally, the ESG transformation algorithm is introduced.

3.1. Software Product Line and Feature Modeling

A set of products that have common features with varying additional features

which are related to each other in a specific domain constitute a software product line

(SPL) (Withey 1996). Software product line paradigm enables systematic software asset

reusing therefore, it promises faster development, automatic testing and increased

product quality (Devroey et al. 2012).

In software product lines, there are different variations of a software equipped

with different features to appeal to different target audiences. For example, a product set

of standard, professional and enterprise versions of a software represent a software

product line. The number of elements of the product set that represents the software

product line can be quite high. Every new feature added to the mutual features at the

core/base of the software increases the complexity of the software and thereby

reinforces its predisposition to failure.

The features in a software product line shape the products according to the

selection of the stakeholders and enable us to distinguish one product from another

(Czarnecki, Krysztof and Eisenecker, Ulrich 2000). The feature selection is done

through feature diagrams. A feature diagram is given in Figure 3.1 which is used as a

running example in this study and it belongs to a bank account software product line.

10

This diagram enables us to develop related bank account products such as one allowing

cancellation of deposit and/or withdraw operations, one allowing extra money, one

allowing daily limit etc.

 Figure 3.1. Bank account SPL feature diagram

 The configuration options and the dependencies are represented by feature

diagrams(Tuglular, Beyazıt, and Öztürk 2019), which are originally proposed by Kang

et al (Kang n.d.). In feature diagrams, the SPL is represented by the root and the

features of the SPL are represented by the leaves. The features which are either

mandatory or optional, could be combined with XOR or OR relationships (Tuglular,

Beyazıt, and Öztürk 2019). The features that are in OR relationship could be included in

a product in different combinations (Tuglular, Beyazıt, and Öztürk 2019). However, the

ones that are in XOR relationship could be included exclusively, i.e., only one of them

could be included in a certain product (Tuglular, Beyazıt, and Öztürk 2019). The

require relationship in feature diagrams, denotes the implication between two features

(Tuglular, Beyazıt, and Öztürk 2019). The exclude relationship denotes the exclusion

between two features (Tuglular, Beyazıt, and Öztürk 2019). In feature diagrams, there

are also abstract features which are employed to group features and concrete features

which are actually corresponding real features in an SPL.

11

 The feature diagram shown in Figure 3.1, a bank account SPL is shown with

mandatory features which are Deposit and Withdraw. In this diagram, the abstract

feature Cancellation is grouping CancelDeposit and CancelWithdraw features with OR

relationship and the abstract feature ExtraMoney is grouping Overdraft and Credit

features with XOR relationship. The features Cancellation, ExtraMoney, Interest,

InterestEstimation and DailyLimit are optional for this SPL. Furthermore, the

implications that are written below the feature diagram correspond to require

relationship where InterestEstimation feature requires Interest feature, DailyLimit

feature requires Withdraw and CancelWithdraw features, and, Overdraft feature

requires CancelWithdraw and DailyLimit features in a product configuration. The bank

account SPL example is modified from the online software product line catalog SPL2go

(“SPL2go” n.d.), in which the source code and the feature model of the running

example is publicly available.

Figure 3.2. Product matrix of the bank account SPL

 Formal presentations of feature diagrams which are feature models are generally

user-centric (Tuglular, Beyazıt, and Öztürk 2019). The definitions of the feature model

and the product configuration are given in following.

 Definition 3.1: Let B indicates the Boolean values domain by B = {false, true}.

 Let F be a finite Boolean variables (features) set. A feature model (FM) fm:

12

(F→B)→B is represented as a propositional formula over the set F (Lochau et al. 2016).

 Definition 3.2: An assignment of Boolean values to features such that

fm(p)=true holds is a product configuration (PC) p: F→B is (Lochau et al. 2016; Kang

et al. 1990).

 Product diagrams are visual representations of product configurations. Product

matrix of a SPL shows available products for that SPL. Product matrix of the bank

account SPL is given in Figure 3.2.

3.2. Event Sequence Graph

An Event Sequence Graph which is abbreviated as ESG is a technique that is

used for behavioral-modelling of systems (Belli et al. 2005). Both the expected (i.e.

correct) and un expected (i.e. exceptional) behavior of the system could be represented

by using ESGs from the system user’s point of view (Belli et al. 2005; Belli and Budnik

2005). ESGs focus on the externally observable behavior of computer-based systems by

means of discrete event-based models (Belli et al. 2005).

The interactions between the user events, the environmental actions, and the

system responses are modelled by exploiting the event-based structure of ESGs (Belli et

al. 2005). The complete set of interactions is obtained in terms of an ESG set, where

each ESG stands for a possibly infinite set of event sequences (Belli et al. 2005). This

event sequences set is used in order to test both the desired and the undesired behavior

of a computer-based system. The following event sequence graph’s definitions are used

throughout this study. An example event sequence graph is depicted in Figure 3.3.

Definition 3.3: An Event Sequence Graph is a directed graph

where is a finite set of nodes (vertices) and is a finite set of arcs

(edges), and finite sets of distinguished vertices with , called

entry nodes and exit vertices, respectively, wherein there is at least one

sequence of vertices from each to each with

, for i = 0, …, k-1 and (Belli, Budnik, and White 2006).

The start (entry) and finish (exit) vertices of an ESG are marked by applying the

following convention: all are preceded by a pseudo vertex ‘[‘ and all

13

 are followed by another pseudo vertex ‘]’ (Belli, Budnik, and White 2006).

The start (entry) and finish (exit) vertices which are demonstrated by ‘[‘ and ‘]’

respectively, are called pseudo vertices and they are not included in (Belli and Budnik

2005; Belli, Budnik, and White 2006). The pseudo vertices are not included also in

event sequences.

Example 3.1: For the ESG given in Figure 3.3, = {get balance, select deposit,

enter deposit amount, put money, select withdraw, enter withdraw amount, take

money}, Ξ={get balance, select deposit, select withdraw}, Γ={get balance, put money,

take money} and ={(get balance, select deposit), (select deposit, enter deposit

amount), (enter deposit amount, put money), (get balance, select withdraw), (select

withdraw, enter withdraw amount), (enter withdraw amount, take money), (put money,

get balance), (take money, get balance)}. does not contain the edges from pseudo

start vertex ‘[’, and to pseudo finish vertex ‘]’.

Figure 3.3. ESG of bank account SPL-base product

 Definition 3.4: Let V,E be defined as in Definition 3.3. Any sequence of vertices

 is called an event sequence (ES) if , for i=0, …, k-1

(Belli and Budnik 2005; Belli, Budnik, and White 2006; Belli and Budnik 2004).

14

 Example 3.2: select deposit - enter deposit amount - put money is an ES of

length 3 of the ESG in which given in Figure 3.3.

 In order to specify the start vertex and finish vertex of an ES and

 are functions are used, i.e., , (Belli and Budnik

2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). The successors set of

 is denoted by and the predecessors set of is denoted by

 (Belli and Budnik 2005; Belli, Budnik, and White 2006; Belli and Budnik 2004).

The number of vertices of an ES is determined by the function (Belli and

Budnik 2005; Belli, Budnik, and White 2006; Belli and Budnik 2004). If

then is an ES of length one (1) (Belli and Budnik 2005; Belli, Budnik, and

White 2006; Belli and Budnik 2004). Each edge of ESG or an of

length two (2) represent an event pair (EP) (Belli and Budnik 2005; Belli, Budnik, and

White 2006; Belli and Budnik 2004).

 Definition 3.5: An ES is called a complete ES (Complete Event Sequence,

CES), if is the entry and is the exit (Belli and Budnik

2005; Belli, Budnik, and White 2006; Belli and Budnik 2004).

 Example 3.3: The ESG demonstrated in Figure 3.3 has a CES get balance -

select withdraw - enter withdraw amount -take money which describes a walk from the

start of the ESG to its finish.

 A test sequence, i.e., test case, CES, of the ESG is of the shape “(initial) user

inputs → (interim) system responses → … → (final) system response”(Belli and

Budnik 2007).

 A legal walk is represented by a CES which traverses the ESG from its

start to its finish (Belli et al. 2005). A complete legal walk or an entire walk contains

each event pair (EP) in the corresponding ESG at least once (Belli et al. 2005; Belli and

Budnik 2005). A complete legal walk or a legal entire walk is minimal if its length

cannot be decreased without changing it into an incomplete legal walk (Belli et al.

2005). If a minimal legal walk contains every EP exactly once then it is considered ideal

(Belli et al. 2005). CESs are considered as legal walks of ESGs (Belli et al. 2005).

However, constructing an entire or an ideal walk is not always feasible (Belli et al.

2005).

15

3.3. Test Generation from Event Sequence Graphs

Test generation consists of extracting the complete event sequences (CESs) from

ESGs. In order to extract the CESs of an ESG, one is required to solve the Chinese

Postman Problem, which is abbreviated as CPP (Belli et al. 2005). Solving CPP means

finding the Euler cycles on the graph, i.e., starting from and returning back to the same

vertex by visiting each edge exactly once (Belli, Guler, and Linschulte 2011; Tuglular,

Belli, and Linschulte 2016).

The solution to the CPP on ESGs is the set of CESs of the corresponding

ESG(Belli, Guler, and Linschulte 2011). The generation of CESs is anticipated to have

a lower degree complexity comparing to solution of CPP, since the edges of ESG are

not weighted (Belli et al. 2005).

In order to derive the solution of CPP, the given ESG is required to be an

Eulerian graph (Belli, Guler, and Linschulte 2011). If a graph is strongly connected and

balanced, i.e., has equal in degree and out degree (Belli, Guler, and

Linschulte 2011). An Eulerian graph has a cycle which goes exactly

once across each edge and returns to the starting vertex (Belli, Guler, and Linschulte

2011).

 Figure 3.4 illustrates the transformation of an ESG given in Figure 3.3 into a

strongly connected graph. Strongly connected means that there is a path between each

vertex pair (Belli et al. 2005). A backward edge symbolized as a dashed arrow is added

from exit vertex to entry vertex in order to transform the given ESG into a strongly

connected ESG(Belli et al. 2005). All ESGs have a pseudo start vertex which reaches to

each vertex in by a path. Also, each vertex in reaches to a pseudo end vertex by a

path in all ESGs. Therefore, adding an edge from pseudo finish vertex to pseudo start

vertex makes ESGs strongly connected.

Definition 3.6: The number of edges going into a vertex is the in degree

written , and the number of edges pointing out of a vertex is the outdegree

written . Let be the difference between the in- and outdegrees:

 If , vertex is called balanced (Belli, Guler, and

Linschulte 2011).

16

 The vertex labels of Figure 3.5 indicates the balance values of the vertices of

ESG given in Figure 3.4. The number of additional edges that are used to balance each

vertex will be determined by exploiting these balance values (Belli et al. 2005).

Definition 3.6 concludes that a directed graph is Eulerian if each of its vertices are

balanced, i.e., .

In order to balance the ESG, first, a positive degree vertex partition which is

shown below as and a negative degree vertex partition which is shown below as

must be determined (Belli, Guler, and Linschulte 2011). Then, the vertices of these

vertex partitions must be matched by taking the path lengths between them into

consideration (Belli, Guler, and Linschulte 2011).

Figure 3.4. Strongly connected ESG of bank account SPL - base product

(derived from Figure 3.3)

Figure 3.5, which is based on Figure 3.4, demonstrates the degree belonging to

the each vertex in Figure 3.4 with set and

set (Belli, Guler, and Linschulte 2011). and

occur twice in and , because their degree is , respectively.

To balance the given graph, each element of set is strictly assigned to one

element of set until no unassigned element in either set is left and no other assignment

with a lower number of edges to be added up to the assignment is left (Belli, Guler, and

Linschulte 2011). This leads to assignment problem which answers the question of how

n items (agents) are assigned to n other items (tasks) with varying costs, relying on the

agent-task assignment (Belli, Guler, and Linschulte 2011). It is necessary to perform all

17

tasks by assigning exactly one agent to each task so that the total cost of the assignment

is minimum (Belli, Guler, and Linschulte 2011).

In this study, The Hungarian Matching Algorithm (Burkard, Dell’Amico, and

Martello 2012) so-called Kuhn-Munkres Algorithm, which solves assignment problem

is applied to match the two partitions and ’s vertices and the ESG is made balanced

by using this matching. The Hungarian Matching Algorithm is one of the fastest

methods for solving the assignment problem and it provides a solution in O(n3) time

(Belli, Guler, and Linschulte 2011).

The balanced and strongly connected ESG is demonstrated in Figure 3.6 based

on the ESG shown in Figure 3.3. The resulting paths of the matchings

are added to the corresponding ESG and the additional paths are shown with dashes

arrows.

Figure 3.5. Vertex degrees of the bank account SPL - base product

(derived from Figure 3.4)

Since the ESG becomes an Eulerian graph, the problem is transformed into the

construction of an Euler cycle from this graph (Belli et al. 2005). Each separate test case

is identified by each occurrence of the ES =] [in the Euler cycle (Belli and Budnik

2005). The number of walks or CESs are indicated by the number of backward edge

which is contained by the Euler cycle (Belli et al. 2005).

 This study solves CPP by finding an Euler cycle on an ESG by using Hierholzer

Algorithm (Hierholzer and Wiener 1873) and dividing the cycle by the occurrence of

ES =] [. Each divided part corresponds to a CES and represents one of the test cases.

On the basis of the Eulerian graph given in Figure 3.6, the resulting Eulerian

cycle is given as follows:

18

enter withdraw amount take money – get balance][select withdraw enter withdraw

amount take money][select deposit – enter deposit amount – put money – get

balance – select deposit – enter deposit amount – put money][get balance – select

withdraw – enter withdraw amount

Figure 3.6. Strongly connected and balanced ESG of bank account SPL base product

 The last vertex “enter withdraw amount” of the output cycle does not play a role

in the desired test sequences, therefore it could be deleted (Linschulte 2013). Whenever

this cycle is split up between each occurrence of “][”, the resulting CESs are as

follows:

CES1: select withdraw enter withdraw amount take money

CES2: select deposit – enter deposit amount – put money – get balance – select deposit

– enter deposit amount – put money

CES3: get balance – select withdraw – enter withdraw amount take money – get

balance

 Algorithm 3.1 achieves test sequence generation from an ESG.

 Algorithm 3.1 Sequence Generation

Input: G = (V, E, Ξ, Γ) – an ESG

 k – integer coverage parameter for k-sequence coverage

Output: T – a set of complete sequences for G achieving k-sequence coverage

 Gk = transformESG(G) // See Algorithm 3.2

 Gk-stronglyConnected = add an edge from ‘]’ to ‘[’

 Gk-stronglyConnected-balanced = add necessary paths untill degree of each V  Gk-stronglyConnected is 0.

 T = generate Euler cycles from Gk-stronglyConnected-balanced

19

To conclude, the test generation algorithm is required to solve the Chinese

Postman Problem on the ESGs. The solution set of CPP contains each CES of the

corresponding ESG and it covers each event pair (EP) of the ESG.

3.4. ESG Transformation

 ESG transformation algorithm is proposed in Algorithm 3.2 to cover event

triples, quadruples etc., i.e. test sequences of length k where k could be 3,4 etc. When an

ESG is transformed, it becomes to have event sequences in each of its nodes. The length

of the ES, determines the value of k. If it is not transformed, only the event pairs could

be covered, however k-length event sequences could help to connect the testing process

thoroughly and reveal possible extra faults.

Suppose an ESG has V= {x, a, b, c, z}, E= {(x, a), (a, b), (a, c), (b, c), (c, b), (b, z)}

before transformation. When it is transformed once, each node becomes to have an ES

of length 2 in it. After transformation, V= {xa, ab, ac, bc, cb, bz} and E= {(xa, ab), (xa,

ac), (ab, bc), (ab, bz), (ac, cb), (bc, cb), (cb, bc), (cb, bz)}. When the edges of

transformed ESG are covered, event triples which are xab, xac, abc, abz, acb, bcb, cbc

and cbz are covered in test sequences. We cover k events by covering a single edge,

when the length of the ES in a vertex is k-1. For example, the transformed ESG has a

length-2 ES in each of its nodes, event triples are covered, i.e. k is 3.

 Algorithm 3.2 convert the input ESG to a sequence ESG, i.e., an ESG that

contains vertices of a special type called as sequence vertex by calling

"convertToOneESG" procedure. Each sequence vertex includes event sequences (ESs)

of length k of the Algorithm 3.2. Note that, the ESs of sequence vertices are acted as an

event but they are not actual events, indeed. In "transform" procedure of Algorithm 3.2,

the sequence ESG version of input ESG is transformed with itself k times until all the

edges to cover ESs of length k are added.

 Example 3.4: Consider the ESG that is given in Figure 3.3. V = {get balance,

select deposit, enter deposit amount, put money, select withdraw, enter withdraw

amount, take money} before transformation. When it is transformed once, each node

becomes to have an ES of length 2 in it. After transformation, the vertex set becomes V

20

= {get balance: select deposit, select deposit: enter deposit amount, enter deposit

amount: put money, put money: get balance, get balance: select withdraw, select

withdraw: enter withdraw amount, enter withdraw amount: take money, take money:

get balance}. Therefore, an event triple could be obtained by covering a single edge that

belongs to the one-time transformed ESG. For example, when the edge (get balance:

select deposit, select deposit: enter deposit amount) is covered the event triple get

balance: select deposit: enter deposit amount is obtained.

Algorithm 3.2 Transformation of ESG

Input: G = (V, E, Ξ, Γ) – an ESG to be transformed

 k – integer transformation parameter

Output: Gk – transformed ESG

 GoneESG = convertToOneESG(G)

 Gk = GoneESG

 for n=1 to k incrementing by 1 do

 Gk = transform (Gk , GoneESG)

 endfor

 In this chapter, the notions software product line, the feature modelling and the

event sequence graphs are explained. Also, the algorithms test generation of EGSs and

the transformation of EGSs are given. These notions and algorithms provide a basis for

the next chapter, which will present a model-based test generation approaches for SPLs.

21

CHAPTER 4

FULL TEST SEQUENCE COMPOSITION FROM

FEATURED EVENT SEQUENCE GRAPHS

The full test sequence composition approach is explained in this chapter. The

full test sequence composition approach is a model-based approach which introduces

Featured Event Sequence Graphs (FESG). FESGs are variable testing models which are

used to express the variability of SPL products’ behavior explicitly (Tuglular, Beyazıt,

and Öztürk 2019). In this approach, the core feature and each separate feature are

modelled as ESGs into a FESG. Afterwards, the behavior of a specific product is

obtained from the FESG that results from the combination of the core ESG and the

feature ESGs. The purpose of this approach is to reuse the existing test models and also

the test cases through composition.

4.1. Featured Event Sequence Graph

The notion Featured Event Sequence Graph is proposed in order to fulfill the

need of associating a new feature to an existing product configuration so that the

corresponding test model can be updated accordingly (Tuglular, Beyazıt, and Öztürk

2019). Featured Event Sequence Graphs are abbreviated as FESGs and FESG is an

extension of ESG(Tuglular, Beyazıt, and Öztürk 2019).

Definition 4.1: A featured event sequence graph (FESG) is (F, c, Ξ, Γ) where F

= {f1, f2, …, fN} ≠ ∅ is a finite set of EGSs called feature ESGs (f-ESGs) with each fi =

(Vi, Ei, Ξi, Γi). c ∈ F is a special f-ESG called core ESG (c-ESG). Ξ, Γ ⊆ are

finite sets of excided vertices called entry nodes (start events) and exit nodes (finish

events), respectively.

22

Definition 4.1 suggest that an FESG is a set of feature-ESGs (f-ESGs) one of

which is designated as core-ESG (c-ESG). These f-ESGs forms a behavioral model for

a product/system when considered together. An f-ESG except for the c-ESG contains

one or more nodes of other f-ESGs, which signifies that it is connected to these other f-

ESGs. A c-ESG, however, does not contain any node of another f-ESG. Also, two f-

ESGs cannot contain nodes from each other.

Definition 4.2: A core-ESG (c-ESG) contains the events that represent the core

behavior of the SPL These events are called core events and they are not necessarily

connected to the c-ESG.

Figure 4.1. c-ESG of bank account SPL

The c-ESG of the running example is demonstrated in Figure 4.1. The core

behavior of the SPL is represented as c-ESG (Tuglular, Beyazıt, and Öztürk 2019).

Selected features’ behaviors are represented as feature ESGs which are defined in

Definition 4.3. f-ESGs are combined with c-ESG in order to obtain a specific product’s

behavior within SPL (Tuglular, Beyazıt, and Öztürk 2019).

Definition 4.3: A particular feature in the feature model is represented by a

feature-ESG (f-ESG). Unlike ordinary ESG vertices and c-ESG vertices, a f-ESG

contains vertices associated with the points of variability, which are named as

connection events. Connection events are in fact occurrences in other c-ESGs or f-

ESGs. They are named as (ESG, Event) pairs (Tuglular, Beyazıt, and Öztürk 2019).

The constraints are defined in feature diagram (Figure 3.1.) due to the existence

of connection events. For example, the daily limit f-ESG requires both withdraw and

cancelWithdraw features because of its connections to these f-ESGs. Note that,

whenever an f-ESG A is connected to another f-ESG B, there should be a constraint that

is A requires B, so that, A and B features are added to the product configurations

together. Note that, even though the withdraw and deposit features are mandatory, the

 constraints that implies these features are added because if these features become

23

optional, the cancelDeposit and cancelWithraw will still be requiring them.

The bank account SPL running example is constituted from the c-ESG (Figure

4.1) and nine f-ESGs. The behavior of withdraw feature is shown in Figure 4.2. In the

given f-ESG, the connection points are placed right before the pseudo entry and the

pseudo exit vertices in which “[,], get balance” of c-ESG are events to be connected.

Figure 4.2. withdraw f-ESG of bank account SPL

Connection events are added in one-way direction from bottom to top which

means that a c-ESG does not have connection event to its feature events (Tuglular,

Beyazıt, and Öztürk 2019). This is the selected convention for this study in order to take

advantage of reuse (Tuglular, Beyazıt, and Öztürk 2019). Nevertheless, each f-ESG

contains variability points, i.e., the information of connection events (Tuglular, Beyazıt,

and Öztürk 2019). In order to constitute a FESG for a specific product configuration, a

c-ESG and a f-ESG set are composed (Tuglular, Beyazıt, and Öztürk 2019).

4.2. Discussion

In this thesis work, one novelty is Featured Event Sequence Graphs. Since these

FESGs are extensions of EGS models, the reasons behind the preference of ESGs are

explained in this section. Afterwards, the necessity for extending ESGs and introducing

FESGs are mentioned.

The first reason is that the ESGs are event-based models. As it is written before

in CHAPTER 2, Chow (Chow 1978) described test models based on finite state

24

machines in 1978. The finite state machine-based test models and the Petri nets (Xu

2011) which are variation of finite state machines are all state-based models. Using

ESGs as test models provide a better reflection of the interactive human-machine

systems’ behavior. In event-based modelling of the ESGs, both the desirable and the

undesirable behavior of the reactive systems are modelled, and this brings a

complementary view on the system which enables modelling potential user faults.

The second reason is that ESGs are graphs and for graphs, there exist algorithms

to get minimal set of test sequences such as Chinese Postman Problem or Travelling

Salesman Problem. The efficiency is neglected by generating large test sets including

redundant and unnecessary test sequences and, these large test sets do not always result

in a better test coverage (Linschulte 2013).

The third reason is that model refinement of ESG by hierarchical structures

exists. These hierarchical refined models help to apply the principle of “divide and

conquer” and allows modularization. Furthermore, there is no other approach to use

hierarchical structures to generate optimized test sets (Linschulte 2013).

ESGs are preferred in model-based testing because of the advantages outlined

above and extended for the following reasons. First of all, Featured Event Sequence

Graphs are also event-based models and they are preferable for interactive human-

machine systems. Second, FESGs contains c-ESG and f-ESG models, which are

modelled as ESG, therefore, they exploit the optimal test sequence generation

approaches.

Furthermore, Featured Event Sequence Graphs follows the “divide and conquer”

principle in a more traceable way. In the hierarchical ESG models, models that are low-

level in hierarchy are hidden under certain vertices. This makes the traceability of these

models harder comparing to the FESG models, since in FESG models the hierarchy is

shown explicitly via connection points. Also, c-ESG and f-ESGs of the FESG model

could be handled separately from each other. Additionally, the hierarchical models of

EGSs are not used before in SPL testing however the c-ESG and f-ESG model usage

directly fits into the SPL testing since each feature is modelled individually and this

allows tailored product configurations.

The traceability of FESG models contributes updating both the features and the

product configurations easily. Comparing the large ESG models, adding, removing and

updating vertices are quite easier. Also, updating the vertices of one f-ESG does not

affect other f-ESGs except for the vertices that will be connected by other f-ESGs.

25

Consequently, ESGs are extended to FESGs to fit the SPL paradigm and to create more

traceable and easily updatable small models.

4.3. Full Test Sequence Composition

The Feature Model (FM) with product configurations corresponding to feature

diagram, Featured Event Sequence Graphs to model behavior of the SPL and a mapping

between features and FESGs are required for test sequence composition technique

(Tuglular, Beyazıt, and Öztürk 2019). The Feature Model and Featured Event Sequence

Graphs are explained in previous sections. A product FESG tree is obtained by using the

mapping of features with FESGs by using the selected features for a particular product

configuration (Tuglular, Beyazıt, and Öztürk 2019). The root stores a link to the SPL’s

c-ESG and the leaves store links to the selected features’ corresponding f-ESG in a

product FESG tree (Tuglular, Beyazıt, and Öztürk 2019).

f-ESGs could include events that are not in the product configuration (Tuglular,

Beyazıt, and Öztürk 2019). First of all, these events should be removed (Tuglular,

Beyazıt, and Öztürk 2019). A product FESG lattice is constructed using the product

FESG tree, where all connection relationships are ordered (Tuglular, Beyazıt, and

Öztürk 2019). The Algorithm 4.1 is proposed in order to construct the product FESG

lattice (Tuglular, Beyazıt, and Öztürk 2019). In order to notate either a c-ESG or an f-

ESG, x-ESG is used (Tuglular, Beyazıt, and Öztürk 2019).

Algorithm 4.1 Construction of product FESG lattice

1. for each f-ESG

2. if it contains events, which are not in the product

configuration, remove them

3. for each f-ESG (f)

4. if it has connection point(s) to c-ESG (c), build f  c

5. if it has connection point(s) to other one or more

f-ESGs (g, h, etc.), build f  g , f  h , etc.

6. loop back

The output of the Algorithm 4.1 for bank account SPL’s daily limit product is

the hierarchical product FESG lattice and given in Figure 4.3. In this figure, c-ESG is at

the top level (level 0) and the f-ESGs with connection points are children of the root

26

(level 1, level 2 and level 3). Note that, the number of leaves could be increased

according to the product configuration’s number of features.

The feature ESG of daily limit feature is demonstrated in Figure 4.4. Consider

the daily limit bank account product that includes this feature which is given in Figure

4.5. Since the daily limit feature requires withdraw and cancel withdraw features, this

product includes also these features and the feature cancel deposit. The configured

features of this product do not contain any event that does not belong to daily limit bank

account product. Therefore, the step 2 of Algorithm 4.1 is omitted for this product

configuration.

Figure 4.3. Product FESG lattice for daily limit product

The ESs of length 2 of each different path in the product FESG lattice for

product daily limit that are covered by the partial test cases are as in the following:

PTS1: get balance, …, select deposit, enter deposit amount, put money

PTS2: get balance, …, select withdraw, enter withdraw amount, take money

PTS3: …, select withdraw, cancel withdraw

PTS4: …, enter withdraw amount, confirm daily limit excess, enter withdraw amount,…

PTS5: … confirm daily limit excess, cancel withdraw

PTS6: …, enter daily withdraw limit

Figure 4.4. daily limit f-ESG of bank account SPL

27

PTS1 is obtained from the path deposit→core, PTS2 is obtained from the path

withdraw→core, PTS3 is obtained from cancelWithdraw→core, PTS4 is obtained

from dailyLimit→withdraw, PTS5 is obtained from dailyLimit→cancelWithdraw

and PTS5 is obtained from dailyLimit→core.

In order to compose the test sequences, the PTs should be connected in all

possible ways (Tuglular, Beyazıt, and Öztürk 2019). In order to achieve this purpose,

the Algorithm 4.2 is proposed (Tuglular, Beyazıt, and Öztürk 2019).

Algorithm 4.2. Composition of product test sequences

1. find connection points in partial test sequences

2. order them w.r.t their levels in product FESG lattice, c-ESG

 having the highest order

3. starting from lowest order for each connection point

4. find PTSs from PTS list and classify them as preceding and

 succeeding sequences with respect to this connection point

5. combine with all preceding sequences and add to PTS list

6. combine with all succeeding sequences and add to PTS list

The running example’s partial test sequences have connection points which are

the [,], get balance, select withdraw, enter withdraw amount and cancel withdraw

events. Whenever they are composed, the following test sequences or CESs in other

words, are obtained:

CES1: get balance

CES2: select deposit, enter deposit amount, put money, get balance, select deposit,

enter deposit amount, put money

CES3: select withdraw, enter withdraw amount, take money, get balance, select

withdraw, enter withdraw amount, take money

CES4: enter daily withdraw limit, enter daily withdraw limit

CES5: select deposit, cancel deposit

CES6: select withdraw, cancel withdraw

CES7: select withdraw, enter withdraw amount, confirm daily limit excess

CES8: select withdraw enter withdraw amount, confirm daily limit excess, enter

withdraw amount, confirm daily limit excess, cancel withdraw

 The composed test sequences cover the same ESs of length 2 with the test

sequences generated from the ESG given in Figure 4.5.

 Test sequence composition from FESGs allows us to obtain the test sequences

that are equivalent with the complete product model’s test sequences in terms of

28

coverage of length 2-ESs (Tuglular, Beyazıt, and Öztürk 2019). The product FESG

enables reusing of generated partial test sequences for new-coming product

configurations, which makes this approach efficient[5].

Figure 4.5. ESG of bank account SPL - daily limit product

 The next chapter will introduce the incremental test sequence composition

approach which is established on the base of the test sequence composition approach.

29

CHAPTER 5

INCREMENTAL TEST SEQUENCE COMPOSITION

FROM FEATURED EVENT SEQUENCE GRAPHS

The incremental test sequence composition approach is explained in this chapter.

The approach is model based; that is, it is based on the use of featured ESGs (FESGs). It

exploits the fact that test cases for certain products already exist and they can be

employed to obtain test cases of new products which are related to the existing products

as implied by the corresponding feature diagram on a software product line. Therefore,

the purpose of incremental test sequence composition is to reuse the FESG model and

the test cases of an existing product in order to obtain test cases of a new product which

is constructed by including new features to the existing product.

5.1. Incremental Test Sequence Composition

 In the incremental test generation approach, the employed models are based on

the definition of an ESG (Definition 3.3) and definition of an FESG (Definition 4.1).

The following example is given in order to explain the components of FESGs on the

base product of bank account SPL.

Example 5.1: The base product of bank account SPL ESG which is given in

Figure 3.3 includes deposit and withdraw features, the FESG (F, c, Ξ, Γ) of this product

is given in the following:

 F = {f1, f2}

 f1 = deposit f-ESG (Figure 5.1)

V1 = {(core, [), (core,get balance), select deposit, enter deposit amount, put

money, (core,])}, E1 = {((core,[), select deposit),((core, get balance), select deposit),

(select deposit, enter deposit amount), (enter deposit amount, put money), (put money,

(core,])) },

Ξ1 = {select deposit}

30

Γ1 = {put money}

 f2 = withdraw f-ESG (Figure 4.2)

V2 = {(core, [), (core, get balance), select withdraw, enter withdraw amount,

take money, (core,])}

E2 = {((core, [), select withdraw), ((core, get balance), select withdraw), (select

withdraw, enter withdraw amount), (enter withdraw amount, take money), (take money,

(core,]))}

Ξ2 = {select withdraw}

Γ2 = {take money}

 c = c-ESG of bank account with Vcore = {get balance}, Ecore = ∅, Ξcore = Γcore =

{get balance}

 Ξ = Ξ1 Ξ2 Ξcore therefore, Ξ = { select deposit, select withdraw, get balance }

 Γ = Γ1 Γ2 Γcore therefore, Γ = { put money, take money, get balance}

Figure 5.1. deposit f-ESG of bank account SPL

The incremental test sequence composition approach is more efficient than the regular

test sequence composition approach, which is mentioned in CHAPTER 4, in terms of

composition time, since the test sequences are not composed from scratch each time a

new feature is added to the product configuration. The existing test sequences of the

product are used, and test sequences for the new features are composed with the existing

ones. Algorithm 5.1 demonstrates the main steps of incremental sequence generation.

Algorithm 5.1 assumes that T, i.e. a set of complete sequences for G achieving

k-sequence coverage, achieves k-sequence coverage for the existing FESG. Therefore, it

only transforms the new f-ESGs (incremental transformation), generates test sequences

(partial sequences) from the transformed f-ESGs and compose these sequences with the

existing ones in order to obtain a set of sequences achieving k-sequence coverage for

the new FESG that is obtained by adding the new f-ESGs to the existing FESG

properly.

31

Algorithm 5.1. Incremental Sequence Generation

Input: G = (F, c, Ξ, Γ) – an FESG

 T – a set of complete sequences for G achieving k-sequence coverage

 (Fnew, Ξnew, Γnew) – sets of new f-ESGs, and start and finish vertices to be added to G

 k – integer coverage parameter for k-sequence coverage

Output: T' – a set of complete sequences for the new FESG G' = (F  Fnew, c, Ξ  Ξnew, Γ  Γnew)

achieving k-sequence coverage

 Fnew_k = transformIncremental(Fnew, F, k) // See Algorithm 5.2

 Tnew = generateSequences(Fnew_k, k) // See Algorithm 5.3

 T' = composeSequences(T, Tnew, Ξ  Ξnew, Γ  Γnew) // See Algorithm 5.4

Example 5.2: The Algorithm 5.1 is explained using the input G = base product-

FESG exemplified in Example 5.1. k is chosen as 3 which means that the event triples

will be covered. T = {CES1, CES2, CES3, CES4, CES5} which is the set of complete

test sequences for G where CESs are given in the following:

CES1: select deposit, enter deposit amount, put money, get balance, select deposit,

enter deposit amount, put money

CES2: select deposit, enter deposit amount, put money, get balance, select withdraw,

enter withdraw amount, take money, get balance, select withdraw, enter withdraw

amount, take money

CES3: select withdraw, enter withdraw amount, take money, get balance, select

deposit, enter deposit amount, put money

CES4: get balance, select deposit, enter deposit amount, put money

CES5: select deposit, enter deposit amount, put money

G is incrementally updated to the daily limit product-FESG of the bank account

SPL by addition of cancelDeposit, cancelWithdraw and dailyLimit (Figure 4.4) features.

Therefore, Fnew = {cancelDeposit f-ESG, cancelWithdraw f-EGS, dailyLimit f-ESG},

Ξnew = {enter daily withdraw limit} and Γnew = {cancelDeposit, cancelWithdraw, enter

daily withdraw limit}. Note that, the elements of Ξ and Γ are event names, not the

feature names.

The output of the Algorithm 5.1 for T'= {CES1, CES2, CES3, CES4, ….,

CES15} is given as follows:

CES1: select deposit, enter deposit amount, put money, get balance, select deposit,

enter deposit amount, put money

CES2: enter daily withdraw limit, enter daily withdraw limit, enter daily withdraw limit

CES3: enter daily withdraw limit

32

CES4: select deposit, enter deposit amount, put money, get balance, select withdraw,

enter withdraw amount, take money, get balance, select withdraw, enter withdraw

amount, take money

CES5: select deposit, cancel deposit

CES6: select deposit, enter deposit amount, put money, get balance, select deposit,

cancel deposit

CES7: select withdraw, cancel withdraw

CES8: select deposit, enter deposit amount, put money, get balance, select withdraw,

cancel withdraw

CES9: select withdraw, enter withdraw amount, confirm daily limit excess, enter

withdraw amount, take money

CES10: select withdraw, enter withdraw amount, confirm daily limit excess, cancel

withdraw

CES11: select withdraw, enter withdraw amount, confirm daily limit excess, enter

withdraw amount, confirm daily limit excess, cancel withdraw

CES12: select withdraw, enter withdraw amount, take money, get balance, select

deposit, enter deposit amount, put money

CES13: get balance, select deposit, enter deposit amount, put money

CES14: select deposit, enter deposit amount, put money

CES15: select withdraw, enter withdraw amount, take money

The “transformIncremental”, “generateSequences”, and “composeSequences”

procedures are explained in Algorithm 5.2, Algorithm 5.3, and Algorithm 5.4,

respectively.

 Algorithm 5.2 demonstrates how f-ESGs of the new features are incrementally

transformed before generating sequences using them. Note that elements of the sets are

accessed by using index values and it is assumed that insertion order is preserved in

sets. This is done to obtain an f-ESG and its corresponding transformed form with less

effort.

 Algorithm 5.2 transforms each new f-ESG, i.e. f, k-2 times by using

1. f itself,

2. all the other f-ESGs which come before f and

3. all the base f-ESGs.

 Remember that the length of the ES, determines the value of k. In order to cover

event triples, for example, the ESG is transformed once so that it could have ESs of

33

length 2 in its vertices. In the case that event triples are covered, k is 3 and the number

of transformations is 1. Therefore, Algorithm 5.2 transforms each new f-ESG k-2 times.

Algorithm 5.2. Incremental Transformation of f-ESGs

Input: F – a set of new f-ESGs to be transformed

 B – a set of base f-ESGs to be used to trasform the new f-ESGs

 k – integer transformation parameter

Output: Fk – a set of transformed features

 Fk = F

 for n=2 to k-1 incrementing by 1 do

 H = {}

 for i=1 to |F| incrementing by 1 do

 h = create an empty f-ESG to store the transformed f

 f = get the ith f-ESG in Fk

 g = get the ith f-ESG in F which is the f-ESG corresponding to Fk

 transformfESG(f, g, h) // Transform f using g updating h

 for j=i-1 to 1 decrementing by 1 do

 g = get the jth f-ESG in F

 transformfESG(f, g, h) // Transform f using g updating h

 endfor

 for j=|B| to 1 decrementing by 1 do

 g = get the jth f-ESG in B

 transformfESG(f, g, h) // Transform f using g updating h

 endfor

 H = H  {h}

 endfor

 Fk = H

 endfor

Each time f is transformed, "transformfESG" procedure is carried out. A separate

algorithm is not given for this procedure because it is extended from the one given in

Algorithm 3.2 by the following points.

1. "transformfESG" procedure used in Algorithm 5.2 also adds edges into the

transformed f-ESG h to generate sequences with length <k in case such

sequences cannot be included in sequences of length k.

34

2. Intermediate sequences which appear during "transformfESG" procedure are

extended at both head and tail ends whereas those that appear in Algorithm 3.2

are extended at only tail end. This stems from the fact that, when an f-ESG f is

transformed using an f-ESG g, g is not transformed using f to avoid

repeated/redundant sequences and increase efficiency by reducing the number

for transformations.

 Algorithm 5.2 is explained in the following example. Here, the f-ESGs to be

transformed are those given in Example 5.2.

 Example 5.3: F = {cancelDeposit f-ESG, cancelWithdraw f-EGS, dailyLimit f-

ESG} and B = {deposit f-ESG, withdraw f-ESG} are inputs of Algorithm 5.2. The

integer transformation parameter is 1 since k = 3 in Example 5.2 and the number of

transformations ,i.e., integer transformation parameter, is k - 2. Therefore, the f-ESGs

are transformed once. In the execution of this algorithm, the f-ESG elements of F are

transformed by exploiting the pre-transformed f-ESG elements of B. The one-time

transformed version of daily limit f-ESG is given in Figure 5.2. Also, this algorithm

allows us to generate sequences that have length smaller than k. For instance, CES3,

CES5 and CES7 which are given in Example 5.2 have length 1 or 2 when k=3.

Algorithm 5.3. Sequence Generation of Transformed f-ESGs

Input: F – a set of transformed f-ESGs

 k – integer transformation parameter

Output: T – a set of partial sequences for f-ESGs in F achieving k-sequence coverage

 T = {}

 for each f  F do

 Tf = generateSequences(f)

 Tf = removeRepetitions(Tf, k)

 T = T  Tf

 endfor

After the new f-ESGs are transformed, Algorithm 5.3 can be used to generate

partial sequences from the transformed f-ESGs to achieve k-sequence coverage.

 In Algorithm 5.3 for each transformed f-ESG, sequences are generated from the

f-ESG by covering all its edges (achieving edge coverage) using "generateSequences"

procedure. After sequences are generated, they need to be processed in order to remove

35

repetitions due to using transformed models, which is done by "removeRepetitions"

procedure considering the value of k. Following this step, obtained sequences are

inserted into a single set.

 The following example explains “generateSequences” procedure of Algorithm

5.1, which is Algorithm 5.3. The input F of Algorithm 5.3 is the one which is given in

Example 5.3.

Figure 5.2. The one-time transformed daily limit f-ESG

 Example 5.4: The test sequences of elements of the set F are generated in

Algorithm 5.3. The output of Algorithm 5.3 is Tnew = { TtransformedDailyLimit 

TtransformedWithdraw  TtransformedCancelWithdraw }. The sequence generation TtransformedDailyLimit =

{CES1, CES2,...,CES8} of one-time transformed daily limit f-ESGs (Figure 5.2) is

given as in the following:

CES1: (withdraw,enter withdraw amount), confirm daily limit excess, (withdraw,enter

withdraw amount), (withdraw,take money)

CES2: enter daily withdraw limit, enter daily withdraw limit, enter daily withdraw limit

CES3: (withdraw,enter withdraw amount), confirm daily limit excess,

(cancelWithdraw,cancel withdraw)

36

CES4: (withdraw,select withdraw)

CES5: (withdraw,enter withdraw amount), (withdraw,take money)

CES6: (withdraw,select withdraw), (withdraw,enter withdraw amount), confirm daily

limit excess

CES7: enter daily withdraw limit

CES8: (withdraw,enter withdraw amount), confirm daily limit excess, (withdraw,enter

withdraw amount), confirm daily limit excess, (cancelWithdraw,cancel withdraw)

After partial sequence achieving k-sequences coverage are generated for the new

f-ESGs, can be used to compose them with the existing complete sequences which are

generated for the FESG model.

Algorithm 5.4. Sequence Composition

Input: T – a set of existing complete sequences

 Tnew – a set of new partial sequences

 Ξ – a set of start vertices

 Γ – a set of finish vertices

Output: CS – a set of composed complete sequences

 SS = initializeStartSequences(T, Tnew, Ξ)

 notfinished = true

 while notfinished is true do

 notfinished = updateStartSequences(Tnew, SS)

 endwhile

 CS = initializeCompleteSequences(SS, Γ)

 notfinished = true

 while notfinished is true do

 notfinished = updateCompleteSequences(SS, CS)

 endwhile

Algorithm 5.4 uses four different procedures in order to perform sequence

composition: "initializeStartSequences", "updateStartSequences", "initializeComp-

leteSequences" and "updateCompleteSequences".

 "initializeStartSequences" constructs a set of start sequences SS. For

each sequence s  T  Tnew, if s is a start sequence, it is removed from

the set that contains it. s is included in SS if it increases the coverage.

37

Note that all sequences in T are complete sequences; whereas Tnew may

or may not contain start sequences.

 "updateStartSequences" goes through the remaining partial sequences in

Tnew. For each partial sequence s  Tnew, it tries to find a start sequence

seq  SS such that s and seq can be composed to obtain a new sequence

seq_new; that is, s can be completed to a start sequence by using a prefix

of seq. If this is possible, s is removed from Tnew and, if seq_new

increases coverage, it is included in SS. Furthermore, if seq is a prefix of

seq_new, seq is removed from SS. "updateStartSequences" is repetitively

called until no more sequences remain in Tnew.

 "initializeCompleteSequences" constructs a set of complete sequences

CS. For each sequence s  SS, if s is also a finish sequence, it is

removed from SS and included in CS.

 "updateCompleteSequences" goes through the remaining start sequences

in SS. For each start sequence s  SS, it tries to find a complete sequence

seq  SS such that s and seq can be composed to obtain a new sequence

seq_new; that is, s can be completed to a finish sequence by using a

suffix of seq. If this is possible, s is removed from SS and seq_new is

included in CS. " updateCompleteSequences " is repetitively called until

no more sequences remain in SS.

The following example explains “composeSequences” procedure of Algorithm

5.1, that is Algorithm 5.4.

Example 5.5: In this example, the input T of Algorithm 5.4 is the one that is

given in Example 5.2. Also, the input Tnew of Algorithm 5.4 is the one that is given in

Example 5.4. All four procedures are explained with a simple instance of T, Tnew, or T

 Tnew.

initializeStartSequences procedure : There is SS = { s1, s2, s3, s4, s5} for the

given FESG in Example 5.2 with Fnew ,Ξnew and Γnew , where,

s1: get balance

s2: select deposit, enter deposit amount, put money, get balance, select deposit,

enter deposit amount, put money

s3: select withdraw, enter withdraw amount, take money, get balance, select

deposit

38

s4: enter daily withdraw limit, enter daily withdraw limit, enter daily withdraw

limit

s5: enter daily withdraw limit

These sequences are added to SS since they all start with an element of Ξ 

Ξnew.

updateStartSequences procedure: For this procedure, a sequence of daily limit f-

ESG is chosen in order to explain the procedure in a simpler way.

S  (TtransformedDailyLimit Tnew) = (withdraw,enter withdraw amount), confirm

daily limit excess, (withdraw,enter withdraw amount), (withdraw,take money)

seq = s3  SS = select withdraw, enter withdraw amount, take money, get

balance, select deposit

seq_new = select withdraw, enter withdraw amount, confirm daily limit excess,

enter withdraw amount, take money

seq_new increases coverage, therefore, it is included in SS = { s1, s2, s3, s4, s5,

seq_new}. Furthermore, seq is not a prefix of seq_new, therefore, it is not removed

from SS.

initializeCompleteSequence procedure: For each sequence s  SS = { s1, s2, s3,

s4, s5, seq_new}, each sequence is investigated in terms start and finish events. If start

event is an element of Ξ and finish event is an element of Γ, s is included in CS. CS is

given in the following:

CS = { s1, s2, seq_new}

updateCompleteSequences procedure: This procedure is called repetitively

called until no more sequences remain in SS.

s  SS = select deposit, enter deposit amount, put money, get balance, select

deposit, enter deposit amount, put money which is a CES, is composed with the

following:

seq = s3  SS = select withdraw, enter withdraw amount, take money, get

balance, select deposit

And yet, seq_new = select withdraw, enter withdraw amount, take money, get

balance, select deposit, enter deposit amount, put money is obtained.

 In this chapter, the incremental test sequence composition approach that is based

on the FESG usage is explained in detail. This approach exploits the fact that the

existing FESGs and their corresponding test sequences are reusable. Therefore, in order

39

to build a new product with new features from an existing product, this approach is

advantageous and efficient. In the next chapter, a helper graph to apply the incremental

test sequence generation is introduced.

40

CHAPTER 6

FEATURE-BASED INCREMENTAL PRODUCT GRAPH

The feature-based incremental product graph is introduced in this chapter. Also,

the ‘base product’ notion for SPLs is introduced in this chapter. A feature-based

incremental product graph is a graph that helps to generate the test sequences of

products within an SPL incrementally and automatically.

6.1. Feature-Based Incremental Product Graph

 A feature-based incremental product graph, short for IPG is a directed graph that

holds the FESGs of products within the SPL. It holds f-ESGs in its edges. By traversing

this graph, the CESs of corresponding products are obtained automatically.

Furthermore, by traversing the edges of this graph, a product configuration could be

validated.

 The novelty of the feature-based incremental product graph is producing the

complete event sequences of each product variant within an SPL and validating these

variants automatically by holding each product variant’s configuration in its vertices.

Also, it could be traversed via Breadth First Traversal by using the features which are

held by the feature-based incremental product graph’s edges.

 In this thesis work, the usage of the IPG makes contribution in experimenting of

incremental test sequence composition approach. Thanks to this graph, for four different

case studies which will be mentioned in the next chapter, different experimenting

scenarios are built. These scenarios include, generating the CESs of, for example, the

credit product, from reusing the base product FESG model or from reusing the interest

product FESG model. Therefore, the CESs of different product variants’ configurations

are obtained via different scenarios. The CESs of each product variant are obtained at

one run by employing the incremental test sequence composition approach so,

41

experimenting and getting results becomes quite easier. Also, each product variant’s

configuration is validated at one run by feature-based incremental product graph.

 An IPG necessarily holds product FESGs in its vertices, i.e. each vertex

corresponds to a product within the SPL which the generated CES could be executed

on. Also, it has a start vertex as a basis product to others which could be any product

within SPL.

 In IPGs, there is no limitation to choose a product as a start vertex’s product but

of course, the selected product should make sense as a basis product. Assume that, the

running example bank account could have only six products which are depicted in

Figure 3.2. Since no more product could be configured, the given ones should be used

between each other to generate CESs of all products. In this scenario, using for example

overdraft product is not restricted in theory, but in practice it does not make the test

generation process advantageous. This because, the incremental test sequence

composition approach does not support feature removal yet and the only product that

has the overdraft feature is the overdraft product of Bank Account SPL. The feature-

based incremental product graph of running example is given in Figure 6.1.

 In order to build a feature-based incremental product graph, the feature model of

the SPL under consideration and the configuration file of each product variant within

the SPL which could be created depending on the feature model and its constraints are

parsed. The feature model and its corresponding configuration files are built by using a

tool which is called FeatureIDE (“FeatureIDE” n.d.).

 Three characteristics of features in the feature model are parsed: the name of the

feature, being mandatory/optional and being abstract/concrete. Also, the constraints

between features, which are implication, conjunction and disjunction, are parsed. The

parsed information is used while building the incremental product graph. For instance,

if a feature implies another feature this means the vertex that includes the implying

feature should include the implied feature as well; or, if there is a disjunction constraint

between two features, this means that these features should not be included in the same

vertex or there should be no edge that directs the vertices so that these vertices include

both of the features. Furthermore, each product variant’s configuration file is parsed. By

this way, each product’s configuration is obtained and the FESGs of these

configurations could be created.

 Each vertex of the graph that is given in Figure 6.1 is traversed by the Breadth-

First Traversal starting from the base product and the CESs of each product are

42

generated automatically by exploiting incremental test sequence composition approach.

Here the start vertex includes the ‘base product’ FESG of the SPL, which is named as

base product. The ‘base product’ notion is defined in the following to prevent

intangibility.

Figure 6.1. Feature-Based Incremental Product Graph of Bank Account SPL

 Definition 6.1: A base product is a product that its configuration is up to the

SPL domain and up to the developer who models the products within SPL. A product

could be a base product in one of the following cases:

1. If the c-ESG of the SPL resembles a product within the domain (see Figure B.1

of Email SPL)

2. The product that is constituted from the c-ESG and non-excluding mandatory

features (see Figure 3.3 of Bank Account SPL).

Furthermore, an SPL could not have a base product, either. If mandatory featu-

43

res are related by XOR, i.e., only one of them should be selected within a product

configuration, the base product could not be constituted.

 Example 6.1: Consider the feature model of the Student Attendance System

case study (see Figure 7.26). All of the grouping mandatory features of this feature

model are mandatory, however, two of them group alternative features via XOR relation

(see SubmitAttendanceMethod and Notification features). Since selecting one of these

alternative features omit the rest of the features, a base product could not be decided for

this SPL.

 For the example above, the products could be incremented from 8 different basis

products due the existence of SubmitAttendanceMethod which has 4 alternative sub-

features and Notification which has 2 alternative sub-features that could be combined

into 8 different basis products. Therefore, in order to generate test sequences of all the

product variants within Student Attendance System SPL, there needs to be at least 8

different IPG with 8 different start vertices.

 In order to traverse the graph, the product FESG of the start vertex should be

decided and by using the start vertex with other vertices’ product FESGs and the edges,

the IPG should be build. The definition of the IPG is given in the following.

 Definition 6.2: A Feature-Based Incremental Product Graph IPG(V(FESG),E(f-

ESG),) is a directed graph where V ≠ ∅ is a finite set of nodes (vertices) that each

node contains a Featured ESG and E ⊆ V ×V is a finite set of arcs (edges) that each

edge contains a set of feature ESG (f-ESG). ∈ V is the start vertex of the graph and it

holds the product FESG that is decided as a basis product to generate the CESs of

products within the SPL incrementally.

6.2. The Connectivity of Feature-Based Incremental Product Graph

 Let is the set of features within the SPL and

is denoted as with the cardinality . Remember that the c-

ESG is a special f-ESG. The power set of F which is

 which has the cardinality . In an ,each vertex

44

corresponds to one of the elements of

 where are excluding

features and where . The edge set

. This means that each vertex

corresponds to one of the elements of and contains the element pairs of .

Therefore, a feature-based incremental product graph forms a partial order over subset

relation on power set of F. This means that it is an inf-semilattice. The related

definitions and examples to explain the details of being an inf-semilattice are given

below.

 Definition 6.3: A partial order is a relation with certain properties (Garg 2015).

 The properties of a partial order could be Reflexivity, Irreflexivity, Symmetry,

Antisymmetry, Asymmetry and Transitivity (Garg 2015; “Readings of Mathematics for

Computer Science MIT OpenCourseWare - Chapter 7” n.d.). Also, a partially ordered

set is called a poset (Garg 2015; “Readings of Mathematics for Computer Science MIT

OpenCourseWare - Chapter 7” n.d.).

 Definition 6.4: A reflexive partial order which is also called a non-strict partial

order is a relation which is reflexive, antisymmetric and transitive (Garg 2015). It is

symbolized as (X,).

 Definition 6.5: An irreflexive partial order which is also called a strict partial

order is a relation which is irreflexive, antisymmetric and transitive (Garg 2015). It is

symbolized as (X, <).

 Throughout this section, a poset means a set X with either a reflexive partial

order or an irreflexive partial order.

 Two operations are defined on the set X’s subsets which are meet or infimum

(inf) and join or supremum(sup) (Garg 2015).

 Definition 6.6: To define meet operator () let Y⊆X, where (X,≤) is a poset.

For any m ∈X,we say that m=inf Y iff ∀y ∈Y:m ≤y and ∀m'∈X: (∀y ∈ Y: m^'≤y)

⟹m' ≤ m. This means that m is the greatest lower bound of Y (Garg 2015).

 Definition 6.7: To define join operator () let Y⊆X, where (X,≤) is a poset .For

any s ∈X, s=sup Y iff ∀y ∈Y:y ≤s and ∀s^'∈X:(∀y ∈ Y: y≤s') ⟹ s≤s'. This means

that s is the lowest upper bound of Y.

45

 Definition 6.8: A lattice is a poset in which any two elements have an inf and a

sup (“Readings of Mathematics for Computer Science MIT OpenCourseWare - Chapter

7” n.d.). Also, if exists, then it is called sup-semilattice. If

 exists, then it is called inf-semilattice (Garg 2015).

 Since an incremental product graph has the , which is used as the basis vertex

to reach other vertices, and SPLs generally has excluding features, which prevent to

have a product configuration, an incremental product graph is an inf-semilattice, where

∀ x,y ∈ Y∶x⋂y exists. The inf-semilattice form of the IPG is demonstrated in Figure

6.2.

Figure 6.2. inf-semilattice from of the IPG

 Example 6.2: F = {core, withdraw, deposit, cancelWithdraw, cancelDeposit,

interest, interestEstimation, dailyLimit, overdraf, credit} is the feature set of Bank

Account SPL where the credit and overdraft features are excluding. Therefore, P(X) =

{{core, withdraw, deposit}, {core, withdraw, deposit, cancelDeposit, cancelWithdraw},

{core, withdraw, deposit, cancelDeposit, cancelWithdraw, credit, interest,

interestEstimation}, {core, withdraw, deposit, cancelDeposit, cancelWithdraw,

dailyLimit}, {core, withdraw, deposit, interest, interestEstimation}, {core, withdraw,

deposit ,cancelWithdraw, dailyLimit, overdraft}}

46

 {core, withdraw, deposit ,cancelWithdraw, dailyLimit, overdraft }

E = {(}

6.3. Incremental Test Generation from Feature-Based IPG

 The runs of incremental test sequence composition approach in case study of

this thesis are executed by using feature-based incremental product graphs. The

Algorithm 6.1 is introduced in order to summarize the test sequence generation of

FESGs in IPG vertices incrementally. The following example explains this algorithm on

feature based incremental product graph of running example which is demonstrated in

Figure 6.1.

 Example 6.3: The vertex set and the edge set of the IPG of running example are

given as V = {v0(base product FESG), v1(cancellable product FESG), v2(interest

product FESG), v3(daily limit product FESG), v4(credit product FESG), v5(overdraft

product FESG)}, E = {[dailyLimit], [credit], [cancelDeposit], [cancelWithdraw],

[interest, interest Estimation], [cancelWithdraw, overdraft], [cancelDeposit,

cancelWithdraw, dailyLimit], [interest, interestEstimation, credit]

 After building the Feature-Based Incremental Product Graph, the incremental

test sequence composition approach is experimented on this graph at a click.

47

 Algorithm 6.1. Incremental Test Generation from IPG via Breadth First Traversal

Input: IPG(V, E,) – a feature-based incremental product graph

Output: T – a set of test sequences for each FESG ∈ V

 T = {}

 Q ← create an empty queue

 B ← create a Boolean array that is indexed to V’s vertices

 enqueue to Q

 B[] ← true

 while Q is not empty do // perform Breadth First Traversal to traverse each vertex

 e ← deque Q

 if e = do

 T0 ← full-test-sequence-composition(

 endif

 for (e,x)  E do

 enqueue x to Q, B[x] ← true

 F ← get the set of f-ESGs on edge (e,x)

 Te ← incremental-test-sequence-composition(

 assign Te of

 T = T  Te

 endfor

 endwhile

6.4. Validation of Product Configurations Using Feature-Based

Incremental Product Graphs

 As it is shown in Example 6.3, the edges of this graph contains one-element

such as ‘dailyLimit’, two-element such as ‘cancelWithdraw, overdraft’ and three-

element such as ‘interest, interestEstimation, credit’ feature sets. These different-size

feature sets prove that new features could be added to an existing product configuration

both as a chain or a bulk, incrementally. Also, the test sequences of, for example credit

product, can be obtained from following either one of the paths below:

1. base product + ‘interest f-ESG, interestEstimation f-ESG’ → interest product +

‘credit f-ESG’ → credit product

48

2. base product + ‘interest f-ESG, interestEstimation f-ESG, credit f-ESG’ → credit

product

Algorithm 6.2. Product Configuration Validator

Input: IPG(V, E,) – a feature-based incremental product graph

Output: true – if product configurations in IPG vertices valid, false – otherwise

 Q ← create an empty queue

 B ← create a Boolean array that is indexed to V’s vertices

 enqueue to Q

 B[] ← true

 v ← true

 while Q is not empty do // perform Breadth First Traversal to traverse each vertex

 e ← deque Q

 for (e,x)  E do

 enqueue x to Q, B[x] ← true

 F ← get the set of f-ESGs on edge (e,x)

 Fe ← get the f-ESG set of e

 Sx ← create an empty set to add f-ESGs

 Sx ← addAll(F + Fe)

 Fx ← get the f-ESG set of x //product configuration

 v ← v AND (Sx = Fx)

 endfor

 endwhile

 return v

 In order to validate product configurations in each vertex, Algorithm 6.2 is

introduced. Traversing each vertex, by following different paths and comparing the set

of features that come along the path and the destination vertex FESG’s feature set,

validates the destination vertex’s product configuration.

 Example 6.4: Assume that we want to validate daily limit product’s

configuration which has ‘c-ESG, deposit f-ESG, withdraw f-ESG, cancelDeposit f-ESG,

cancelWithdraw f-ESG, dailyLimit f-ESG’. By following the path below:

base product + ‘cancelDeposit f-ESG, cancelWithdraw f-ESG, dailyLimit f-ESG’ →

daily limit product

 The set of features that come along the path starting from base product becomes

‘c-ESG, deposit f-ESG, withdraw f-ESG, cancelDeposit f-ESG, cancelWithdraw f-ESG,

49

dailyLimit f-ESG’. Since the product configuration, i.e., the f-ESG set of daily limit

product is the same, the configuration is determined as valid. Traversing each vertex by

this algorithm, determines the validation of product configurations within the IPG.

 In this chapter, the notions feature-based incremental product graph and base

product are introduced. A feature-based incremental product graph is used to perform

test sequence composition incrementally with one click for any coverage length. Also, it

helps to validate the product configurations of products within the SPL. Example case

studies are given elaborately in the next chapter, in order to show the results of

proposed approaches.

50

CHAPTER 7

CASE STUDY

 The test sequence composition approach and incremental test sequence

composition approach are performed on several SPL examples which are Soda Vending

Machine SPL, Email SPL, Bank Account SPL and Student Attendance System SPL.

The results are depicted in this chapter, as well.

7.1. Soda Vending Machine SPL

 Soda Vending Machine SPL (Tuglular, Beyazıt, and Öztürk 2019), or short for

SVM SPL, is a small demonstrative SPL example. It has six features and one of them is

mandatory. The feature model of the corresponding SPL is given in Figure 7.1. Related

product for example one serving soda in USD, one serving free tea and one serving just

soda in EUR can be developed using this diagram.

Figure 7.1. Soda Vending Machine SPL feature diagram

 As demonstrated in the feature diagram, the EUR pay and USD pay are

alternative features, i.e. they cannot be included by the same product. The possible

product variants are demonstrated in the product matrix given in Figure 7.2.

51

Figure 7.2. Product matrix of the SVM SPL

7.1.1. Soda Vending Machine Models

 The SVM models are demonstrated and explained in this section. The core ESG

of the SVM SPL is given in Figure 7.3. Note that, the core ESG is not necessarily a

connected graph, i.e. some of the vertices could be disconnected. In this c-ESG, the

select event is disconnected to be reusable and as the core is incremented by features it

will become connected.

Figure 7.3. c-ESG of the SVM SPL

 In Figure 7.4, the pay EUR feature is shown. The pay EUR event of this f-ESG,

is connected between the prompt and select events.

Figure 7.4. pay EUR f-ESG of SVM SPL

52

 Additionally, the serve soda feature of SVM SPL is demonstrated in Figure 7.5.

This feature changes the course of events by starting from select event to pseudo finish

event and it makes select event connected. Remember that, if an event is connected to

pseudo finish event it is a finish event. Therefore, connecting the pseudo finish event of

the c-ESG makes an event a finish event.

Figure 7.5. serve soda f-ESG of SVM SPL

 In Figure 7.6, the pay EUR serve soda product of SVM SPL is depicted. As it is

shown in the figure, the payEUR event is connected to the prompt and select events; the

serveSoda event is connected to the select and pseudo finish events. Also, the cancel

purchase feature which is shown in Figure 7.7, is also added to the product

configuration.

Figure 7.6. ESG of SVM SPL – pay EUR-serve soda product

 All of the other f-ESGs and product ESGs are given in APPENDIX A.

Figure 7.7. cancel purchase f-ESG of SVM SPL

53

7.1.2. Soda Vending Machine Results

 The SVM results are depicted in this section. FESG components which contains

the c-ESG and the f-ESGs are shown in Table 7.1. Since the c-ESG has two vertices

which are disconnected except for pseudo vertices, the number of edges is zero due to

the fact that the edges that connect vertices to one of the pseudo vertices are not counted

as real edges. Also, the number of vertices and edges are shown in this table. The total

number of vertices is twenty-two and the total number of edges is fourteen of the

components in this SPL as it is shown in Table 7.1.

Table 7.1. Soda Vending Machine SPL FESG Components

SPL FESG

Components

Number of

Vertices

Number of

Edges

c-ESG 2 0

cancel f-ESG 5 4

free f-ESG 3 2

payEUR f-ESG 3 2

payUSD f-ESG 3 2

serveSoda f-ESG 3 2

serveTea f-ESG 3 2

TOTAL 22 14

 The products of the SVM SPL are demonstrated in Table 7.2 in order to present

the complexity of the test models as well as their differences. The free product ESG has

the least number of vertices and edges since it has the least number of features. Also,

the vertex number and the edge number of payEURServeSoda and payUSDServeTea

products are equal just like payEUR and payUSD products due to the fact that they have

the features which are equivalent in terms of vertex number and edge number.

 “Isolated” means that the existing test generation technique is executed on the

product ESGs of Table 7.2. The FESG models and isolated products are compared in

terms of total number of vertices and total number of edges in Table 7.3. In terms of test

artefacts, the approaches in this thesis agree with the statement that SPL-based

54

development approach is more convenient if the software products are alike. Table 7.3

depicts this agreement.

Table 7.2. Isolated Product ESGs of SVM SPL

Isolated Product ESGs of SVM

SPL

Number of

Vertices

Number of

Edges

Free product ESG 4 3

payEURServeSoda product ESG 6 5

payEUR product ESG 7 6

payUSDServeTea product ESG 6 5

payUSD product ESG 7 6

TOTAL 30 25

 Test sequences of SVM products are generated by using the existing ESG test

generation approach, the full test sequence composition approach and the incremental

test sequence composition approach. The proposed full test sequence composition and

incremental test sequence composition approaches are executed on FESGs while the

existing test generation approach is executed on the isolated product ESG models.

Table 7.3. Model Comparison of SPL FESGs and Isolated Products

Number of

Vertices

Number of

Edges

FESGs of SVM SPL 22 14

Isolated Product ESGs of SVM SPL

(5 ESGs)
30 25

 The execution time to obtain complete event sequences (CESs) of these

approaches are given in Table 7.4, Table 7.6 and Table 7.8 respectively, for the existing

ESG test generation approach, full test sequence composition approach and incremental

test sequence composition approach.

 The results are obtained for 10 runs which are performed on a PC having Intel

2.60 GHz CPU and 12 GB RAM with 64-bit Windows 10 Enterprise operating system.

Also, the results are obtained by setting coverage length to 2 for SVM SPL. This means

55

that the CESs that cover event pairs are generated for SVM SPL

Table 7.4. Test Generation Time of Isolated Product ESGs of SVM SPL

Coverage Length 2

Test Generation Time (ms) Min Max Avg

free ESG 34.44 36.66 35.684

payEURServeSoda ESG 36.63 38.3 37.459

payEUR ESG 37.16 39.18 37.982

payUSDServeTea ESG 36.22 37.53 36.728

payUSD ESG 36.84 41.83 38.387

 The number of CESs and number of events are shown in Table 7.5 and Table 7.7

for ESG test generation and for full test sequence composition, respectively. The SVM

SPL case study shows that the full test sequence composition approach provides CESs

which are approximately 50% longer than the CESs generated by traditional test

generation approach. This holds for payEUR and payUSD products which have the most

number of features for this SPL. The rest of the products have the same length and the

same number of CESs for both approaches.

Table 7.5. Complete Event Sequences of Isolated Product ESGs of SVM SPL

Coverage Length 2

Test Generation CESs
of

CESs

of

Events

free ESG 1 4

payEURServeSoda ESG 2 8

payEUR ESG 3 12

payUSDServeTea ESG 2 8

payUSD ESG 3 12

 Furthermore, the full test sequence composition approach takes nearly 9% to

13% more time than existing test generation approach for SVM SPL. Therefore, both

the size of the test sets and the execution time of existing approach are less than the full

test sequence composition approach for SVM SPL when the coverage length is 2.

56

Table 7.6. Full Test Sequence Composition Time of FESGs

Coverage Length 2

Test Sequence

Composition Time (ms) Min Max Avg

free FESG 39.39 41.25 40.322

payEURServeSoda FESG 40.89 45.55 42.067

payEUR FESG 40.98 44.24 42.05

payUSDServeTea FESG 41.05 42.54 41.784

payUSD FESG 40.51 42.88 41.754

 Comparing the incremental test sequence composition approach with the other

mentioned approaches, Table 7.8 indicates that the execution time is drastically smaller

than both of the approaches and the test set size is greater than the ESG test generation

approach and equal to the full test sequence composition approach. This because

incremental test sequence composition approach reuses both the existing test sequence

of previously configured products and the test models where the full test sequence

composition approach reuses only the test models and compose the test sequences of

each from scratch.

Table 7.7. Complete Event Sequences of Full Test Sequence Composition FESGs

Coverage Length 2

Test Sequence

Composition CESs
of CESs # of Events

free FESG 1 4

payEURServeSoda FESG 2 8

payEUR FESG 3 12

payUSDServeTea FESG 2 8

payUSD FESG 3 12

 For this and the rest of the case studies, the incremental test sequence

composition approach cannot be applied to all products within the domain. This because

it requires a basis product that is previously configured and tested, also, the basis

product is required to have the common features with the one which is will be tested.

57

Table 7.8. Time and CESs of Incremental Test Sequence Composition FESGs

Incremental Test Sequence Composition (ms) Coverage Length 2

FESG to be

reused

f-ESG(s) to

be added

Obtained

FESG Min Max Avg

of

CESs

of

Events

payEURServeSoda

FESG

serveTea f-

ESG

payEUR

FESG
2.44 2.68 2.55 3 12

payUSDServeTea

FESG

serveSoda

f-ESG

payUSD

FESG
2.53 2.87 2.64 3 12

 This relation is similar to subset relation but it is stricter. For instance, although

the payEURServeSoda product and free product has serveSoda feature in common, the

free product cannot be the basis product to be reused since it also has the free feature.

The feature-based incremental product graphs of two experiments in Table 7.8 are given

in Figure 7.8. There are two IPGs in this figure, since there are two basis products.

Figure 7.8. Feature-Based Incremental Product Graph of SVM SPL

7.2. Email SPL

 The product within the Email SPL, enables the users to compose a new email,

send an email and to read an incoming email, basically. It also has six features which

extend the core of the SPL in order to build an address book, auto respond incoming

emails, forward emails, encrypt emails, get a public key of receiver and sign emails.

58

The feature diagram of Email SPL is given in Figure 7.9. Also, the product diagram

which shows the product configurations within this SPL is given in Figure 7.10.

Figure 7.9. Email SPL feature Diagram

 All six features of this SPL are optional. The encrypt feature requires keys

feature. Also, forward feature excludes encrypt and, vice versa. The exclusion could be

noticed from Figure 7.10 where these two features omit each other in product

configurations.

Figure 7.10. Product matrix of Email SPL

7.2.1. Email SPL Models

 The core of the SPL is shown in Figure 7.11. The core itself is a product which

represents the basic functionality of the SPL such as composing an email, sending an

email and reading an email.

59

Figure 7.11. c-ESG of Email SPL

 The addressbook feature allows creating an address book for a contact who has

more than one email address and sending an email to all of these addresses. The f-ESG

of this feature is shown in Figure 7.12.

Figure 7.12. addressbook f-ESG of Email SPL

60

 The autoresponder feature which is given in Figure 7.13, enables composing an

email body as an auto response and setting the date interval of occurrence.

Figure 7.13. autoresponder f-ESG of Email SPL

 The forward feature allows the user to forward an incoming email. It excludes

the encrypt feature, i.e., encrypted emails could not be forwarded. The f-ESG of the

forward feature is given in the following.

Figure 7.14. forward f-ESG of Email SPL

 The keys feature enables the user to determine the receiver’s public key. This

public key is used to encrypt an email; therefore, this feature is required by encrypt

feature. The f-ESG of the keys feature is given in the following.

Figure 7.15. keys f-ESG of Email SPL

61

 The encrypt feature activates the encryption of emails. Since it has a connection

point to keys f-ESG and the encryption process needs the receivers public key by

definition, it requires the keys feature. The f-ESG of the keys feature is given in the

following.

Figure 7.16. encrypt f-ESG of Email SPL

 The sender user’s signature is added by the sign feature. Its f-ESG is given in the

following.

Figure 7.17. sign f-ESG of Email SPL

7.2.2. Email SPL Results

 The Email Software Product Line test generation results are given in this

section. The c-ESG and the f-ESGs of Email SPL are given in Table 7.9. In this case

study, the c-ESG corresponds to an existing product namely base product since it

models the behavior of a basic email product. The total number of vertices which is

thirty-one and the total number of edges which is thirty-two are given in Table 7.9.

62

Table 7.9. Email SPL FESG Components

SPL FESG

Components

Number of

Vertices

Number of

Edges

c-ESG 7 13

addressbook f-ESG 8 6

autoresponder f-ESG 4 5

forward f-ESG 3 2

keys f-ESG 3 2

encrypt f-ESG 3 2

sign f-ESG 3 2

TOTAL 31 32

 The sample Email SPL products are shown in Table 7.10. The product number

of this SPL could be increased, however in order to make the example simple, three of

them are given in Table 7.10.

Table 7.10. Isolated Product ESGs of Email SPL

Isolated Product ESGs of SVM SPL
Number of

Vertices

Number of

Edges

baseProduct ESG 11 17

addressbookAutoresponderEncryptSign

ESG
16 24

addressbookAutoresponderForward

ESG
14 21

TOTAL 41 62

 The FESG models and isolated products are compared in terms of total number

of vertices and total number of edges in Table 7.11. This table proves the importance of

modelling an SPL in small features instead of modelling it for each different product.

The results show that the number of vertices and edges are greater than total of FESG

components even for three products. Since modelling each product in isolation restrains

reusability, the vertices and the edges repeat in different products and it increases their

number.

 Product test sequences are obtained by executing ESG test generation approach

on isolated product ESGs and, the full test sequence composition approach and the

incremental test sequence composition approach on FESGs. Table 7.12, Table 7.14 and

Table 7.15 demonstrates the execution time to generate CESs from ESG test generation

63

approach, the full test sequence composition approach and the incremental test sequence

composition approach, respectively.

Table 7.11. Model Comparison of SPL FESGs and Isolated Products

Number of

Vertices

Number of

Edges

FESGs of Email SPL 31 32

Isolated Product ESGs of Email SPL

(4 ESGs)
41 62

 Similar to SVM SPL, not only the execution time, but also the number of CESs

and the number events of ESG test generation of isolated products are less than the ones

obtained by full test sequence composition approach. Since the difference between

average execution time is not more than 2.48 milliseconds, also for this SPL, the full

test sequence composition approach is considerably good for test generation of products

since it produces a larger test set in a reasonable time.

 The number of CESs and their total number of events are given in Table 7.13.

Table 7.12. Test Generation Time of Isolated Product ESGs of Email SPL

Coverage Length 2

Test Generation Time (ms) Min Max Avg

baseProduct ESG 37.24 39.35 38.502

addressbookAutoresponderEncryptSign

ESG
42.36 47.62 44.695

addressbookAutoresponderForward

ESG
42.41 43.9 43.094

Table 7.13. Complete Event Sequences of Isolated Product ESGs of Email SPL

Coverage Length 2

Test Generation CESs
of

CESs

of

Events

baseProduct ESG 4 20

addressbookAutoresponderEncryptSign ESG 8 35

addressbookAutoresponderForward ESG 8 33

64

 Here, the addressbook-autoresponder-encrypt-sign product cannot be

incremented from addressbook-autoresponder-forward product due to the existence of

encrypt and forward features which are excluding. Even though these features are not

excluding, the addressbook-autoresponder-encrypt-sign product still, cannot be

incremented from addressbook-autoresponder-forward product, since the current

version of the incremental test sequence composition approach does not support feature

removal and for this case, the forward feature should be removed from addressbook-

autoresponder-forward product.

Table 7.14. Full Test Sequence Composition Time of FESGs

Coverage Length 2

Test Sequence Composition Time (ms) Min Max Avg

baseProduct FESG 38.94 47.63 40.982

addressbookAutoresponderEncryptSign FESG 44.37 47.2 45.576

addressbookAutoresponderForward FESG 43.02 54.44 45.063

 When we examine the results of incremental test sequence composition

approach which are given in Table 7.15, we see that the resulting CESs are longer and

more in number than both of the previous approaches. Also, it is seen from the results

that incremental test sequence composition approach performs ~%87 to ~%94 better in

average execution time.

Table 7.15. Time and CESs of Incremental Test Sequence Composition Approach

Incremental Test Sequence Composition (ms) Coverage Length 2

FESG to

be reused

f-ESG(s) to

be added Obtained FESG Min Max Avg

of

CESs

of

Events

baseProduct

FESG

autoresponder

f-ESG addressbookAutoresponder-

Forward FESG
2.51 3.08 2.69 9 38

forward f-

ESG

baseProduct

FESG

autoresponder

f-ESG
addressbookAutoresponder-

EncryptSign FESG
5.54 6.2 5.9 11 53 encrypt f-

ESG

sign f-ESG

65

7.3. Bank Account SPL

 Bank Account SPL which is given as a running example throughout this thesis

has nine features in which the two of them are mandatory. The feature diagram and the

product matrix of this software product line are given in Figure 3.1 and Figure 3.2,

respectively.

7.3.1. Bank Account SPL Models

 The core behavior of this SPL which is given in the c-ESG in Figure 4.1

represents the core behavior of a bank account product which is getting the balance of

the account. The mandatory features of this SPL are deposit and withdraw. The f-ESG

of deposit feature is given in the following. This feature represents the behavior of

putting money into the account. The withdraw feature is demonstrated in Figure 4.2 and

it represents the behavior of taking money from the account.

 The optional features cancelDeposit and cancelWithdraw represent the cancel

operations of the depositing and withdrawing. These features make one bank account

product cancellable. The f-ESG of cancelDeposit is depicted in Figure 7.19, and the f-

ESG of cancelWithdraw is given in Figure 7.20.

Figure 7.18. deposit f-ESG of Bank Account SPL

 The “cancel deposit” event is connected to “select deposit” event of deposit

66

 f-ESG and “]” event of the c-ESG. The connection to the pseudo finish event of c-ESG,

makes the “cancel deposit” event a finish event. Note that, a f-ESG could contain

connection points to c-ESG and more than one f-ESGs.

Figure 7.19. cancelDeposit f-ESG of Bank Account SPL

 Since, the cancelDeposit and cancelWithdraw f-ESG has connection points to

deposit and withdraw f-ESGs, respectively, there is a constraint the feature diagram

(Figure 3.1) for each of these f-ESGs. These constraints force the product

configurations to have, for example,the deposit feature if the PC has the cancelDeposit

feature. Even though the deposit and withdraw are mandatory features, these constraints

are added because of the existence of connection points.

 The overdraft and credit features which are grouped under extraMoney abstract

feature in the feature diagram (Figure 3.1), are alternative features and allow the bank

account user to take extra money from the account. The user can define a limit to

exceed the account balance if the bank account product has the overdraft feature. The f-

ESG of overdraft is given in .The overdraft feature requires both the cancelWithdraw

and dailyLimit (Figure 4.4) features due to the connection points.

Figure 7.20. cancelWithdraw f-ESG of Bank Account SPL

 The credit feature which is given in Figure 7.22 allows the bank account users to

take extra money as a debt. It has connection points to core, therefore it doesn’t imply

any other features’ existence.

67

Figure 7.21. overdraft f-ESG of Bank Account SPL

 The interest and interestEstimation features enable the users of a bank account

product to request an interest rate and to determine total gain of interest for particular

days, respectively. Additionally, interestEstimation requires the interest feature due to

the connection point to interest f-ESG.

Figure 7.22. credit f-ESG of Bank Account SPL

 The dailyLimit feature (Figure 4.4) helps users of a bank account product to put

a limitation on the amount of money that could be taken from the account in daily basis.

It requires the withdraw and cancelWithdraw features in the product configuration.

Figure 7.23. interest f-ESG of Bank Account SPL

68

 The bank account SPL forty-two possible product configurations. These could

be configured by employing FESGs easily, however the number of complete product

ESGs is forty-two. Therefore, six of the complete product ESGs are modelled due to the

space limitations.

Figure 7.24. interestEstimation f-ESG of Bank Account SPL

 The cancellable product is given as an example in Figure 7.25. Also, the daily

limit product is given in Figure 4.5. The rest of the product ESGs are given in

APPENDIX C.

Figure 7.25. ESG of bank account SPL – cancellable product

7.3.2. Bank Account SPL Results

 The Bank Account SPL results are given in this section. FESG components

which contains the c-ESG and the f-ESGs and their corresponding number of vertices

and edges are shown in Table 7.16. Since the c-ESG has only one vertex except for

pseudo vertices, the number of edges are zero. The total number of vertices is forty-five

69

and the total number of edges is forty-two of the components in this SPL as it is shown

in Table 7.16.

Table 7.16. Bank Account SPL FESG Components

SPL FESG Components

Number of

Vertices Number of Edges

c-ESG 1 0

deposit f-ESG 6 6

withdraw f-ESG 6 6

cancelDeposit f-ESG 3 2

cancelWithdraw f-ESG 3 2

overdraft f-ESG 6 6

credit f-ESG f-ESG 5 5

dailyLimit f-ESG 6 7

interest f-ESG 5 5

interestEstimation f-ESG 4 3

TOTAL 45 42

 The six products of the Bank Account SPL are demonstrated in Table 7.17 in

order to present their complexity. Since the base product has the least number of

features, it has the least number of vertices and edges. The total number of vertices is

sixty-eight and the total number of edges is seventy-six of the isolated products in this

SPL as it is shown in Table 7.17. This result shows that one has to deal with many more

vertices and edges in isolated product EGSs which makes updating and maintaining the

models more difficult.

Table 7.17. Isolated Product ESGs of Bank Account SPL

Isolated Product ESGs of Bank Account SPL

Number of

Vertices

Number of

Edges

baseProdcuct ESG 7 8

cancellable ESG 9 10

credit ESG 17 16

dailyLimit ESG 11 14

interest ESG 12 12

overdraft ESG 12 16

TOTAL 68 76

70

 The FESG models and isolated products are compared in terms of total number

of vertices and total number of edges in Table 7.18. Similar to other case studies, the

total number of vertices and edges of FESGs are less than the isolated products since

there are no repeating vertices and edges in FESGs.

Table 7.18. Model Comparison of Bank Account SPL and Isolated Products

Number of Vertices Number of Edges

FESGs of Bank Account SPL 45 42

Isolated Product ESGs of Bank Account

SPL (6 Product ESGs)
68 76

 The CESs of the six products of Bank Account SPL are obtained by using ESG

test generation approach, full test sequence composition approach and incremental test

sequence composition approach for event pairs, triples and quadruples. The results are

shown in terms of execution time in milliseconds, number of CESs and the total number

of events.

Table 7.19. Test Generation Time of Isolated Product ESGs of Bank Account SPL

Test Generation Time (ms)
Coverage Length 2 Coverage Length 3 Coverage Length 4

Min Max Avg Min Max Avg Min Max Avg

baseProduct ESG 39 41.79 40.25 42.58 48.02 44.43 48.48 56.54 50.59

cancellable ESG 38.89 40.77 39.85 45.53 48.42 46.84 46.07 48.97 47.92

credit ESG 44.18 49.95 45.64 47.22 54.04 49.41 47.34 50.24 48.78

dailyLimit ESG 41.26 48.13 43.31 46.67 49.14 47.96 49.5 54.38 51.27

interest ESG 41.92 48.41 43.79 44.71 47.82 46.62 43.8 48.7 45.64

overdraft ESG 44.17 48.5 45.26 47.59 53.16 49.38 50.9 56.43 52.81

 In Table 7.19, the test generation time of isolated product ESGs are

demonstrated for coverage length 2, 3 and 4. Note that, for coverage length 2 event

pairs, for coverage length 3 event triples, and, for coverage length 4 event quadruples

are covered in CESs. It could be resulted from the Table 7.19 that, as the coverage

length increases, the test generation time also increases. This stems from the case that as

the coverage length increases, the test sets become larger in general. This deduction

71

could be obtained from Figure 7.20 which shows us as the coverage length increases,

the number of events increases except for base product and interest product.

Table 7.20. Full Test Sequence Composition Time of FESGs

Test Sequence Composition

Time (ms)

Coverage Length 2 Coverage Length 3 Coverage Length 4

Min Max Avg Min Max Avg Min Max Avg

baseProduct FESG 40.44 44.4 42.38 48.48 56.54 50.59 48.48 56.54 50.59

cancellable FESG 42.18 47.81 44.29 51.46 56.53 53.35 59.2 63.82 60.82

credit FESG 44.6 46.68 45.63 57.3 58.91 58.09 76.07 84.28 79.72

dailyLimit FESG 45.68 47.85 46.55 56.47 59.01 57.71 80.4 88.17 83.49

interest FESG 42.42 43.67 43.12 53.32 55.96 54.32 58.14 61.38 60.04

overdraft FESG 46.2 50 47.75 59.31 61.84 60.73 90.1 97.24 94.13

 Full test sequence composition time of FESGs are given in Table 7.20 for

coverage length 2,3 and 4. Similar to the ESG test generation approach, as the coverage

length increases the test sequence composition time also increases with the test set size

except for base product and interest product.

Table 7.21. Complete Event Sequences of Full Test Sequence Composition FESGs

Test Sequence

Composition CESs

Coverage Length 2 Coverage Length 3 Coverage Length 4

of

CESs

of

Events

of

CESs

of

Events

of

CESs

of

Events

baseProduct FESG 3 15 6 39 5 32

cancellable FESG 5 19 12 61 14 69

credit FESG 9 29 17 69 19 86

dailyLimit FESG 8 30 17 76 23 113

interest FESG 5 21 17 76 9 48

overdraft FESG 8 36 18 81 24 116

 When we compare the results of ESG test generation with full test sequence

composition approach, we see that full test sequence composition approach performs

similar to the previous case studies in which the resulting test sets are larger and the

execution time of algorithms are much more.

72

 Incremental test sequence composition has the best performance comparing with

the other two approaches, similar to the previous case studies. The results show that, the

CES set is larger than full test sequence composition approach test sets, approximately

%42 when coverage length is 2, %155 when coverage length is 3 and %134 when

coverage length is 4. Therefore, with minimal execution times, severely greater test sets

could be obtained by exploiting incremental test sequence composition approach.

Table 7.22. Incremental Test Sequence Composition Time of FESGs

Incremental Test Sequence Composition Time

(ms)

Coverage Length

2

Coverage Length

3

Coverage Length

4

FESG to be

reused

f-ESG(s) to be

added

Obtained

FESG
Min Max Avg Min Max Avg Min Max Avg

baseProduct

FESG

cancelDeposit cancellable

FESG
2.87 3.56 3.24 9.59 11 10.3 17.3 20.7 19

cancelWithdraw

baseProduct

FESG

interest interest

FESG
1.57 5.27 2.3 6.61 8.22 7.62 10.74 15.1 12.5

interestEstimation

baseProduct

FESG

cancelDeposit
dailyLimit

FESG
3.77 5.96 4.65 11.41 16.56 14.3 25.6 56.7 31.6 cancelWithdraw

dailyLimit

baseProduct

FESG

cancelWithdraw
overdraft

FESG
2.87 4.27 3.42 14 21.7 17.6 33.32 43.42 38.1 overdraft

dailyLimit

baseProduct

FESG

cancelDeposit

credit

FESG
3.46 4.75 3.89 18.48 23.27 20.9 39.1 54.6 47.2

cancelWithdraw

credit

interest

interestEstimation

cancelable

FESG
dailyLimit

dailyLimit

FESG
4.25 4.67 4.4 5.8 8.64 6.56 15.17 20.08 17.7

cancelable

FESG

credit
credit

FESG
4.46 4.95 4.7 14.96 16.87 16 30.5 36.6 32 interest

interestEstimation

interest

FESG
credit

credit

FESG
2.96 3.53 3.21 7.08 7.6 7.28 10.64 14.92 12.1

73

Table 7.23. Incremental Test Sequence Composition CESs

Incremental Test Sequence Composition CESs
Coverage

Length 2

Coverage

Length 3

Coverage

Length 4

FESG to

be reused

f-ESG(s) to be

added

Obtained

FESG

of

CESs

of

Events

of

CESs

of

Events

of

CESs

of

Events

baseProduct

FESG

cancelDeposit f-

ESG cancellable

FESG
5 19 11 63 13 79

cancelWithdraw f-

ESG

baseProduct

FESG

interest f-ESG
interest

FESG
5 21 12 61 11 54 interestEstimation f-

ESG

baseProduct

FESG

cancelDeposit f-

ESG
dailyLimit

FESG
8 30 18 104 21 134 cancelWithdraw f-

ESG

dailyLimit f-ESG

baseProduct

FESG

cancelWithdraw f-

ESG overdraft

FESG
9 36 19 114 20 121 overdraft f-ESG

dailyLimit f-ESG

baseProduct

FESG

cancelDeposit f-

ESG

credit

FESG
9 29 20 86 19 95

cancelWithdraw f-

ESG

credit f-ESG

interest f-ESG

interestEstimation f-

ESG

cancelable

FESG
dailyLimit f-ESG

dailyLimit

FESG
8 30 19 102 28 157

cancelable

FESG

credit f-ESG

credit

FESG
9 29 22 91 25 110 interest f-ESG

interestEstimation f-

ESG

interest

FESG
credit f-ESG

credit

FESG
7 25 14 64 15 66

74

7.4. Student Attendance System SPL

 The Student Attendance System, short for SAS, is a software product line which

twenty-four concrete features. The Student Attendance System allows the users to

submit attendance, to manage class details and class schedule, to monitor and update

attendance records and to receive notifications. The feature diagram of this SPL is given

in Figure 7.26 and it has six abstract mandatory features. These abstract features group

other features as XOR or OR groups. Making these abstract features mandatory

guarantees that at least one of their sub-features will be included in each product

configuration within the SPL.

Figure 7.26. Student Attendance System SPL feature diagram

 The number of possible product variations is two hundred forty-eight whenever

at least one sub-feature of mandatory features is added. The product matrix which is

given in Figure 7.27 demonstrates only the eleven of these configurations.

Figure 7.27. Product Matrix of the Student Attendance System SPL

75

7.4.1. Student Attendance System SPL Models

 The core of the SAS is given in Figure 7.28. The c-ESG of this is SPL is not a

connected ESG and the events within this c-ESG will become connected via feature

connections. The “submit attendance”, “confirm your identity”, “log in”, “open

notification settings” and “confirm notification settings” are reusable core events in the

models of this SPL.

Figure 7.28. c-ESG of SAS SPL

 In the Student Attendance System, there are two types of users which are student

and teacher. The products within this SPL could be configured for the student user, the

teacher user or both of the users. The userAccess abstract feature groups studentAccess

and teacherAccess features which represent user credentials. The teacherAccess f-ESG

is given in Figure 7.29 and it gives a user who is a teacher the permission to edit the

data stored in the system such as editing the class details, class schedule or student

attendance records.

Figure 7.29. teacherAccess f-ESG of SAS SPL

76

 The users who are students in this system, could monitor class, schedule and

attendance records. However, they do not have the authorization to update classes, class

schedules and attendance records. The f-ESG of studentAccess feature is given in Figure

7.30.

Figure 7.30. studentAccess f-ESG of SAS SPL

 The attendance could be submitted to the system via an access card, a barcode, a

fingerprint or a QR code. Therefore, the attendance methods are gathered under the

abstract mandatory feature SubmitAttendanceMethod in an XOR relation. This means

that only one submission could be selected in the product configurations of this system.

The f-ESGs of these submission methods contain connection points only to c-ESG and

they demonstrated in APPENDIX D

 The users of this system could receive notifications via email or SMS. Hence,

the email and SMS features are alternative features under Notification abstract

mandatory features. Likewise to attendance submission methods, the f-ESGs of these

features have connection points only to c-ESG and are given in APPENDIX D.

Figure 7.31. viewRecord f-ESG of SAS SPL

 The viewRecord, updateRecord, monitorAttendanceStatus and

traceAttendanceActivity are gathered under RecordInformation abstract mandatory

77

feature. The viewRecord feature which is depicted in Figure 7.31 and

monitorAttendanceStatus feature which is given in Figure 7.32 requires studentAccess

feature due to the connection points. These features help the students to view attendance

records and monitor their current attendance status.

Figure 7.32. monitorAttendanceStatus f-ESG of SAS SPL

 The updateRecord feature implies teacherAccess feature and the

traceAttendanceActivity feature implies updateRecord feature. Therefore, only the

teachers could update a student’s or a class of students’ attendance records. The f-ESG

of updateRecord is shown in Figure 7.33. Also, the traceAttendanceActivity which is

given in Figure 7.34 feature allow a teacher to trace the attendance activity of a class of

students.

Figure 7.33. updateRecord f-ESG of SAS SPL

 The ClassManagement abstract mandatory feature groups viewClass,

addNewClass, updateClassDetail, and, deleteClass features and the ClassSchedule

abstract mandatory feature groups viewSchedule, addNewSchedule, editSchedule and

78

assignNewSchedule in which the features viewClass and viewSchedule have no user

credentials and no requirements to other features which are shown in APPENDIX D.

Figure 7.34. traceAttendanceActivity f-ESG of SAS SPL

 The rest of the features except viewClass and viewSchedule, are accessible only

by teachers. Since their names are self-explanatory, e.g., addNewClass feature enable

adding a new class behavior of the system, addNewClass feature enable adding a new

schedule behavior of the system, and so on, they are also given in APPENDIX D

except for assignNewSchedule feature.

 The assignNewSchedule feature allows a teacher to assign schedule to an

editable class by selecting an existing schedule or by adding new schedule to it. Hence,

it requires updateClassDetail, addNewSchedule and editSchedule features. The f-ESG

of the assignNewSchedule feature is shown in Figure 7.35.

Figure 7.35. assignNewSchedule f-ESG of SAS SPL

 The complete product ESG of one of the product configurations in product

matrix (Figure 7.27) is given in Figure 7.36 which enables teacher access, access card

attendance submission and email notification. The rest of the product ESGs are given in

APPENDIX D.

79

 Additionally, the complete product ESG in Figure 7.36 has only fourteen

features including core. The Figure 7.36 may help the readers to imagine how modelling

and maintaining the complete product ESGs become difficult as the number of features

increases and the product configurations gets more complex. As a consequence,

employing FESGs in SPL testing that the products have great number of features is an

advantage.

Figure 7.36. ESG of SAS SPL – teacher user-access card-email product

7.4.2. Student Attendance System SPL Results

 The Student Attendance System results are depicted in this section. Table 7.24

shows the FESG components which contains the c-ESG and the f-ESGs and their

corresponding number of vertices and edges. The c-ESG is a disconnected ESG except

for two vertices, therefore it has only one edge. The total number of vertices is eighty-

80

seven and the total number of edges is ninety-two of the components in this SPL as it is

shown in Table 7.24. Since this SPL has twenty features including c-ESG, it is a much

larger example.

Table 7.24. SAS SPL FESG Components

SPL FESG Components

Number of

Vertices

Number of

Edges

c-ESG 8 1

barcode f-ESG 4 6

fingerPrint f-ESG 3 3

accessCard f-ESG 3 3

QRCode f-ESG 3 3

studentAccess f-ESG 4 4

teacherAccess f-ESG 5 6

viewRecord f-ESG 4 3

updateRecord f-ESG 6 6

monitorAttendanceStatus f-ESG 3 2

traceAttendanceActivity f-ESG 3 2

email f-ESG 3 2

SMS f-ESG 3 2

addNewClass f-ESG 6 10

updateClassDetail f-ESG 5 9

deleteClass f-ESG 5 5

viewSchedule f-ESG 4 3

addNewSchedule f-ESG 6 10

editSchedule f-ESG 5 9

assignNewSchedule f-ESG 4 3

TOTAL 87 92

 Ten of the product variants of SAS SPL are given in Table 7.25. Since these are

large products with at least six features, the total number of vertices and edges in

isolated products are a lot bigger than the previous case study. The FESG models and

isolated products are compared in terms of total number of vertices and total number of

edges in Table 7.26. Similar to previous case studies, the total number of vertices and

edges of FESGs are less than the isolated products since there are no repeating vertices

and edges in FESGs.

81

Table 7.25. Isolated Product ESGs of SAS SPL

Isolated Product ESGs of SVM SPL Number of Vertices Number of Edges

studentUserBarcodeSMS ESG 18 20

teacherUserAccessCardEmail ESG 38 62

limitedStudentUserBarcodeSMS ESG 17 19

limitedTeacherUserAccessCardEmail ESG 30 43

limitedTeacherUserFingerprintEmail ESG 30 43

limitedTeacherUserQRCodeSMS ESG 30 43

bothUsersAccessCardEmail ESG 43 68

bothUsersBarcodeSMS ESG 44 71

bothUsersFingerPrintEmail ESG 43 68

bothUsersQRCodeSMS ESG 43 68

TOTAL 336 505

Table 7.26. Model Comparison of SAS SPL FESGs and Isolated Products

 Number of Vertices Number of Edges

FESGs of SAS SPL 87 92

Isolated Product ESGs of SAS SPL (10 ESGs) 336 505

 The CESs of the product variants of SAS SPL are obtained by using ESG test

generation approach, full test sequence composition approach and incremental test

sequence composition approach for event pairs, triples and quadruples similar to the

other case studies in this thesis. Also, the results are demonstrated in terms of execution

time in milliseconds, number of CESs and the total number of events.

Table 7.27. Test Generation Time of Isolated Product ESGs of SAS SPL

Min Max Avg Min Max Avg Min Max Avg

studentUserBarcodeSMS ESG 42.19 44.98 43.16 46.02 49.43 47.4 48.39 50.38 49.18

teacherUserAccessCardEmail ESG 52.27 59.29 55.01 78.11 88.32 82.21 117.3 153.8 133

limitedStudentUserBarcodeSMS ESG 44.44 47.54 46.13 48.06 66.07 54.3 50.69 62.6 53.83

limitedTeacherUserAccessCardEmail

ESG
53.03 58.23 54.63 64.67 70.93 67.42 88.22 96.11 91.29

limitedTeacherUserFingerprintEmail 49.24 54.42 52.67 43 54.42 49.83 87.63 104.7 93.76

limitedTeacherUserQRCodeSMS ESG
49.54 66.59 53.14 64.23 72.06 67.64 84.75 112.5 93.88

bothUsersAccessCardEmail ESG 59.47 67.48 61.87 82.56 105.1 94.65 130.1 171 141.9

bothUsersBarcodeSMS ESG 63.82 70.19 65.86 88.11 105.2 96.8 133.3 154.5 141

bothUsersFingerPrintEmail ESG 61.73 67.17 64.09 83.92 99.98 93.34 125.8 145 134.3

bothUsersQRCodeSMS ESG 58.45 63.22 60.12 87.54 106.7 96.22 122.3 148.1 135.9

Test Generation Time (ms)
Coverage Length 2 Coverage Length 3 Coverage Length 4

82

Table 7.28. Complete Event Sequences of Isolated Product ESGs of SAS SPL

of CESs # of Events # of CESs # of Events # of CESs # of Events

studentUserBarcodeSMS ESG 8 35 12 55 14 66

teacherUserAccessCardEmail ESG 16 116 33 247 64 520

limitedStudentUserBarcodeSMS ESG 7 31 11 51 13 62

limitedTeacherUserAccessCardEmail

ESG
12 82 23 163 40 312

limitedTeacherUserFingerprintEmail 12 82 23 163 40 312

limitedTeacherUserQRCodeSMS ESG
12 82 23 163 40 312

bothUsersAccessCardEmail ESG 19 130 37 266 68 569

bothUsersBarcodeSMS ESG 21 137 40 278 72 557

bothUsersFingerPrintEmail ESG 19 130 37 266 68 569

bothUsersQRCodeSMS ESG 19 130 37 266 68 569

Test Generation CESs
Coverage Length 2 Coverage Length 4Coverage Length 3

 In Table 7.27, the test generation time of isolated product ESGs are

demonstrated for coverage length 2, 3 and 4. The test generation time increases, as the

coverage length increases. For SAS SPL, the test sets become larger as the coverage

length increases without any exceptions, therefore, the test generation time increases

accordingly.

Table 7.29. Full Test Sequence Composition Time of FESGs of SAS SPL

Min Max Avg Min Max Avg Min Max Avg

studentUserBarcodeSMS FESG 50.35 56.41 52.9 55.95 58.17 56.96 73.27 87.99 79.59

teacherUserAccessCardEmail FESG 51.49 57.78 54.39 92.66 100.8 97.1 176 189.1 182.5

limitedStudentUserBarcodeSMS FESG 48.55 51.42 49.99 55.51 59.4 57.12 65.75 73.37 69.49

limitedTeacherUserAccessCardEmail 48.61 49.93 49.38 74.65 79.93 78.1 132.1 144.9 137.3

limitedTeacherUserFingerprintEmail

FESG 48.21 52.58 49.62 76.85 86.48 81.09 130.9 146.5 137.4

limitedTeacherUserQRCodeSMS

FESG 48.56 51.52 50.13 74.37 84.47 81.12 121.4 145 133.4

bothUsersAccessCardEmail FESG 52.23 54.82 53.57 92.82 102.4 99.68 179.4 196.8 187.8

bothUsersBarcodeSMS FESG 52.77 62.76 58.39 101.4 114.7 109.2 178.1 196.9 189.2

bothUsersFingerPrintEmail FESG 52.21 56.5 53.87 96.64 107.8 103.2 178.7 196.5 190

bothUsersQRCodeSMS FESG 52.96 56.51 54.72 98.59 111.8 105.1 52.96 111.8 79.96

Test Sequence Composition Time

(ms)

Coverage Length 2 Coverage Length 3 Coverage Length 4

 Table 7.29 presents the results of full test sequence composition time of FESGs

for coverage length 2,3 and 4. For coverage length 2, full test sequence composition

performs better than the ESG test generation approach in terms of both execution time

83

and test set size, unlike the previous case studies. This could stem from the number of

features and bigger size products of SAS SPL. Since the full test sequence composition

approach generates each f-ESG’s test sequences from scratch and composes them, for

small SPLs like previous examples, generating each f-ESG’s test sequences from

scratch could not make it faster comparing the other examples. However, as the number

of features increases and the isolated product ESGs get more complex, the exact speed

performance of full test sequence composition could be understood.

Table 7.30. Complete Event Sequences of Full Test Sequence Composition FESGs

of CESs # of Events # of CESs # of Events # of CESs # of Events

studentUserBarcodeSMS FESG 8 35 14 66 17 81

teacherUserAccessCardEmail FESG 19 139 44 319 89 692

limitedStudentUserBarcodeSMS

FESG
7 31 13 62 16 77

limitedTeacherUserAccessCardEmail 13 87 28 191 46 344

limitedTeacherUserFingerprintEmail

FESG
13 87 28 191 46 344

limitedTeacherUserQRCodeSMS

FESG
13 87 28 191 46 344

bothUsersAccessCardEmail FESG 23 159 53 366 95 745

bothUsersBarcodeSMS FESG 25 166 56 378 99 769

bothUsersFingerPrintEmail FESG 23 159 53 366 95 745

bothUsersQRCodeSMS FESG 23 159 53 366 95 745

Test Sequence Composition CESs
Coverage Length 2 Coverage Length 3 Coverage Length 4

 When comparing full test sequence composition approach with ESG test

generation approach, for coverage length 3 and 4, full test sequence composition

performs similar to the previous case studies, as the coverage length increases the test

sequence composition time also increases with the test set size.

 Incremental test sequence composition has the best performance comparing with

the other two approaches, similar to the previous case studies. The results show that, the

CES set is larger than full test sequence composition approach test sets, nearly %16

when coverage length is 2, %30 when coverage length is 3 and %27 when coverage

length is 4. Thus, greater test sets could be generated in drastically smaller times in

incremental test sequence composition approach, comparing to other two approaches.

84

Table 7.31. Incremental Test Sequence Composition Time of FESGs

FESG to be reused f-ESG(s) to be added Obtained FESG Min Max Avg Min Max Avg Min Max Avg

limitedStudentUserBarcodeSMS FESG monitorAttendanceStatus f-ESG
studentUserBarcodeSMS

FESG
2.73 7.76 3.761 5.85 6.44 6.033 11.03 16.07 13.15

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

monitorAttendanceStatus f-ESG

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess f-ESG

viewRecord

monitorAttendanceStatus

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

Incremental Test Sequence Composition Time (ms) Coverage Length 2 Coverage Length 3 Coverage Length 4

limitedStudentUserBarcodeSMS FESG bothUsersBarcodeSMS FESG 7.98 14.84 10.15 74.68

studentUserBarcodeSMS FESG bothUsersBarcodeSMS FESG 12.03 14.49 12.42

205.6

69.05 85.13 79.42 211.3

41.71

33.78 30.29 85.65 116.3

214.6219.3

99.23 85.36 194.5 213.2

102.2

14.99 18.45 17.19 31.89

116.9

limitedTeacherUserAccessCardEmail

FESG

bothUsersAccessCardEmail

FESG
4.18 6.98 4.612 26.88

teacherUserAccessCardEmail bothUsersAccessCardEmail 4.08 4.93 4.29 36.23

limitedTeacherUserQRCodeSMS FESG bothUsersQRCodeSMS FESG 6.15 8.48 7.91 39.3

limitedTeacherUserFingerprintEmail

FESG

bothUsersFingerprintEmail

FESG
6.24 8.54 7.871

46.4 41.95 110.3 118.8 114

38.21 50.42 42.3 11.7 103.4

37.85 31.59 85.19 98.3 91.59
limitedTeacherUserAccessCardEmail

FESG

teacherUserAccessCardEmail

FESG
4.77 5.38 5.026 28.7

85

Table 7.32. Incremental Test Sequence Composition CESs of FESGs

FESG to be reused f-ESG(s) to be added Obtained FESG # of CESs # of Events # of CESs # of Events # of CESs # of Events

limitedStudentUserBarcodeSMS

FESG
monitorAttendanceStatus f-ESG

studentUserBarcodeSMS

FESG
8 35 16 77 22 109

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

monitorAttendanceStatus f-ESG

teacherAcccess f-ESG

updateRecord f-ESG

traceAttendanceActivity f-ESG

addNewClass f-ESG

updateClassDetail f-ESG

deleteClass f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess f-ESG

viewRecord

monitorAttendanceStatus

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

studentAccess

viewRecord

monitorAttendanceStatus

addNewSchedule f-ESG

editSchedule f-ESG

assignNewSchedule f-ESG

limitedTeacherUserQRCodeSMS

FESG
bothUsersQRCodeSMS FESG

Coverage Length 2 Coverage Length 3 Coverage Length 4

limitedTeacherUserAccessCardEmail

FESG

bothUsersAccessCardEmail

FESG

teacherUserAccessCardEmail
bothUsersAccessCardEmail

FESG

limitedTeacherUserFingerprintEmail

FESG

bothUsersFingerprintEmail

FESG

Incremental Test Sequence Composition CESs

limitedStudentUserBarcodeSMS

FESG
bothUsersBarcodeSMS FESG

studentUserBarcodeSMS FESG bothUsersBarcodeSMS FESG 8 35 58 398 115 855

25 166 60 409 117 865

23 159 53 366 103 797

61 426 115 883

23 159 61 425 116 879

23 159 61 425 116 879

limitedTeacherUserAccessCardEmail

FESG
82519 139

23 159

teacherUserAccessCardEmail

FESG
52 379 104

 In this chapter, four case studies are presented and experimented under ESG-

based test generation approach, FESG-based full test sequence composition approach

and FESG-based incremental test sequence composition approach. Also, the results are

demonstrated in several tables. In the next chapter, the conclusion and future work of

this thesis are presented.

86

CHAPTER 8

CONCLUSION AND FUTURE WORK

 In this chapter, the thesis work is concluded, and the future work which are

planned as feature interactions, alternative course of events in features and feature

removal are discussed.

8.1. Conclusion

 In this thesis, Featured Event Sequence Graphs (FESGs) are introduced as

variable testing models which are used to explicitly represent the variability of

behaviors in SPLs. A FESG is constituted from the core ESG (c-ESG) which models the

core behavior of the SPL and feature ESGs (f-ESGs) which model selectable features’

behaviors and enables variability in SPL. In order to express a particular product within

the SPL, the c-ESG and selected f-ESGs are combined into a FESG. Moreover, this

thesis presents two different model-based test sequence generation approach for

software product lines which are test sequence composition and incremental test

sequence composition. Both of the approaches exploit FESGs as reusable test models.

The incremental test sequence composition approach reuses the existing test sequences

as well.

 The test sequence composition approach introduces Algorithm 4.1 Construction of

product FESG lattice to construct a product FESG lattice and Algorithm 4.2. Composition

of product test sequences to compose partial test sequences of f-ESGs through the usage

of product FESG lattice. This approach resembles divide-and-conquer strategy in the

sense that each simple test models’ partial test sequences are generated and composed

from scratch in order to obtain a product’s test sequences. This approach is more

efficient than the traditional test generation of full-ESG model since the full-ESG model

87

is more complex in terms of number of vertices and edges. Also, traceability and

maintainability of FESG models are easier.

 The incremental test sequence composition approach is considered as an

enhanced version of aforementioned test sequence composition approach. This

approach introduces Algorithm 5.1. Incremental Sequence Generation which compose

the test sequences of additional features with the existing test sequences of product

variant. Algorithm 5.2. Incremental Transformation of f-ESGs, Algorithm 5.3. Sequence

Generation of Transformed f-ESGs and Algorithm 5.4. Sequence Composition are

introduced in the approach since they formalize incremental transformation of f-ESGs,

sequence generation of transformed f-ESGs and sequence composition of generated

sequences, respectively. The difference of this approach is that not only the test models

but also the existing test cases are reusable. Therefore, whenever a new feature (or

features) is used to increment an existing variant, the generated test sequences of variant

and the new feature’s test cases are composed. Since the existing test sequences are

reused, the composition is not realized from scratch. Thus, incremental test sequence

composition approach is more efficient than the compositional approach.

8.2. Future Work

 The test sequence composition and incremental test sequence composition are

based on considering a feature as an increment in functionality of the product and each

product as a peerless feature-combination. One of the major problems in feature-based

development is consideration of feature interactions where features could replace

existent features (Uzuncaova, Khurshid, and Batory 2010). A feature not only extends

but also replaces the existent constraint, whenever a feature interaction occurs

(Uzuncaova, Khurshid, and Batory 2010). This means that the behavior of one or both

of the features which are integrated in a product would be modified by each other. Two

forms of featuıre interactions are introduced: intentional and unintentional feature

interactions (Benz 2009). A thesis work which focuses on test generation for feature

interactions and takes automative information system of a 2009 model BMW vehicle

which combines a multimedia player, navigation system, telephony, telematic services,

88

and internet access as an example. This work gives the situation when the CD playback

is interfered by an incoming phone call as an intentional feature interaction

example(Benz 2009). Also, the situation when the increased bus load delays messages

between graphical user interface (GUI) of the automative information system (AIS) and

the navigation system of the AIS is given as an unintentional feature interaction

between the feature seat adjustment and feature navigation (Benz 2009).

 Since unintentional feature interactions are foundations of a fault model and are

more difficult to predict and/or detect (Benz 2009), especially unintentional feature

interactions could be an interesting future research because features transform a

characteristic of a system for example an existing constraint is replaced with another

and for this reason, it disrupts the monotonic increment in feature composition. In such

cases, our full test sequence composition approach and incremental test sequence

composition approach cannot be applied directly because of the existence of the feature

requirement constraints that originates from connection points. As a consequence,

feature interactions could be an intriguing topic for our future work.

 In addition to the feature interactions, depending on the product domain,

whenever a feature is connected between two events of core (or another feature), it

sometimes brings an alternative course of events between corresponding two events;

and sometimes, it becomes the only course of events between the two by removing the

edge between them. Since this property comes from the domain knowledge and depends

on the model, it could be interesting to try to solve this issue on the modelling level.

 Finally, the feature removal could be suggested as a future work for this study.

In feature removal, the features that have connection points only to the pseudo start and

pseudo finish events of the c-EGS, could be removed directly because the CESs of the

feature to be removed does not affect any other sequence of the product. The interest

feature of Bank Account SPL that is given in Figure 7.23 is a good example to the direct

feature removal. However, the features that have connection points to the features that

could be removed directly, should also be removed with these features such as

interestEstimation feature which has a connection point to interest feature and is given

in Figure 7.24. For other feature removal cases such that the connection points to the

core events and/or other features’ events, the CESs of the feature to be removed should

be decided and then removed. At this point, it is important that if the removed feature’s

CESs are in-between the remaining events and there is no alternative edge therefore, no

CESs between these remaining events, the CES should be added to the test suite after

89

removal. For example, let’s focus on the daily limit product of Bank Account SPL

which is demonstrated in Figure 4.5. When we remove the daily limit feature from this

product, the “enter withdraw amount, confirm daily limit excess, enter withdraw

amount, confirm daily limit excess” event sequence of the CES “select withdraw, enter

withdraw amount, confirm daily limit excess, enter withdraw amount, confirm daily

limit excess, cancel withdraw” is removed and the “select withdraw, cancel withdraw”

CES is decided to be added to the test suite of the remaining product. However, since,

there is an edge between select withdraw and cancel withdraw events, this CES is

already on the test suite and a duplication occurs and the decision is not applied. Now,

assume that there is no edge between select withdraw and cancel withdraw events. The

“select withdraw, cancel withdraw” CES should be added to the test suite of the

remaining product. Consequently, the feature removal operation could be defined as

future work and could be examined, researched and experimented elaborately.

90

REFERENCES

Apel, Sven, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented

Software Product Lines: Concepts and Implementation. Springer Science &

Business Media.

Apel, Sven, and Delesley Hutchins. 2010. “A Calculus for Uniform Feature

Composition | ACM Transactions on Programming Languages and Systems.”

ACM Transactions on Programming Languages and Systems 32 (5): 19.

Belli, Fevzi. 2001. “Finite State Testing and Analysis of Graphical User Interfaces.” In

Proceedings 12th International Symposium on Software Reliability Engineering,

34–43. Washington, DC: IEEE Comput. Soc.

https://doi.org/10.1109/ISSRE.2001.989456.

Belli, Fevzi, and Christof J. Budnik. 2004. “Minimal Spanning Set for Coverage Testing

of Interactive Systems.” In Theoretical Aspects of Computing - ICTAC 2004,

edited by Zhiming Liu and Keijiro Araki, 220–234. Guiyang, China: Springer

Berlin Heidelberg.

Belli, Fevzi, and Christof J Budnik. 2005. “Test Cost Reduction for Interactive

Systems.” In Sicherheit 2005, 12. Regensburg, Germany.

Belli, Fevzi, and Christof J. Budnik. 2007. “Test Minimization for Human-Computer

Interaction.” Applied Intelligence 26 (2): 161–74.

https://doi.org/10.1007/s10489-006-0008-0.

Belli, Fevzi, Christof J. Budnik, and Lee White. 2006. “Event-Based Modelling,

Analysis and Testing of User Interactions: Approach and Case Study.” Software

Testing, Verification and Reliability 16 (1): 3–32.

https://doi.org/10.1002/stvr.335.

Belli, Fevzi, Nevin Guler, and Michael Linschulte. 2011. “Does ‘Depth’ Really Matter?

On the Role of Model Refinement for Testing and Reliability.” In 2011 IEEE

35th Annual Computer Software and Applications Conference, 630–39. Munich,

Germany: IEEE. https://doi.org/10.1109/COMPSAC.2011.17.

Belli, Fevzi, Nimal Nissanke, Christof J Budnik, and Aditya Mathur. 2005. “Test

Generation Using Event Sequence Graphs.” University of Paderborn, Institute

for Electrical Engineering and Information Technology.

91

Benz, Sebastian. 2009. “Generating Tests for Feature Interaction.” Technischen

Universität München. https://mediatum.ub.tum.de/doc/805656/805656.pdf.

Burkard, Rainer, Mauro Dell’Amico, and Silvano Martello. 2012. Assignment

Problems. Other Titles in Applied Mathematics. Society for Industrial and

Applied Mathematics. https://doi.org/10.1137/1.9781611972238.

Chow, T.S. 1978. “Testing Software Design Modeled by Finite-State Machines.” IEEE

Transactions on Software Engineering SE-4 (3): 178–87.

https://doi.org/10.1109/TSE.1978.231496.

Cichos, Harald, Sebastian Oster, Malte Lochau, and Andy Schürr. 2011. “Model-Based

Coverage-Driven Test Suite Generation for Software Product Lines.” In Model

Driven Engineering Languages and Systems, edited by Jon Whittle, Tony Clark,

and Thomas Kühne, 425–39. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer. https://doi.org/10.1007/978-3-642-24485-8_31.

Classen, Andreas. 2011. “Modelling and Model Checking Variability-Intensive

Systems.” Ph.D. Dissertation.

Classen, Andreas, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. 2011.

“Symbolic Model Checking of Software Product Lines.” In Proceedings of the

33rd International Conference on Software Engineering, 321–330. ICSE ’11.

Waikiki, Honolulu, HI, USA: Association for Computing Machinery.

https://doi.org/10.1145/1985793.1985838.

Czarnecki, Krysztof, and Eisenecker, Ulrich. 2000. Generative Programming: Methods,

Tools, and Applications. Addision-Wesley.

Czarnecki, Krzysztof, and Michał Antkiewicz. 2005. “Mapping Features to Models: A

Template Approach Based on Superimposed Variants.” In Generative

Programming and Component Engineering, edited by Robert Glück and

Michael Lowry, 422–37. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer. https://doi.org/10.1007/11561347_28.

Devroey, Xavier, Maxime Cordy, Gilles Perrouin, Eun-Young Kang, Pierre-Yves

Schobbens, Patrick Heymans, Axel Legay, and Benoit Baudry. 2012. “A Vision

for Behavioural Model-Driven Validation of Software Product Lines.” In

Leveraging Applications of Formal Methods, Verification and Validation.

Technologies for Mastering Change, edited by Tiziana Margaria and Bernhard

Steffen, 208–22. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer. https://doi.org/10.1007/978-3-642-34026-0_16.

92

El-Far, Ibrahim K., and James A. Whittaker. 2002. “Model-Based Software Testing.” In

Encyclopedia of Software Engineering, edited by John J. Marciniak, sof207.

Hoboken, NJ, USA: John Wiley & Sons, Inc.

https://doi.org/10.1002/0471028959.sof207.

“FeatureIDE.” n.d. Accessed August 8, 2020. http://www.featureide.com/.

Fujiwara, S., G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. 1991. “Test

Selection Based on Finite State Models.” IEEE Transactions on Software

Engineering 17 (6): 591–603. https://doi.org/10.1109/32.87284.

Garg, Vijay K. 2015. Introduction to Lattice Theory with Computer Science

Applications. 1st ed. Wiley Publishing.

Gebizli, Ceren Sahin, and Hasan Sözer. 2016. “Model-Based Software Product Line

Testing by Coupling Feature Models with Hierarchical Markov Chain Usage

Models.” In 2016 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C), 278–83.

https://doi.org/10.1109/QRS-C.2016.42.

Geppert, Birgit. 2004. “Towards Generating Acceptance Tests for Product Lines.,” 35–

48. https://doi.org/10.1007/978-3-540-27799-6_4.

Gruler, Alexander, Martin Leucker, and Kathrin Scheidemann. 2008. “Modeling and

Model Checking Software Product Lines.” In Formal Methods for Open Object-

Based Distributed Systems, edited by Gilles Barthe and Frank S. de Boer, 113–

31. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

https://doi.org/10.1007/978-3-540-68863-1_8.

Hierholzer, Carl, and Chr Wiener. 1873. “Ueber die Möglichkeit, einen Linienzug ohne

Wiederholung und ohne Unterbrechung zu umfahren.” Mathematische Annalen

6 (1): 30–32. https://doi.org/10.1007/BF01442866.

Jones, Capers. 1991. Applied Software Measurement: Assuring Productivity and

Quality. McGraw-Hill.

Kang, Kyo C. n.d. “Feature-Oriented Domain Analysis (FODA) Feasibility Study.”

Accessed May 25, 2020. https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=11231.

Kang, Kyo C., Sholom G. Cohen, James A. Hess, William E. Novak, and A. S.

Peterson. 1990. “Feature-Oriented Domain Analysis (FODA) Feasibility Study:”

Fort Belvoir, VA: Defense Technical Information Center.

https://doi.org/10.21236/ADA235785.

93

Kang, Kyo C., Vijayan Sugumaran, and Sooyong Park. 2009. Applied Software Product

Line Engineering. CRC Press.

Kishi, Tomoji, and Natsuko Noda. 2006. “Formal Verification and Software Product

Lines.” Communications of the ACM 49 (12): 73–77.

https://doi.org/10.1145/1183236.1183270.

Lamancha, Beatriz Perez, Macario Polo Usaola, and Ignacio Garcia Rodriguez de

Guzman. 2009. “Model-Driven Testing in Software Product Lines.” In 2009

IEEE International Conference on Software Maintenance, 511–14.

https://doi.org/10.1109/ICSM.2009.5306324.

Linschulte, Michael. 2013. “On the Role of Test Sequence Length, Model Refinement,

and Test Coverage for Reliability.” In 1–212. https://nbn-

resolving.org/urn:nbn:de:hbz:466:2-11890.

Lochau, Malte, Stephan Mennicke, Hauke Baller, and Lars Ribbeck. 2016. “Incremental

Model Checking of Delta-Oriented Software Product Lines.” Journal of Logical

and Algebraic Methods in Programming, Formal Methods for Software Product

Line Engineering, 85 (1, Part 2): 245–67.

https://doi.org/10.1016/j.jlamp.2015.09.004.

Lochau, Malte, Ina Schaefer, Jochen Kamischke, and Sascha Lity. 2012. “Incremental

Model-Based Testing of Delta-Oriented Software Product Lines.” In 13th

International Conference, TAP 2019, edited by Achim D. Brucker and Jacques

Julliand, 7305:67–82. Lecture Notes in Computer Science. Porto, Portugal:

Lecture Notes in Computer Science Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-30473-6_7.

Memon, A.M., M.E. Pollack, and M.L. Soffa. 2001. “Hierarchical GUI Test Case

Generation Using Automated Planning.” IEEE Transactions on Software

Engineering 27 (2): 144–55. https://doi.org/10.1109/32.908959.

Mistrik, Ivan, Rami Bahsoon, Peter Eeles, Roshanak Roshandel, and Michael Stal.

2014. Relating System Quality and Software Architecture. Morgan Kaufmann.

Neto, Paulo Anselmo da Mota Silveira, Ivan do Carmo Machado, Yguarata Cerqueira

Cavalcanti, Eduardo Santana de Almeida, Vinicius Cardoso Garcia, and Silvio

Romero de Lemos Meira. 2010. “A Regression Testing Approach for Software

Product Lines Architectures.” In 2010 Fourth Brazilian Symposium on Software

Components, Architectures and Reuse, 41–50.

https://doi.org/10.1109/SBCARS.2010.14.

94

Nolan, Andy J., Silvia Abrahao, Paul Clements, John D. McGregor, and Sholom Cohen.

2011. “Towards the Integration of Quality Attributes into a Software Product

Line Cost Model.” In 2011 15th International Software Product Line

Conference, 203–12. https://doi.org/10.1109/SPLC.2011.44.

Olimpiew, Erika Mir. 2008. “Model-Based Testing for Software Product Lines A

Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

of Doctor of Philosophy at George Mason University | Semantic Scholar.”

George Mason University.

Olimpiew, Erika Mir, and Hassan Gomaa. 2005. “Model-Based Testing for

Applications Derived from Software Product Lines.” ACM SIGSOFT Software

Engineering Notes 30 (4): 1–7. https://doi.org/10.1145/1082983.1083279.

Oster, Sebastian, Ivan Zorcic, Florian Markert, and Malte Lochau. 2011. “MoSo-

PoLiTe: Tool Support for Pairwise and Model-Based Software Product Line

Testing.” In Proceedings of the 5th Workshop on Variability Modeling of

Software-Intensive Systems, 79–82. VaMoS ’11. Namur, Belgium: Association

for Computing Machinery. https://doi.org/10.1145/1944892.1944901.

“Readings of Mathematics for Computer Science MIT OpenCourseWare - Chapter 7.”

n.d. Accessed August 8, 2020. https://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-042j-mathematics-for-computer-science-

fall-2010/readings/.

Reuys, Andreas, Erik Kamsties, Klaus Pohl, and Sacha Reis. 2005. “Model-Based

System Testing of Software Product Families.” In Advanced Information

Systems Engineering, edited by Oscar Pastor and João Falcão e Cunha, 519–34.

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

https://doi.org/10.1007/11431855_36.

“SPL2go.” n.d. Accessed June 1, 2020. http://spl2go.cs.ovgu.de/projects/54.

Tuglular, Tugkan, Fevzi Belli, and Michael Linschulte. 2016. “Input Contract Testing

of Graphical User Interfaces.” International Journal of Software Engineering

and Knowledge Engineering 26 (02): 183–215.

https://doi.org/10.1142/S0218194016500091.

Tuglular, Tugkan, Mutlu Beyazıt, and Dilek Öztürk. 2019. “Featured Event Sequence

Graphs for Model-Based Incremental Testing of Software Product Lines.” In

2019 IEEE 43rd Annual Computer Software and Applications Conference

(COMPSAC), 1:197–202. https://doi.org/10.1109/COMPSAC.2019.00035.

95

Uzuncaova, Engin, Sarfraz Khurshid, and Don Batory. 2010. “Incremental Test

Generation for Software Product Lines.” IEEE Transactions on Software

Engineering 36 (3): 309–22.

Whittaker, James A. 1997. “Stochastic Software Testing.” Annals of Software

Engineering 4 (1): 115. https://doi.org/10.1023/A:1018975029705.

Withey, James. 1996. “Investment Analysis of Software Assets for Product Lines.”

Pittsburgh, Pennsylvania: Carnegie Mellon University, Software Engineering

Institute.

Xu, Dianxiang. 2011. “A Tool for Automated Test Code Generation from High-Level

Petri Nets.” In International Conference on Application and Theory of Petri

Nets and Concurrency, edited by Lars M. Kristensen and Laure Petrucci, 308–

17. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

https://doi.org/10.1007/978-3-642-21834-7_17.

96

APPENDIX A

SODA VENDING MACHINE SOFTWARE PRODUCT

LINE

Figure A.1. free f-ESG of SVM SPL

Figure A.2. payUSD f-ESG of SVM SPL

Figure A.3. serveTea f-ESG of SVM SPL

Figure A.4. ESG of SVM SPL – serve soda-free product

Figure A.5. ESG of SVM SPL –pay EUR product

97

Figure A.6. ESG of SVM SPL – pay USD-serve soda product

Figure A.7. ESG of SVM SPL – pay USD product

98

APPENDIX B

EMAIL SOFTWARE PRODUCT LINE

Figure B.1. ESG of Email SPL – base product

Figure B.2. ESG of Email SPL – address book

99

Figure B.3. ESG of Email SPL – autoresponder

Figure B.4. ESG of Email SPL – forward

100

Figure B.5. ESG of Email SPL – encrypt

Figure B.6. ESG of Email SPL – address book-autoresponder-forward

101

Figure B.7. ESG of Email SPL – address book-autoresponder-encrypt

Figure B.8. ESG of Email SPL – address book-autoresponder-encrypt-sign product

102

APPENDIX C

BANK ACCOUNT SOFTWARE PRODUCT LINE

Figure C.1. ESG of bank account SPL – credit product

Figure C.2. ESG of bank account SPL – interest product

103

Figure C.3. ESG of bank account SPL – overdraft product

104

APPENDIX D

STUDENT ATTENDANCE SYSTEM SOFTWARE

PRODUCT LINE

Figure D.1. accessCard f-ESG of SAS SPL

Figure D.2. barcode f-ESG of SAS SPL

Figure D.3. fingerprint f-ESG of SAS SPL

Figure D.4. QRCode f-ESG of SAS SPL

105

Figure D.5. viewClass f-ESG of SAS SPL

Figure D.6. addNewClass f-ESG of SAS SPL

Figure D.7. deleteClass f-ESG of SAS SPL

Figure D.8. updateClassDetails f-ESG of SAS SPL

106

Figure D.9. viewSchedule f-ESG of SAS SPL

Figure D.10. editSchedule f-ESG of SAS SPL

Figure D.11. addNewSchedule f-ESG of SAS SPL

Figure D.12. ESG of SAS SPL – limited student user-barcode-SMS

107

Figure D.13. ESG of SAS SPL – both users-access card email

108

Figure D.14. ESG of SAS SPL – limited teacher user-access card

