
BLOCK-CHAIN BASED REMOTE UPDATE FOR
EMBEDDED DEVICES

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Melike KAPTAN

December 2019
İZMİR

ACKNOWLEDGMENTS

I would like to thank my advisor Assoc. Prof. Dr. Tolga AYAV for welcoming

me with this thesis work. His knowledge and vision guided me throughout this study.

My deepest gratitude is to my co-advisor, Prof. Dr. Yusuf Murat ERTEN for his

continuous help and support. His encouragement was one of the prior inputs for me to

finish this thesis.

Also i would like to thank all people who supported me. Especially the knowledge

I got from Dr. Emrah Tomur was valuable and irreplaceable.

ABSTRACT

BLOCK-CHAIN BASED REMOTE UPDATE FOR EMBEDDED DEVICES

This research work is an attempt to devise a platform to send automatic remote

updates for embedded devices. In this scenario there are Original Equipment Manufac-

turers (OEMs), Software suppliers, Block-Chain nodes, Gateways and embedded devices.

OEMs and software suppliers are there to keep their software on IPFS (Inter Planetary File

System) and send the meta-data and hashes of their software to the Block-Chain nodes

in order to keep this information distributed and ready to be requested and used. There

are also gateways which are also the members of the Block-Chain and IPFS network.

Gateways are responsible for asking for a specific update for specific devices from IPFS

database using the meta-data standing on the Block-Chain. And they will send those

hashed secure updates to the devices. In order to provide a traceable data keeping plat-

form gateway update operations are handled as a transactions in the second block-chain

network which is the clock-chain of the gateways. In this study implementation of the two

block chain shows us that, even though the calculation overhead of the member devices,

with regulations specific to the applications block-chains provide applicable platforms.

iv

ÖZET

GÖMÜLÜ CİHAZLAR İÇİN BLOCK-CHAIN TABANLI UZAKTAN

GÜNCELLEME MODELİ

Teknolojide olan gelişmelerle birlikte birbiri ile haberleşen cihaz sayısı ve taşıdık-

ları fonksiyonalite sayısı artmaktadır. Bunların en göze çarpan örneği ise birbirleri ile

ve dış dünya ile iletşim kuran araçlardır. Nitekim halihazırda kullanılan güncelleme

mekanizmaları gelecekte birbiriyleriyle haberleşen cihazlar için, özellikle de üzerinde es-

kisinden daha çok yazılım barındıran araçlar için yetersiz kalacaktır. Bu tezin amacı, gün-

celleme platformlarına getirilecek olan olası yenilikleri göz önünde bulundurup gelişime

açık bir model sunmak ve implementasyonunu gerçekleştirmektir. Bu sebeple, blok zin-

ciri tabanlı uzaktan yazılım güncellemesi takibi yapan bir model düşünülmüş ve prototipi

oluşturulmuştur.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF ABBREVIATIONS . x

CHAPTER 1. INTRODUCTION . 1

1.1. Motivation . 2

1.2. Aim of Thesis and Contributions . 3

1.3. Thesis’ Outline . 4

CHAPTER 2. BACKGROUND . 5

2.1. Traditional Update . 5

2.2. Block-Chain Technology . 5

2.3. Block-chain Based Update in IoT . 6

2.3.1. Block-Chain Based Update in Automotive . 7

CHAPTER 3. RELATED WORK . 9

3.1. Block-Chain Update Mechanism . 9

3.2. Automotive Use-Case and Remote Update . 11

CHAPTER 4. PROPOSED MODEL . 13

4.1. Formal Model . 13

4.1.1. Update File Storage . 14

4.1.2. Transaction Handling . 15

4.1.3. Mining Servers . 15

4.1.4. Update . 19

4.2. Scenario . 20

CHAPTER 5. IMPLEMENTATION AND EVALUATION . 25

5.1. Implementation . 25

5.2. Evaluation . 32

vi

CHAPTER 6. CONCLUSION AND FUTURE WORK . 38

6.1. Conclusion . 38

6.2. Future Work . 38

REFERENCES . 40

vii

LIST OF FIGURES

Figure Page

Figure 1.1. Block-Chain Based update basics for vehicles or other embedded units:

Here the entities like OEMs are sharing a common platform which is a

consortium block chain network which is a middle platform before the

data is delivered to the devices via gateways . 4

Figure 4.1. IPFS decentralized web . 15

Figure 4.2. Transaction Visualisation For First Block Chain . 16

Figure 4.3. Block Visualisation For First Block Chain . 17

Figure 4.4. Merkle Tree Operation . 18

Figure 4.5. Block Visualisation For Gateway’s Block Chain . 19

Figure 4.6. Sequence Diagram . 24

Figure 5.1. Operation . 33

Figure 5.2. Transaction Log . 34

Figure 5.3. Transaction Log . 34

Figure 5.4. Mining Log . 34

Figure 5.5. Status Updates from Consortium . 35

Figure 5.6. Gateway Mining Log . 35

Figure 5.7. Gateway Mining Log2 . 35

viii

LIST OF TABLES

Table Page

Table 5.1. Comparison of Features with Bitcoin Block Chain . 36

ix

LIST OF ABBREVIATIONS

OEM . Original Equipment Manufacturer

IoT . Internet of Things

POW . Proof-Of-Work

ECU . Electronic Control Unit

GW . GateWay

IPFS . Inter Planetary File System

p2p . peer-to-peer

x

CHAPTER 1

INTRODUCTION

Increasing popularity of Cryptocurrencies aroused curiosity for smart contracts

and block-chain in recent times. Being able to generate trusted contract between accounts

in an insecure environment makes great sense in academia. At last block-chains got more

attention than the fields of crypto currencies and found applications also in (IOT) en-

vironment. Every other field like finance, social applications, automotive etc. intervenes

people’s lives and introduces a need to have a secure and authenticated data sharing mech-

anism.

Block chains are the chain of blocks and the block chain network is a network

of devices that shares the same synchronized chain of blocks. Block chain network has

protection mechanisms coming from its distributed nature. From the beginning to the

present time those distributed servers are keeping the records of the data to be shared and

operated. Hence, immutable records of the ledger are formed and protected under the

verification mechanism of the members of the network.

Advances in the connected world requires secure communication between con-

nected entities and robust servers serving those connected devices. With the increasing

popularity of IOT, Internet of Things, devices in all areas of our lives started to commu-

nicate. This increasing communication introduces security and privacy threats. It is well

understood that making things talk with other things is not feasible all the time, at least if

not properly designed. Previously neither consumer electronics nor automotive products

had hardly changing software. There was hardly a need for software update for a refriger-

ator or an embedded unit inside the vehicles. As the functionalities in sensors, actuators

and similar devices advanced, companies paved the way for pervasive computing, and the

software and hardware products started to gain separate understanding as a product in the

development. It is usual now a days to buy a hardware which has a software on top of

it getting updates often in order to enhance the functionalities or remedy the defects and

bugs. The changing needs of the devices and systems force the environment to have built

in precautions for security and privacy. The existing solutions to enhance the functionality

relies mostly on centralized servers and introduces a single point failure. Therefore, the

1

current environment needs are well suited with the decentralized topologies.

The decentralized nature and the proof-of-work (POW) calculations which is an

integral part of the block chains offer a solution to solve these problems for connected

world and its applications, because, the increasing devices and their needs of connection

requires more available servers in decentralized manner. The proof-of-work mechanism is

another key element which makes the data corruption harder with the calculation overhead

tradeoff. IoT might have the benefits of the block-chain networks with smart contracts or

keeping fingerprints of their data in block-chains which will beat the data compromise.

Another key benefit is having liable history of records when investigations are required

for life threatening scenarios to be realized. Authorized data, disseminated and stored in

network of computers promises for IoT and connected world.

In this thesis we propose a software update architecture for the connected devices.

The proposed work covers most simple block-chain applications to distribute the updates.

1.1. Motivation

Connected world applications made devices more capable in terms of functional-

ity, however it brought new challenges in security and privacy. Being able to share data

unconventionally, not depending on a third party might be achieved by the Block chain

servers. At least the data belongs to the devices, humans or organizations and there might

be a world where they share their own entities without having to pay money to third parties

or sacrifice security and privacy. Therefore, the conventional data distribution methodolo-

gies are open to creating a burden for companies and people and yet they are inadequate

to ensure privacy, security and availability.

Cloud servers are good companions to keep and distribute the software to the

devices on site like a vehicle after its sold or while it is in the production phase. But cloud

mechanisms are the centrally managed entities and they do not ensure availability all the

time. Also, there is a third-party supplier who can see the data and alter the data. In case

of any liability inspections the cloud provider may also have a closer position to the one

of the peripherals. Hence there is a requirement for suppliers and producers to keep the

data in their own network without giving power of control to any third party.

Since the block chain networks offer a robust mechanism to keep the records se-

cure and unchanged, its usages in the design of the data sharing platforms brings benefits

2

by itself.

1.2. Aim of Thesis and Contributions

The proposed study has contributions listed below:

• We propose to use a block-chain network to distribute software to the devices either

to update them or to make installations at the production phase.

• In this architecture blocks cannot carry the update files themselves but their en-

crypted versions. So after putting the original files to the (IPFS)Interplanetary File

System) the hashes of the files are used to create transactions.

• This block chain is used for keeping immutable records of all software producers

in an authorized manner. Hence after releasing it to the consortium block chain

network no producer can deny an improved functionality. Hence records are kept

without changes, supporting integrity, with mining operation and synchronizing of

the chain with the all its members.

• There are also gateway servers. Those servers have rights to read the consortium

block chain but they cannot write to it. Whenever there is an update for a device

that they communicate with, gateway servers will check the software updates in the

block chain to decide if this device needs an update or not.

• Gateway servers will have another block chain of which they are members. This

time the block chain will be keeping the records of the update operations. When-

ever a gateway updates a device, it will send an update transaction. Hence another

immutable record is kept to trace which device is updated by which server, which

software it runs and who is the producer of this software.

• The block chain network of the gateway servers will be mining the Merkle tree

produced from a bunch of transactions . Since their primary operation is sending

the updates to the devices and as there are millions of devices there will be great

amount of transactions ait is more efficient for them to be held in a Merkle tree and

the root of the tree will be included in the blockchain.

3

1.3. Thesis’ Outline

The rest of the thesis is organized as follows. In Chapter 2, conventional software

update operations are given in 2.1 and Block chain technology described in 2.2. After

that, block chain based update platforms are presented in 2.3. Since there is a gap in

update of the futuristic vehicle solutions, block chain based update platforms for vehicles

are investigated in 2.3.1. In chapter 3 we try to summarize previous studies in related

with Block chain update in section section 3.1 and Block chain update in automotive use

case in 3.2. In chapter 4 we give our proposed solution for update operation for devices.

Lastly in chapter 5 we show implementation and comparison of our platform. Finally, we

conclude the thesis with the advantages of designed model and discuss the future work in

Chapter 6. In figure 1.1 the complete flow visualized.

BC

OEM3

OEM1

OEM2

OEM4

Gateway

Devices

Figure 1.1. Block-Chain Based update basics for vehicles or other embedded units:

Here the entities like OEMs are sharing a common platform which is a

consortium block chain network which is a middle platform before the

data is delivered to the devices via gateways

4

CHAPTER 2

BACKGROUND

In this chapter, the main ideas that the thesis is based on are explained separately.

2.1. Traditional Update

Updates for embedded devices are often done with physical connections on the site

or with cloud-based methods. In these techniques software image files are flashed into the

devices with an interface like a cable or air. In the former approach human technician

must execute the work and the in the latter remote server performs this update via internet

connection. The first method relies on human factor and the second introduces a single

point of failure. Therefore, both methods have deficiencies. Those methods are quite

acceptable in fields which do not require high security. For a smart home device like

automatic shutter, if an update comes later than expected time because of some reasons

like a technician to update was not able to come there on time or cloud server has issues

and not serving for some time, people living in this smart home are not seriously affected.

But in a field like automotive or road side unit production , if there is a bug in automotive

software and needs to be corrected urgently, relying upon a service technician or one

cloud service may have adverse effects on human lives.

2.2. Block-Chain Technology

Blockchain is the underlying structure behind the bitcoin (Nakamoto et al., 2008)

and other cryptocurrencies. They have been taking remarkable place in these days from

the time of first announcements done by Satoshi Nakamoto. For Satoshi Nakamoto it

is a peer-to-peer electronic payment system which discards any third party from being a

mediator and gaining remarkable amounts of money even from small transactions. He

also denotes in the white paper (Nakamoto et al., 2008) that there must be a irreversible

transaction system without so many information required from the customers. His peer-

5

to-peer trust-based transaction process treats every transaction as a signed entity by the

sender adding the previous transaction hash and the next owner’s public key. Thus, this

chain of transactions for that coin creates a trusted process. The earliest transaction is also

taken into account and all the transactions are broadcasted to the network, so all the nodes

are aware of every coin.

Transactions are collected in a block and timestamped. The chained blocks are

synchronized with the whole network. If one of the blocks or one block which includes a

transaction which had been already placed in an already mined block, the network accepts

the chain of blocks as the valid chain which is the longest. So, the mostly accepted order

is the one to be accepted as the ultimate chain. In order to define the ultimate chain, one

must have the chain which is accepted by at least 51 percent of the network, which is then

considered as honest chain. And this shows that if an attacker can have 51 percent of the

network he or she can deceive the network and this is only possible but known to be very

hard to accomplish attack for blockchain.

The proof-of-work mechanism which is the essential part of the bitcoin, is applied

to every block in order to reach a nderlinenumber of zeros in the hash value of a block.

When this value is reached then the timestamp is given to that block in order to sort the

blocks according to the chronological order. This number of zeros are defined according

to the target value which is defined in order to compensate the increasing CPU speed of

the hardware. This target is the average number of blocks required to be "mined" per

hour. So, with calculated target value in a period time is determined by the initial number

of zeros in the beginning of the hash value of the block.

Proof-of-work is one of the key entities in a blockchain which makes it impossible

to change a record after its accepted by more than half of the network. The probability

of making the fraudulent chain accepted is decreasing exponentially (Nakamoto et al.,

2008) by time. Because an attacker after changing that one block accepted already, also

must calculate the hash values of blocks coming after that one block since every block

is chained to one another with the hash of the previous one. The probabilitiy of making

fraudulent chain is calculated in (Nakamoto et al., 2008) with the random binomial walk

and it proves that with the probabilty of the attacker will ever catch up from z blocks

behind the last block at that time decreases exponentially.

6

2.3. Block-chain Based Update in IoT

Block-chains feature is being secure without requiring any centralized medium to

build trust. What is missing in the IoT is the notion ’trusted environment’. So block-

chain and IoT have a good match here. Data which is needed to be sent from one device

to another must have its integrity, confidentiality and availability protected. Data needs

not to be corrupted while in transit, needs to define its owner and needs to be secret in

some fields and revealed in others. When we think about data shared between two IoT

application based block-chain environment, it is definitely beneficial for preserving its

integrity, since one cannot change data inside the blocks except under the one condition

that the intruder has control over most of the nodes of the block-chain network. Even if

he does, as stated before, he will have to modify all the blocks existing before the first

corrupted block since each block caries the encrypted hash of the previous block. It is

also beneficial in terms confidentiality where it has signed data by the owner of that data

and beneficial for availability because data resides on a distributed environment and even

if one node is down its not corrupted or lost. Every node in the block-chain network have

an id, address, name and corresponding public and private key pairs. And the network has

defined members, and each transaction broadcasted is signed by the private key of sender

address.

Block-chain network keeps immutable records of the transactions. Those records

are synchronized by the members of network. Each member is keeping the similar histor-

ical records of chain. This means block data is available even if some servers are down.

Cloud environments are like hired third parties to keep your data. And trusting a third

party may not be as trustable as using network power and utilizing all members of the

network.

When we think of the liability, inspections are done by each environment involved

in the process. Third party like platforms rely on a single party and are open to attacks

by some intruders or biased inspectors. Increasing connectivity and increased attended

parties makes the situation complex and trust less in such an environment. But data shared

by different users shall be relying on only the unbiased network power with a block chain

network.

7

2.3.1. Block-Chain Based Update in Automotive

Connected vehicle of near future is expected to be carrying a greater number of

software applications than ever. These applications are installed onto a special kind of

embedded devices called ECU: Electronic Control Unit. Approximately 30-40 ECUs

are present in a middle range automobile today where this number will be increasing

much more as vehicles connected to Internet will be carrying various applications in the

future. When updates are delivered through the Internet, potential security problems will

require researchers and manufacturers to apply proper protection mechanisms. One such

precautions proposed in the literature against Denial of Service attacks is the use of Block

Chain infrastructure where the code update sent by the manufacturers is distributed over

various nodes of BC.

Vehicle firmware updates are a special subject as far as both the academia and the

industry are concerned. Since automotive is a safety critical area, sending remote updates

to the vehicles requires careful attention. The existing update methods include physical

update done by a service technician. This the most common method. Since existing vehi-

cles do not require to be updated very often in their lifetime, this methodology has served

for years. With the advances in the connectivity and increasing importance of the con-

nected vehicles, physical updates are losing importance and producers try to seek for new

efficient methods. The number electronic control units found on a typical vehicle were

much less than those in recent day vehicles because increasing functionality and connec-

tivity requires more embedded units to process related functionalities. Today automatic

parking, detection of road or road-side units, communicating with the vehicles riding side

by side brings new concerns on the vehicle units update process. This means over-the-air

updates become prominent.

Autonomous vehicles require updates more often for each functionality improve-

ment or new developments, the industry might start to behave in a similar way to how our

mobile applications are delivered. Wi-Fi or mobile networks will be beneficial in here.

Another point which over-the-air updates will bring is the liability solutions which

has importance as well. Increasing connections must be traceable in case of any unwanted

situations. In this kind of world there will be many suppliers and many more systems like

computer vision, decision making etc. Whenever that software is distributed through the

roads, bugs must be traceable especially whenever an incident happens like the case of

fatal self-driving car accident (David Shepardson, 2019).

8

CHAPTER 3

RELATED WORK

In the literature, there are several works proposing to use Block-Chain for IoT

and automotive-related tasks. These tasks include payment mechanisms for car rental,

vehicle-to-vehicle and vehicle-to-everything communication, car sharing, insurance of

vehicles and supply chain management. Since the scope of our study is on software

update mechanisms, we include only such works in our literature survey section.

3.1. Block-Chain Update Mechanism

The demand for security in IoT and the connected world is increasing and it pre-

vented the designed studies to be applied in real life, and security mechanism designs

for connected world has gained attention. Block-chain attracted some designers and the

number of block-chain based data exchange platforms designed has increased.

The starting point of our proposed design is the idea that there may be a universal

way of updating connected devices in order to beat the shortcomings occurring because of

lack of confidentiality, integrity and availability properties as clearly stated in (Boudguiga

et al., 2017). This design is one of the first examples that are proposing to use block chain

to send updates to resource constrained devices. In this work the authors also designed

an additional mechanism for innocuousness check, assigning some of the nodes to some

agencies which are responsible for checking integrity and removing bugs etc. This model

is an example design of over-the-blockchain update model in order to beat problems in the

way of the confidentiality, availability and integrity. However, this study proposes to put

fingerprints of the update image files into the blocks, notifying devices about new updates

but not stating how those devices will get the updates. In our study we are planning to

create another instance of transaction model which will keep details about which devices

are updated, when, by which server and version of the software created by which producer.

In (Dorri et al., 2016) authors presented a secure platform for smart home use-case.

In their study, authors’ design has a local block-chain, an immutable ledger in the smart

home which is responsible for collecting all the communication transactions between sen-

9

sors, actuators or other smart devices. Rather than having a proof-of-work concept in their

design the local block-chain keeps all the transactions handled by the devices. Also since

the devices are resource constrained they need to store the records of the local blockchain

in a cloud server which will create additional need for availability. In this study local

blockchain makes the communication faster and the permission to communicate with any

device is also managed by the overlay block-chain network. In the outer environment of

the smart home, in overlay network, every smart home is a member of one overlay net-

work at a time. The overlay network cluster heads share data with any other block-chain

but since every cluster-head decides which data to keep, block-chain may have many

forks. Also, local storage miner in each home sends its data to a cloud network in case of

any data to send to the software provider for any feature extraction, which is a centralized

entity. In their following works(Dorri et al., 2017) authors measured the time and packet

overhead and energy consumption of the design they organized (Dorri et al., 2016). In

their study they analyze the design and deduce that network and energy consumption of

the block chain based smart home application required to be improved. In order to have

an enhanced application the same authors designed the study (Dorri et al., 2017) and they

changed the way they applied overlay network outside of the smart homes, while they

keep the same private block-chain in smart home miners. Rather than having a peer-to-

peer and forked block-chain in the overlay network they designed a public block-chain

adoption and a trust mechanism. This trust mechanism is structured using a verification

of the blocks according to the trust metrics of the miner instead of using Proof of Work

mechanism in traditional block-chain. The authors in this study draw attention to the re-

source requirement, scalability and high delay challenges regarding block-chains and try

to overcome them. These mentioned studies are good examples of access control but our

aim is to design traceable flow of data.

In (Lee and Lee, 2017) another design for usage of block-chain in smart homes

is presented. In this work the transactions serve for the transfer of the firmware update

processes of the IoT devices. In this design the software provider company propagates

the repositories of the newly arrived firmware updates among all the nodes of the block

chain. There are gateways which are responsible for sending the updates for the devices

it manages. Before the update operation there is a two-way requirements validation be-

tween the passive node, which is informing the gateway about the new update and the

requirements, and the gateway. We have very similar handling for the software update

sending mechanism to the devices, however, we have an additonal mechanism to provide

10

liable information from the gateway servers.

3.2. Automotive Use-Case and Remote Update

Blockchain based update studies in automotive requires more effort since it is a

safety critical area. As there are predefined traditional ways of updating software on a

vehicle, there must be safely applicable methods of in order to compete with these steady

methods. In (Steger et al., 2018) authors use a wireless update methodology (Steger et al.,

2016) and distribute the wireless software updates using block-chain. Their block chain-

based update distribution model is the same model that they described in (Dorri et al.,

2017). Software created by the suppliers and manufacturers is propagated through an

overlay network in order to be sent to the vehicles. This work is both a futuristic and effi-

cient example of block chain based updates in automotive industry. In their study authors

compare the results of their mechanism to distribute the new updates and installing them

to the vehicles with the wireless updates given in (Steger et al., 2016). Their results show

that software distribution process requires remarkably less time than the local installation

to the vehicles. And their comparisons regarding the certification based wireless update

methods shows similar trends with respect to the packet and time overhead with increas-

ing number of vehicular interfaces (Steger et al., 2018).

The same authors in (Steger et al., 2018) designed another block chain-based

model in (Oham et al., 2018). In their study authors draw attention to the liability at-

tribution for an environment with autonomous cars and a connected world. Their aim is

to find a generic resolution for the issues related with Autonomous vehicles. When the

autonomous vehicles are the the point in question from pedestrians to the big vehicles

on the roads, they have potential to be included in any kind of dispute. Like in the case

(David Shepardson, 2019) there is a need to find a liability model for such cases. Authors

of (Oham et al., 2018) emphasize that increased connectivity requires more complex and

untampered liability attribution model. In order to realize this untampered liability model

Block-Chain based recording mechanism is proposed and improved to provide a decision

giving mechanism for insurance companies.

Another study proposes to use Block-Chain network to send and get updates is

(Baza et al., 2018). In their study authors think Autonomous Vehicles get updates di-

rectly from the producer and they also act as gateway nodes which distributes updates for

11

other AVs. Two mechanisms provide secure distribution of the updates, zero knowledge

proof and attribute-based encryption. In this study smart contract are leveraged as the

key elements to increase the repudiation of the distributor AV. In the example they used

(Greenberg, 2015) to support their study, the company (Company X) recalls 1.4 million

vehicles back because of the bug in the ECU software. This shows a big gap in terms

of security when it comes to the vehicles. Software on the cars is enhancing and beside

the requirements to keep that software secure and software updating mechanisms are also

under risk.

To sum up we surveyed various kinds of software update mechanisms which are

proposing to use block chain networks in the literature. We try to find a way to realise

such updates in a method which is not complex and covers all mentioned concerns. Our

aim here is to propose a model which provides integrity, confidentiality, availability at the

same time supports liability of the data. Comparing with the literature survey our model

provides a whole picture with a traceable approach in every key entity of the model.

12

CHAPTER 4

PROPOSED MODEL

In this study we try to introduce a secure and anonymous environment in order to

distribute software through devices. As described before, there will be one block-chain

which is used by the software providers of the embedded electronic units and another

which is used by the remote software distributing units, namely Gateways, for those em-

bedded electronic devices. Both chains will be storing transactions. Security comes from

the distributed environment, which is robust to the attacks traditional servers are exposed

to. Anonymity comes from the information in those chains which is the hash value of

the image files. The roles and the detailed principles will be presented in the proceeding

sections but before doing so, we will summarize the overall mechanism. below Any soft-

ware provider or producer company, who wish sending its update or first installation to the

devices, loads its produced image file to any platform which returns a hash value which

can be used to search the image. With this returned hash the developer in the company

creates a signed transaction with company?s private key including this hash value and the

additional metadata field and sends it to the blockchain. Additional field indicates target

device types that software will be installed. This transaction broadcasted to all miners

of the software provider blockchain. Gateways will be informed whenever a new update

transaction is broadcast to the producer?s blockchain. Then gateway starts to observe the

mined version of the transaction.

This means that gateways have rights to read the blockchain data but cannot write.

Having read the transactions inside the blocks of the chain, a gateway now has responsi-

bility to distribute the image file to corresponding devices. There will be another block

chain among gateways. Blockchain of gateways is storing all the information regard-

ing the management of the update transactions. So, there will be signatures of sender

gateways and exact timing of the update send operation. The mathematical expressions

regarding this process will be given in the next section.

13

4.1. Formal Model

Original Equipment Producer (OEMs): Original Equipment producers are the producer

companies of the embedded electronic units.

Software Providers(SP): Software Providers are the stakeholder companies providing

software for OEMs.

Gateways (GW): Gateways are the server devices responsible for checking announced

updates for devices and sending them to the devices

Devices (D): Embedded devices waiting to be updated.

DeviceNoi=<(ProducerNo, Model, Number)>

Transaction (Tr): Transactions are the information that are sent to the miners via broad-

cast messages in order to be put inside blocks. In this way the sender and authorized

information is shared.

Blocks (B): Blocks are the like the storage containers to keep possible number of transac-

tion with the suitable nonce and timestamp.

Mining: The valid block comprises of a suitable nonce, a timestamp, bunch of transac-

tions, authorized information and id. This suitable nonce is formed by a hash calculation

using brute force trials. These trials are performed for ensuring the validity of the block.

4.1.1. Update File Storage

Before creating a transaction, software image files are kept in a file system. Every

file has an encrypted version pointing to the address of those files which will be distributed

to the blockchain network to be stacked in a mined block. IPFSis suitable for this purpose

because its secure, easy to share files in an censorship-resistant web like structure. IPFS is

a peer-to-peer distributed file sharing system (Benet, 2014) which is like a content based

web instead of traditional location based web and its p2p nature makes it fast and secure.

It uses an overlay network which has members which do not need to trust each other.

IPFS has version control mechanism supported by the Merkle trees. These functionalities

make IPFS a nice versioned-file-system like Git. Like in figure 4.1, decentralized servers

of the IPFS network can ask contents from the nodes which are closest to it.

Block-chain mining operation is a heavy process because of its computation load.

14

This makes block chains unsuitable for storing files. The content of the software image

file will be broadcasted through the block-chain members in order to be in a possible

block. And the actual version of the files will be stored on the IPFS.

S1

S2

S3

S4

S5

S6 S7

S8

Figure 4.1. IPFS decentralized web

4.1.2. Transaction Handling

In the producer block-chain network each transaction sender has one public one

private key. Transaction data is sent by the OEMs or Software providers indirectly. When-

ever transaction forming data is completed and decided to be released through the provider

Block-Chain, other information is added to the transaction such as operation time and sig-

nature of the sender and public key of the sender. Then,

Transactioninformation =< (SenderID, Imghash,modelNO) >

Turns into a transaction,

Tr =< SenderID, Imghash,modelNo, timestamp, PublicK, signature,

T ransactionId >

By the time the transaction is produced, its ready to be broadcasted to the entire

producers Block-Chain network for mining operation.

Whereas for the Gateways Block-Chain all the fields will be used for to the iden-

tification of the Gateways. The sender will be the Gateway and the public key will be the

gateways public key and the hash of the data will refer to the update image of the sent

update etc.

15

4.1.3. Mining Servers

Following the broadcasting of the transactions the members of the producer Block-

chain put the transaction into a queue. The mining mechanism will be collecting the

transactions in this queue and place them into a block. This time Block identification

fields will be identified. Each block will be keeping hash of its previous block, its id and

number of transactions selected to be placed into that block as shown figure 4.2. Blocks

will be chained together from the very first block which is genesis block, a block which

has empty transaction field and has block id = 0. The blocks mined later will be aligned

after the genesis block if they are accepted as a valid block. A sample block chain for the

producers chain of blocks can be seen in figure 4.3.

id

nonce

Previous_ Hash

tx1

tx2

from_address tx_id
ipfs_sha model pub-

lic_key signature timestamp

tx4

Figure 4.2. Transaction Visualisation For First Block Chain

16

id

nonce

tx1 tx2 tx3
tx4 tx5 tx6 tx7

tx8 tx9 tx10

Previous_ Hash

id

nonce

tx1 tx2 tx3
tx4 tx5 tx6 tx7

tx8 tx9 tx10

Previous_ Hash

id

nonce

tx1 tx2 tx3
tx4 tx5 tx6 tx7

tx8 tx9 tx10

Previous_ Hash

id

nonce

tx1 tx2 tx3
tx4 tx5 tx6 tx7

tx8 tx9 tx10

Previous_ Hash

Figure 4.3. Block Visualisation For First Block Chain

17

For Block-Chain of the gateways, blocks will not be keeping transactions data.

Gateways are the servers responsible for updating the devices. They need to be aligned

with intended devices all the time, when its needed to send an update, hence gateway

mining operations must not be taking resources of the gateway servers. So the block

chain of gateways will be keeping only one hash values regarding multiple transactions.

This hash values, generated by the gateways, are the leaves and the root of the Merkle tree

of specified number of transactions waiting in the queue.

Merkle tree operations are used for the integrity and searching for multiple records.

Tracing the tree from root value toward the leaves one can verify the integrity of the

leaf values. Here hash of each transaction will form a leaf. The records of all transac-

tion hashes of a root will be stored in an environment like cloud storage or any similar

database. But the hashes forming the tree will be placed inside the blocks. Hence the

whole transaction information will not be found inside the blocks like its done in the first

block chain which is a blockchain for software producers. The chain structure for the

block chain of the gateways can be seen in figure 4.5.

Root Hash

Hash23 Hash01

Hash0

Tx0 Tx1

Hash02

Tx3

Figure 4.4. Merkle Tree Operation

In (Nakamoto et al., 2008) eason for Merkle tree operation is summarized as fol-

lows:

Block headers are about 80kb of data and in a year this will cause 4.2 Mb data to be

accumulated if we think that every 10 minutes there is a block mined. He is well reasoned

this with Moore?s Law that is predicting 1.2 Gb of growth per year for a memory, storing

this block headers will create problem if we do not include actual transaction data inside

18

the blocks. In our project we think these updating gateway servers as busy machines

setting many interaction with the devices. So, Merkle tree solution is well suited for our

aim.

id

nonce

Merkle Tree

Previous_ Hash

id

nonce

Merkle Tree

Previous_ Hash

id

nonce

Merkle Tree

Previous_ Hash

id

nonce

Merkle Tree

Previous_ Hash

Figure 4.5. Block Visualisation For Gateway’s Block Chain

19

4.1.4. Update

In the update operation, Gateways communicate with the devices on site. Today

most of the studies use wi-fi and mobile networks adding extra mechanisms to have secure

sender and receiver in order to realize this. An approach where distributers and responders

have the roles to verify the operation and repudiate the other side may also be used. But

since this study does not cover the distribution of the software through the devices or

vehicles these are out of the scope for our study.

4.2. Scenario

In this section the sequence diagram of proposed model is given. Figure 5.7 which

shows the general idea of the execution sequence.

Very first operation starts with the OEM company who is responsible for produc-

ing software for its devices, either by their own or having support from software producer

companies.

The producer wants to keep the newly produced software file in a secure place as

well as conveying it to thedevices which it produced for, while keeping its integrity. Then

the company will put those in a secure platform like IPFS and forms a transaction which

keeps the hash of the file and respective timestamp. It is now authorized since its signed

with the private key of the producer. The algorithm for this process is shown in Algorithm

1.

Algorithm 1 Algorithm for Sender

Input: Send_ (<SenderId, ImageHash, DeviceData>)
if (SenderId) valid, (ImageHash) valid, (DeviceData) valid then

build_transaction
Transaction{SenderId, ImageHash,DeviceData, timestamp, public_key,
signature, id}
Broadcast transaction to all BC network

else
discard transaction

end if

The transaction goes through a network of computers which are responsible for

20

keeping immutable records of the product features. And this network provides a robust

mechanism towards availability attacks since it is a decentralized network of computers,

each one is keeping the same chain of information. And this chain is verified using Proof

Of Work calculations. The algorithm for this process is shown in Algorithm 2.

Algorithm 2 Algorithm for Miners of the OEMs

Ensure: Listen_Transactions (<SenderId, ImageHash, DeviceData, timestamp, pub-
lic_key, signature, id>)

Ensure: Listen_ Blockchain_State_Info (<NodeIP, BlockchainLenght>)
Ensure: Send_ Blockchain_State_Info (<NodeIP, BlockchainLenght>)

Put Listened Transaction into queue
Get one element from queue
if element is valid then

continue
if element is not already in the unmined block then

continue
if element is not already in one the mined blocks then

put this element inside the new block
else

quit
end if

else
quit

end if
else

quit
end if
nonce = 0
while hash(nonce, block_ hash, valid transactions)
has < 0 s in the beginning do

nonce = nonce+ 1
if hash(nonce, block_ hash, valid transactions)

has >= 0 s in the beginning then
add this block to the chaim

end if
end while

As well as keeping the produced software unchanged and authorized there must

be also gateways to send those products to the users. Those gateways must be informed

the unchanged version of the software. Hence gateways can read the chain of records

which is kept by the first network and they can send them to the devices which they are

communicating on site. As a result of this communication they can determine the version

of device?s software and by reading the chain of records they can detect if there is a

21

software update for any of the devices on site. Then gateways can ask the actual update

files form IPFS via its hashes and send them through to the devices.

After sending updates for devices which need them, gateways must be keeping the

records of the updates. But this time again, these records must be protected under integrity

requirement to provide liability proof. Again, these network of devices, gateways, will be

keeping their update transactions in chain of block as well as sending the update trans-

actions whenever they performed an update for a device. However, since the number of

necessary updates is quite high compared to the software records, it is not logical to keep

all transaction information in the blocks but keeping a structure like Merkle tree which is

preserving integrity is a more viable approach. So a number of transactions will form a

Merkle tree now and the hashes of the tree will be kept in the blocks. The algorithm for

gateway operations is shown in Algorithm 3.

Figure 4.6 shows whole model working with a sequence diagram. Here first users

are the OEM company staff who are responsible for the delivery of the updates. IPFS

and the block chain networks are the networks which preserve data with networks? own

operations and without requiring third party. Lastly, gateways are another network which

is operated on its own, because gateways will be querying for new updates for specific

devices. Those servers will be creating the transactions which are outcomes of their own

operations. After sending the update a gateway will put its address to as a sender and it

will authorize the transaction with its own private key.

22

Algorithm 3 Algorithm for Miners of the Gateways

Ensure: Listen_ Transactions (<SenderId, ImageHash, DeviceData, timestamp, pub-
lic_key, signature, id>)

Ensure: Listen_ Blockchain_State_Info (<NodeIP, BlockchainLenght>)
Ensure: Listen_ Devices ()
Ensure: Send_ Blockchain_State_Info (<NodeIP, BlockchainLenght>)
Ensure: Send_ Broadcast_As_Gateway (<NodeIP>)

if there is an update for connected device then
Check the version
Receive image file from IPFS and send device
Send an update transaction

end if
Put listened transaction into queue
Get one element from queue
if element is valid then

continue
if element is not already in the unmined block then

continue
if element is not already in one of the mined blocks then

continue
if same update for same device is not already done then

put this element inside a merkle tree
put hashes of the merkle tree inside a the new block

else
quit

end if
end if

else
quit

end if
else

quit
end if
nonce = 0
while hash(nonce, block_ hash, valid transactions)
has < 0 s in the beginning do

nonce = nonce+ 1
if hash(nonce, block_ hash, valid transactions)

has >= 0 s in the beginning then
add this block to the chaim

end if
end while

23

Figure 4.6. Sequence Diagram

24

CHAPTER 5

IMPLEMENTATION AND EVALUATION

Block chain networks are classified as private, public and consortium networks.

As the naming may indicate private block chain networks are special to one organization

as they provide solutions for enterprises or business areas. Public block chains are open to

anybody who wants to join as one of the nodes in the open network. Last, the consortium

block chains are the network of nodes which belong to various organizations and user

groups. In order to have one of the nodes there an organization should be a member of a

group which shares a common aim to have this chain.

5.1. Implementation

In this part we will provide more details about the implemented the prototype.

In this work there are two block chains implemented. Both block chain networks have

features of the consortium networks. But for clarity in our model the block chain which is

used by the OEMs is named as consortium block chain network whereas the block chain

network which is used by the gateways is named as the gateway block chain network.

This work is implemented in Eclipse IDE and with Python Socket programming API and

run in Python3.6 interpreter. All data is shared in Json format between the members of

the block-chain network.

Block Chain Client: Whenever a producer joins the network this producer will have RSA

public/private key pairs and respective network address. We already noted that whenever

sender sends an update this will be turned to transaction with which is signed with the

private key of the sender. The transaction will have an expression with signature and

respective timestamp. This is given in Agorithm 4.

S = TransacitonDetailsxSenderPrivateKey

S =< (SenderID, Imghash,modelNO) > xSenderPrivateKey

Tr =< (S, T imestamp, T id) >

where Tid: Transaction id

25

Algorithm 4 Transaction Handling

Input: (<SenderId>)
Input: (<ImageHash>)
Input: (<DeviceData>)

signature(S) = PrivateKey(ofSenderAddress)x
(sender_address, ipfs_document_hash,DeviceData, T imestamp)

Output: TransactionSenderId, ImageHash, DeviceData, timestamp,
public_key, signature, id

Consortium Block Chain:

In algorithm 1 it is shown that every transaction will be broadcasted to the network

after it is created. After this broadcast operation the transaction will be known with its

sender and its verifiable when its added inside a block. Consortium block chain will have

the following operations:

• Transaction Handler : Transaction Handler is responsible for listening all transac-

tions broadcasted to the network.

• Network Broadcaster : Network Broadcaster is responsible for broadcasting the

chain length to the block chain network.

• Status Handler : Status Handler is responsible for requesting new blocks mined

and chained one after another in any other miner’s chain data. Status Handler is

managing to gather the blocks which are not in this miner’s chain. Then it starts

adding the missing ones.

• Chain Synchronization : Chain Synchronization stands for synchronizing any miner’s

chain with another miner’s which has shorter block chain than this one. Basically it

will serve for requested blocks.

• Network Listener : Network Listener service will be listening the broadcast mes-

sages from other nodes. After listening for the updates from other nodes Chain

Synchronization service is decided to be called.

• Miner : Miner will be responsible for mining the blocks. As the mine operation

requires miner will try nonces starting with ’0’. After a brute force sequence of

trials miner will find the correct block elements.

These operations will be running in parallel when a node is up and running. Trans-

action Handler listens to the transaction port and whenever a transaction is received it re-

ceives all data with UDP data packets. Then server puts it inside a queue. The queue will

26

have transactions waiting to be mined. Miner will get one item from queue and do the

necessary checks. After checking the transaction, it will continue to put others in or-der to

reach the necessary transaction count that must be in a block for this block-chain network.

After it reaches the block size defined for this network, the miner will be able to start the

mining process. Implementation of the services are adapted from (Codebox, 2018) which

is a minimum viable blockchain implementation for a wallet of cryptocurrency.

The necessary checks before selecting a particular transaction includes:

• Checking for signature: Since the public key of the sender and the signed version

of the transaction is inside the transaction data, server first inspect the signature

performing signing operation by itself.

• Checking if the transaction exist: Since the same transaction must not exsist two

times inside a block miner will check the block which is packet that is prepered to

be mined at that time. Miner will also check its existence in the block chain.

• Checking the existence of the same update document for the same kind of devices:

Miner will be checking if the same upload for the same device family is already

existing in both the block to be mined and the whole chain of records.

These steps are given in algortihm 5. The operations given here will be done for

every transaction about to be put in a block.

Algorithm 5 Pre-mine checks for consortium block-chain

Input: Transaction(<SenderId, ImageHash, DeviceData, timestamp, public_ key, signa-
ture, id>)
if Transaction signature is valid then

continue
end if
if This block already does not already has this transaction then

continue
end if
if This transaction does not already in block-chain then

continue
end if
if A Transaction for the same update file does not alredy in the block-chain then

continue
end if
add this transaction tothe current block

Output: Transaction put into the queue and necessary transaction
size decreased one

27

Mining operation will continue as long as there is not a valid chain listened by Sta-

tus Handler and asked from the Chain Synchronization service. If a node in the network

have a chain length which is greater than the length of this chain of blocks then the node

will request the longer chain from the respective node. It will be asking for that block

which itself does not own. In order to have a valid chain each block will be keeping the

hash of the block before itself. Hence asked block must be in correct order before they

are added to the requester’s chain. This operation is shown in Algorithm 6.

Algorithm 6 Miner work for consortium block-chain

Input: predefined number of transactions
nonce = 0
if hash of the obtained block has the predefined number of zeros then

block is mined with 0 nonce
else

while hash of the obtained block does not has predefined number of zeros do
nonce = nonce+ 1
calculatehash

end while
end if

Output: Blockismined

Gateway Network:

As mentioned previously, network of computers responsible for sending updates

for the devices is called Gateway Network for this implementation. Similar with the con-

sortium network of the producer block chain which is a Consortium Network, Gateway

Network also in the class of consortium network. In order to differentiate them based on

the functionality of the servers we called it as Gateway Network. Gateway Network will

have both similar and different kind of operations with the Consortium network.

• Network Listener : Network Listener operation will be listening the broadcast mes-

sages from other nodes. After listening for the updates from other nodes Chain

Synchronization service is decided to be called.

• Transaction Handler : Transaction Handler is responsible for listening all transac-

tions broadcasted to the network.

• Network Broadcaster : Network Broadcaster is responsible for broadcasting the

chain length to the block chain network.

28

• Status Handler : Status Handler is responsible for requesting new blocks mined

and chained one after another in any other miner’s chain data. Status Handler is

managing to gather the blocks which are not in this miner’s chain. Then it starts

adding the missing ones.

• Gateway Listener : Gateway Listener will be listening the consortium block chain

status information. Gateway Listener will be the trigger for the chain synchro-

nization operation with the block chain network of the producers. Learning what

producers implemented new for devices will be the primer cause of the update op-

eration.

• Device Listener : Device Listener is responsible for listening the status information

coming from the devices. Devices will be sending their device information given

by their producers and the software version they carry at that time.

• Chain Synchronization : Chain Synchronization stands for synchronizing any miner?s

chain with the other miner?s which has shorter block chain than this one. Basically,

it will serve for requested blocks.

• Miner : Miner will be responsible for mining the blocks. The mining operation

requires miner to try nonces starting with ?0?. After a brute force sequence of trials

miner will have a block which contains a block number, previous block number in

this chain, hashes of a Merkle three and a correct nonce.

Gateway block-chain network will behave in different ways than the consortium

network. Besides the services it has common with the consortium network it will also

have additional functionalities and additional services. Gateway will be listening the

broadcasted status information from consortium network. Since Gateway network will be

reading the chain of the consortium network, nodes will be updating their record of chain,

which is consortium block chain, length according to the consortium network. This chain

of data stands for just reading and being informed that there are new updates for some

devices.

29

Algorithm 7 Gateway Listener

Input: Listen Consortium network broadcast information.
if nodes from consortium chain have block chain lenght longer than we read before
then

ask for the newly mined blocks
end if

The idea is to remain updated all the time with the consortium network. The pro-

cess is given in Algorithm 7 for Gateway Listener. On the other hand the actual gateway

operations start listening the device information on site and checking for the new updates

for related devices from all the immutable ledger of updates. Devices will be identified

by their device_no parameter. This number will cover respective brand and model or any

other necessary information as well as the number specific to that device. Device identi-

fication is given in section 4.1. Whenever a gateway communicates with a device it will

list all updates for this device type, regardless of the exact device number. This is for in-

specting the last update for this device type. Comparing the software version which is on

the device gateway will determine if this device needs update or not. If the device needs

an update, gateway fetches the update file from IPFS and send it to the device. In our

study gateway and device communication for sending update is not implemented. The

implementation work covers all operations regarding blockchains.

After the gateway sends an update to the device it will send a transaction for this

update operation in order to be mined as its shown in Algorithm 8. But this time gateway

mining will be different than the consortium network.

Algorithm 8 Gateway Operation

Input: have consortum chain readible
Input: have status info messages from devices m(<device_ no, software_ version>)

list all updates historically for this device type
if device software version is not the has update for this device type then

Connect ipfs to get last update file for this device
Send last update to this device
Send_Transaction(sender_gateway_address, hash_of_the_update_file,

complete_device_id)
end if

Transaction sending will be the same procedure as the consortium network. Gate-

way mining pre-checks and mining operation will be as follows: Before adding a respec-

tive transaction to the unmined block, miner will be assured that the current un-mined

30

block does not have the same update file for the same device and the gateway block chain

also does not have the same update file for the same device. It performs the necessary

checks like in the consortium network which were checking for the transaction if is du-

plicated in the current unmined block or in a block in the chain of blocks.

• Checking for signature: Server first inspect the signature performing signing oper-

ation by itself. But this time the sender will be a gateway and the transaction to be

signed by the private key of that gateway.

• Checking if the transaction exists : Miner will check its existence in the block chain

and the current block.

• Checking if the same update document for the same device exists: Miner will be

checking if the same upload for the same device already exists in both the block to

be mined and the whole chain of records. Also, we do not want the same device to

be updated with the same version of software more than once. But our study does

not cover this condition since there may be more than one reason for such a case.

These inspections are given in Algorithm 10. The operations given here will be

performed for every transaction to be put in a block.

31

Algorithm 9 Gateway Miner Pre-checks

Input: Transaction(<SenderId, ImageHash, DeviceData, timestamp, public_ key, signa-
ture, id>)
if Transaction signature is valid then

continue
end if
if This block already does not already has this transaction then

continue
end if
if This transaction does not already in block-chain then

continue
end if
if A Transaction for the same update file for same device does not alredy in the block-
chain then

continue
end if
if A Transaction for the same update file for same device does not alredy in this
unmined block then

continue
end if
add this transaction tothe list of leaf for current merkle tree

Output: Transaction put into the merkle tree and necessary transaction size
decreased one

All implementations is done in Python programming language with the help of

Socket programming. Json format is used for the share of data.

5.2. Evaluation

This study represents an example platform to keep and send updates with avail-

ability, authenticity, integrity features. In this work we wanted to show the feasibility of

using block-chain networks for such use cases with different regulations. For example,

having Merkle tree implementation in the gateway block chain network secured us from

having heavy data in the blocks. The reason behind this adjustment which is different

than the consortium block-chain network is that gateway servers stands for being ready

to communicate with lots of devices on site. Hence there will be many more number

of transactions than the consortium network has. There are other studies which designs

a block chain network for both keeping the update images and sending updates. Hav-

ing different networks for sending updates rather than the first aim of keeping immutable

records saved us from excessive computation overhead on the nodes. Some other designs

32

proposes to implement block chain without proof-of-work mechanism for the nodes in

an area where lots of transactions are handled. But we wanted to have an application

specific environment which serves only for update operations without sacrificing proof-

of-work. In the proceeding paragraphs of this section we will first give operation logs of

the working prototype and evaluate our study comparing it with the Bitcoin block chain

network.

Figure 5.1 shows whole operation designed. The transaction numbers indicated in

the figure are explained below.

Figure 5.1. Operation

1-2. When the first operation is completed the content addressed internet, that is

IPFS, returns the hash of the content of the update file. 3. When the second operation

completes there will be transactions broadcasted to the block chain network. Logs in Fig

5.2 shows the situation when the transactions heard from the nodes of the consortium

33

block chain network.

Figure 5.2. Transaction Log

When the same content for same type of device is broadcasted in a transaction

nodes will not add this transaction to their blocks:

Figure 5.3. Transaction Log

4. Mining operation handled by the miner nodes on the block chain network:

Figure 5.4. Mining Log

Gateway block chain network gets updates from consortium block chain network:

34

Figure 5.5. Status Updates from Consortium

5. Device listener listens the device informations and checks if there is a new

update for those devices.

6-7. If so the gateway node asks ipfs network for the whole content of the update

file.

8. Gateway node sends update to the devices and creates an update transaction for

its operation. If the transaction is liable it will be mined.

Figure 5.6. Gateway Mining Log

If there is already transaction with same content for the same device it will be

ignored.

Figure 5.7. Gateway Mining Log2

In this work, besides designing a futuristic remote update model which may cover

the lacks of the traditional methods in terms the functionality ee also wanted to have a

model which covers the dependency to the third parties and increases impartialness. In

the table 5.1, the effects of the 51 percent attack is the risk for appending false blocks.

This property of block chains is a possible risk for the liability inspections and making

decisions according to the historical record of ledger.

35

Table 5.1. Comparison of Features with Bitcoin Block Chain

Feature Bitcoin BC Consortium BC Gateway BC
1 BC Visibility Public Secure/ Private Secure/ Private
2 Transaction

chaining
Input / Output T are chained

to each other/
Output

T are formed
a merkle tree/
Output.

3 Transaction min-
ing

All Ts All Ts 1 All Ts 2

4 Mining require-
ment

POW POW POW

5 Forking Not allowed Not allowed Not allowed
6 Double Spending Prohibited Not applicable Not applicable
7 Transaction veri-

fication
Signature Signature Signature

8 Transaction
parameters

input, output,
coins.

Block-number,
hash of data
time, PK

Block-number,
hash of data
time, PK

9 Transaction
dissemination

Broadcast Broadcast Broadcast

10 New block verifi-
cation

Blocks and Ts in
blocks

Blocks and Ts in
blocks

Blocks and Ts in
blocks

11 BC control No one No one No one
12 Miner trust Miners are all the

same.
Miners are all the
same.

Miners are all the
same.

13 Miner joining
overhead

download all
blocks in BC

download all
blocks in BC

download all
blocks in BC

14 Miner rewards Coins Nothing Nothing
15 Pool mining allowed Cannot be de-

fined.
Cannot be de-
fined.

16 Malicious miner Allowed to join not possible not possible
17 Effects of 51 %

attack
double spending Increases the

possibility of
appending false
blocks

Increases the
possibility
of appending
false blocks

18 Encryption
method

Public/ private
keys

Public/ private
keys

Public/ private
keys

19 Merkle Tree leafs are in
blocks (reclain
disk space later)

no merkle tree leaf transactions
are not in the
block but in a dif-
ferent database

*For now both of the block chains are configured to mine all transactions. But for a real-world

scenario it may be different. For example, if there is one particular brand or model of a vehicle

which is used more than others in a region, specific servers may mine transactions belong to

those brands in order to tell the gateways that they can distribute the software update for this

brand easily instead of lingering with other useless transactions around. Those block chains are

capable of this.

36

Another point is the mining operation of the gateways. The Merkle tree implemen-

tation decreases the block sizes to a considerable extent. We saw that Block-chain net-

works are secure platforms with their resource consuming calculations. We have shown

that we could design block chains specific to applications and decrease their resource

consumption.

To evaluate our design in terms of security, it is clear that we have open points

sending update images from gateways to the devices. But for an attacker model which at-

tacks to the servers of any of the blockchain network, attacker will not able to make every

node deny its services. Since we aim to have decentralized networks for both recording

the up-date fingerprints and sending transactions we have robust model against denial of

service attacks. Another attack model can have the attacker who tries to compromise the

chain data. In this case the original design of the block chain prevents this data com-

promise. This assures that if the attacker does not manage more than half of the nodes

of the block chain network, he or she is losing his change to compromise it as time pro-

gresses. An attacker model which attacks to the manufacturer must have the private key

of it. In another attack scenario which attacks to the network, filtering some of the de-

vices or manufacturer servers to send or receive data, the attacker will be prevented by

the built in precautions of the internet like routing tables or predetermined paths. But for

an attacker who attacks to a device physically to prevent it to get the update, the attacker

will succeed. In another scenario an attacker may want to compromise the information

inside update transactions created by the gateway servers. For example, in a case where

one vehicle is involved in an accident, depending on the last update the vehicle accrued

and the timing for the update of this device is the key information which may be changed.

In this case the attacker wants to compromise our future data storage which keeps the

transaction information and respective Merkle trees. In this case, since the fingerprints of

the transactions are kept inside the block chain, blocks and the hashes of the transactions

and the root of the Merkle tree is not the same in the storage field, any of the sides can not

claim the compromised timing for the update operation.

37

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

The main aim of this thesis is to propose a model to send remote software update

for embedded devices which are being more dependent on the environment day to day.

Especially if there is not a suitable update mechanism to send updates to the devices, with

the enhancing functionality of the machines this will create serious problems. That is

if there is a future with connected and more capable vehicles, taking the vehicles to the

service shops in order to put new software will not be practical. Or with the growing

production areas, installing software by hand will not be efficient enough in production.

This means that new technologies will be required to handle these operations.

Beside this, in the future connected world, inspections for liability will be more

complex because there will be various producers, great number of users and great number

of interactions. Case that need to be verified must be leaning on trust based interaction

records. Here integrity and authentication are necessary in a trustless environment. An-

other concern is availability. In order to serve great number of users, servers must be

available all the time. Single point failures show us there may be life threatening situa-

tions. There must be more viable methods in our lives. What we proposed and designed

in this study is a sample model which is suitable for the future use in terms of the re-

quirements we mentioned above. It is a system which involves to blockchain networks

which cooperate and perform an update process which helps reduce security issues such

as availability and integrity. The proposed solution has been implemented and a feasibil-

ity study has been performed. This prototype has to be improved before being applied

in a professional production environment since it does not cover the confidentiality area

especially in the communication from the gateways to the devices.

38

6.2. Future Work

Like its mentioned in the conclusion part this model does not cover all the security

issues of all interactions. We plan to cover all the interactions in a possible production

environment in order to provide a secure model in overall as a future work. Another pos-

sible future work may be designing a platform which allows devices to get updates from

one another in order to increase the impact of the updates in larger areas.

39

REFERENCES

Baza, M., M. Nabil, N. Lasla, K. Fidan, M. Mahmoud, and M. Abdallah (2018).

Blockchain-based firmware update scheme tailored for autonomous vehicles. arXiv

preprint arXiv:1811.05905.

Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561.

Boudguiga, A., N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel, A. Roger, and

R. Sirdey (2017). Towards better availability and accountability for iot updates by

means of a blockchain. In 2017 IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW), pp. 50–58. IEEE.

Codebox (2018). Minimum viable blockchain in python.

https://github.com/codebox/blockchain. Accessed: 2020-01-04.

David Shepardson, H. S. (2019). Uber not criminally liable in fatal 2018 arizona

self-driving crash: prosecutors. https:

//www.reuters.com/article/us-uber-crash-autonomous/

uber-not-criminally-liable-in-fatal-2018-arizona-self-/driving-

crash-prosecutors-idUSKCN1QM2O8.

Dorri, A., S. S. Kanhere, and R. Jurdak (2016). Blockchain in internet of things:

challenges and solutions. arXiv preprint arXiv:1608.05187.

Dorri, A., S. S. Kanhere, and R. Jurdak (2017). Towards an optimized blockchain for iot.

In Proceedings of the Second International Conference on Internet-of-Things Design

and Implementation, pp. 173–178. ACM.

Dorri, A., S. S. Kanhere, R. Jurdak, and P. Gauravaram (2017). Blockchain for iot

security and privacy: The case study of a smart home. In 2017 IEEE international

conference on pervasive computing and communications workshops (PerCom

workshops), pp. 618–623. IEEE.

40

Greenberg, A. (2015). After jeep hack, chrysler recalls 1.4m vehicles for bug fix.

https://www.wired.com/2015/07/

jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/.

Accessed: 2019-11-06.

Lee, B. and J.-H. Lee (2017). Blockchain-based secure firmware update for embedded

devices in an internet of things environment. The Journal of Supercomputing 73(3),

1152–1167.

Nakamoto, S. et al. (2008). Bitcoin: A peer-to-peer electronic cash system.

Oham, C., S. S. Kanhere, R. Jurdak, and S. Jha (2018). A blockchain based liability

attribution framework for autonomous vehicles. arXiv preprint arXiv:1802.05050.

Steger, M., C. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Römer (2016). Secup:

secure and efficient wireless software updates for vehicles. In 2016 Euromicro

Conference on Digital System Design (DSD), pp. 628–636. IEEE.

Steger, M., A. Dorri, S. S. Kanhere, K. Römer, R. Jurdak, and M. Karner (2018). Secure

wireless automotive software updates using blockchains: A proof of concept. In

Advanced Microsystems for Automotive Applications 2017, pp. 137–149. Springer.

Steger, M., M. Karner, J. Hillebrand, W. Rom, C. Boano, and K. Römer (2016). Generic

framework enabling secure and efficient automotive wireless sw updates. In 2016

IEEE 21st International Conference on Emerging Technologies and Factory

Automation (ETFA), pp. 1–8. IEEE.

41

