
DENSITY GRID BASED STREAM
CLUSTERING ALGORITHM

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by
Rowanda Daoud AHMED

November 2019
İZMİR

ACKNOWLEDGMENTS

I would like to express my gratitude to all people supporting me for all the period

of my thesis.

First and foremost I offer my sincerest gratitude to my family: my parents and

to my brothers and sisters for their constant confidence and for supporting me spiritually

throughout writing this thesis and my life in general.

I am grateful to my supervisors Assoc. Prof. Dr. Gökhan Dalkılıç, Assoc. Prof.

Dr. Tolga Ayav, and Prof. Dr. Yusuf Murat Erten, for their participation in this research

who supported who have supported me throughout my thesis with their endless patience,

knowledge, excellent guidance which helped me get results of better quality.

I am also grateful to Prof. Dr. Mehmet Ünlütürk and Assist. Prof. Dr. Selma

Tekir for being members of my thesis committee, so for their patience and support in

overcoming numerous obstacles I have been facing through my research.

Nevertheless, I am also grateful to IYTE staff, especially Assist. Prof. Dr. Serap

Şahin for the last-minute favors. I would like to express my gratitude to my fellow IYTE

doctoral students for their feedback, cooperation and of course friendship.

It is my pleasure to express my grateful thanks to Eng. Abdallah Mekky, Peace

Ambassadress. Aisha Shaqfa, Ph.D. candidates Raja Juodeh, Doaa Althalathini, Nourhan

El-Dabba Abuzayed, Walaa Mdookh, Ersin Çine, Damla yaşar and Nafiye Bolat as good

Palestine and Turk friends for their guidance suggestions and for supporting me spiritually

throughout writing this thesis and my life in general.

Last but not the least, I would like to thank Turkey Scholarships (YTB) for ac-

cepting me in this Ph.D. scholarship.

ABSTRACT

DENSITY GRID BASED STREAM CLUSTERING ALGORITHM

Recently as applications produce overwhelming data streams, the need for strate-

gies to analyze and cluster streaming data becomes an urgent and a crucial research area

for knowledge discovery. The main objective and the key aim of data stream clustering is

to gain insights into incoming data. Recognizing all probable patterns in this boundless

data which arrives at varying speeds and structure and evolves over time, is very impor-

tant in this analysis process. The existing data stream clustering strategies so far, all suffer

from different limitations, like the inability to find the arbitrary shaped clusters and han-

dling outliers in addition to requiring some parameter information for data processing.

For fast, accurate, efficient and effective handling for all these challenges, we proposed

DGStream, a new online-offline grid and density-based stream clustering algorithm. We

conducted many experiments and evaluated the performance of DGStream over different

simulated databases and for different parameter settings where a wide variety of concept

drifts, novelty, evolving data, number and size of clusters and outlier detection are con-

sidered. Our algorithm is suitable for applications where the interest lies in the most

recent information like stock market, or if the analysis of existing information is required

as well as cases where both the old and the recent information are all equally important.

The experiments, over the synthetic and real datasets, show that our proposed algorithm

outperforms the other algorithms in efficiency.

iv

ÖZET

YOĞUNLUK BAZLI AKIŞ KÜMELEME ALGORİTMASI

Son zamanlarda uygulamalar çok büyük veri akışları ürettiğinden, akış verilerini

analiz etmek ve kümelemek için stratejilere duyulan ihtiyaç, bilgi keşfi için acil ve çok

önemli bir araştırma alanı haline gelimiştir. Veri akışı kümelemesinin temel ve kilit

amacı, gelen verilere ilişkin fikir edinmektir. Değişken hızlara ve yapılara ulaşan ve

zamanla gelişen bu sınırsız verilerde tüm olası kalıpları tanımak, bu analiz sürecinde

çok önemlidir. Şimdiye kadar mevcut veri akışı kümeleme stratejileri, veri işleme için

bazı parametre bilgileri gerektirmesinin yanı sıra, isteğe bağlı olarak şekillendirilmiş

kümeleri bulamama ve aykırı değerleri kullanma gibi farklı sınırlamalardan mustarip-

tir. Tüm bu zorlukların hızlı, doğru, verimli ve etkili bir şekilde ele alınması için yeni

bir çevrimiçi - çevrimdışı ızgara ve yoğunluk tabanlı akış kümeleme algoritması olan

DGStream’i önerdik. DGStream’in farklı benzetilmiş veri tabanları üzerindeki perfor-

mansını ve çok çeşitli kavram sapmalarının, yeniliklerin, değişen verilerin, kümelerin

sayısı ve boyutunu ile aykırı verilerin saptanması dikkate alındığında farklı parametre

ayarları için DGStream’in performansını değerlendirdik. Algoritmamız, borsa gibi en son

bilgilere ilgi duyulan uygulamalar için veya mevcut bilgilerin analizinin gerekli olduğu

durumlarda ya da hem eski hem de son bilgilerin hepsinin eşit derecede önemli olduğu

durumlar için uygundur. Sentetik ve gerçek veri setleri üzerinden yapılan deneyler, öner-

ilen algoritmamızın verimlilikteki diğer algoritmalardan daha iyi performans gösterdiğini

sergilemektedir.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

CHAPTER 1. INTRODUCTION . 1

1.1. Stream Data Challenges . 2

1.2. Performance Metrics and Basic Definitions. 4

1.2.1. Basic Definitions . 4

1.2.2. Performance Metrics . 7

CHAPTER 2. STREAM CLUSTERING ALGORITHMS . 13

2.1. Static Clustering Algorithms. 13

2.1.1. DBSCAN: Density-Based Spatial Clustering of Application

with Noise . 13

2.1.2. DENCLUE: DENsity-based CLUstEring . 14

2.1.2.1. OPTICS: Ordering Points to Identify Clustering Structure 14

2.1.3. CLIQUE . 14

2.2. Stream Clustering Algorithms . 15

2.2.1. CluStream . 18

2.2.1.1. CluStream Stream Clustering Framework 18

2.2.1.2. CluStream Online Phase. 20

2.2.1.3. CluStream Offline Phase . 21

2.3. Clusters Evolution Analysis . 22

2.3.1. Density Micro-Clustering Streams Algorithms 23

2.3.1.1. DenStream . 24

2.3.1.2. SDStream . 25

2.3.1.3. rDenStream . 26

2.3.1.4. C-DenStream. 26

2.3.1.5. Density Micro-Clustering Discussions . 26

2.3.2. DStream . 27

2.3.2.1. Grid Inspection and Bgap Determination. 29

2.3.2.2. Sporadic Grids Removing . 30

vi

2.3.2.3. DStream Clustering Algorithm . 30

2.3.3. ClusTree . 31

2.3.3.1. Self-Adaptive Anytime Stream Clustering 32

2.3.3.2. Micro-Clusters and Anytime Insert . 33

2.3.3.3. Maintaining an Up-To-Date Clustering . 35

2.3.3.4. Speed-up Through Aggregation (Very Fast Streams Case) 37

2.3.4. Making Better Use of Time Through Alternative Descent

Strategies (Slow Streams Case) . 38

2.3.5. Cluster Shapes and Cluster Transitions . 40

2.4. ClusTree Algorithm Conclusion . 40

CHAPTER 3. OUR PROPOSED ALGORITHM: DGSTREAM . 43

3.1. Dataset Input and Standardization . 43

3.2. Divide the Multi-Dimensional Data Stream into Grids 44

3.3. Choosing Representative Points from the Density Grids 44

3.4. DGStream Clustering Process . 46

3.5. Removing Sparse Grids . 47

3.6. Labeling All Points to the Resulted Cluster Set . 48

3.7. Handling Outliers . 48

3.8. DGStream Clustering Stability . 49

CHAPTER 4. EXPERIMENTAL RESULTS . 52

4.1. Chameleon Synthetic Dataset Results . 52

4.2. Real-World Datasets Results . 54

4.2.1. KDDCup’99 Real-World Dataset Results . 54

4.2.2. Covertype Real-World Dataset Results . 57

4.2.3. Adult Real-World Dataset Results . 59

4.2.4. Stock Marketing Real-World Dataset Results 61

CHAPTER 5. CONCLUSION AND FUTURE WORK . 67

5.1. Conclusion . 67

5.1.1. Future Work . 67

REFERENCES . 69

vii

LIST OF FIGURES

Figure Page

1.1 Precision-Recall (Manning et al., 2010). 9

1.2 Purity example calculation. 10

1.3 Cohesion and Separation . 11

2.1 Online-offline stream clustering process(Carnein et al., 2017). 16

2.2 Micro-Clusters framework in density-based clustering (Ren and Ma, 2009). . . . 24

2.3 The overall process of DStream (Chen and Tu, 2007). 28

2.4 The procedure for initial clustering. 31

2.5 The Procedure for dynamic adjusting clusters (Chen and Tu, 2007). 32

2.6 a) Inner and leaf nodes structures. b) Insertion process (Kranen et al., 2011). . . 35

2.7 Descent strategies. a) Depth first. b) Priority breadth first. c) Best first (Kra-

nen et al., 2011). 38

2.8 Iterative depth first descent (Kranen et al., 2011). 40

2.9 Flow chart of the ClusTree algorithm (Kranen et al., 2011). 42

3.1 Explanation art of using the density grids in stream clustering. 44

3.2 Black points are the representative points in each cell. 46

3.3 DGStream algorithm pseudocode. 47

3.4 MainClustering method pseudocode in DGStream algorithm. 48

4.1 Clustering 8000 points from Chameleon Synthetic dataset results. 53

4.2 Clustering 8000 points from KDDCup’99 real-world stream data results. 55

4.3 Clustering 20000 points from KDDCup’99 real-world stream data results. 56

4.4 Clustering 8000 points from Covertype real-world stream data results. 58

4.5 Clustering 30000 points from Covertype real-world stream data results. 60

4.6 Clustering 8000 points from Adult real-world stream data results. 61

4.7 Clustering 32500 points from Adult real-world stream data results. 62

4.8 Clustering same size of different samples from NSE real-world stream data

without replacement results. 64

4.9 Time efficiency for clustering different sizes samples from NSE real-world

stream data with replacement results. 66

viii

LIST OF TABLES

Table Page

4.1 Performance matrices for clustering 8000 data records from Chameleon syn-

thetic dataset by using DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms. 54

4.2 Performance matrices for clustering 8000 data records from KDDCup’99

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms. 56

4.3 Performance matrices for clustering 20000 data records from KDDCup’99

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms with 5000 time horizon. 57

4.4 Performance matrices for clustering 8000 data records from Covertype real-

world stream data by using DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms. 59

4.5 Performance matrices for clustering 30000 from Covertype real-world stream

data by DenStream, DStream, ClusTree, and DGStream stream cluster-

ing algorithms. 60

4.6 Performance matrices for clustering 8000 data records from Adult real-world

stream data by using DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms. 62

4.7 Performance matrices for clustering 32500 data records from Adult real-world

stream data by using DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms. 63

4.8 Performance matrices for clustering same size of different samples from NSE

real-world stream data without replacement by DenStream, DStream,

ClusTree, and DGStream stream clustering algorithms . 65

ix

CHAPTER 1

INTRODUCTION

In recent years , the wide applicability of streaming data due to the hardware tech-

nology advances and data deployment of data gathering devices like sensors lead to an

accumulation of large amounts of transactional and web data. Therefore, stream data

analysis is gaining a lot of attention in data mining research over the last decade and

it can be considered as a main area of big data analysis. The era of big data and data

mining is the self- evidence of creation these platforms that generate and consume mas-

sive amounts of data which are the result of the recent life developments (Nutakki and

Nasraoui, 2017). Hence the need for strategies for analyzing and clustering the ever in-

creasing online continuous stream objects which requires an up-to-date clustering view at

decreasing time intervals. For that, there are some statistical techniques and conventional

machine learning approaches (Guha and Mishra, 2016; Barbará, 2002; Aggarwal et al.,

2003). In (Gong et al., 2017), the difference between the stream and dynamic clustering

algorithms is explained. Ultimately, both return the updated clustering result in real-time.

But stream clustering algorithms use strategies which to give the fresh data more weight

than the outdated data after distinguishing between them. Dynamic clustering is about

how to efficiently update in the underlying dataset along with maintaining data clusters

(Gong et al., 2017). A new dynamic clustering algorithm is proposed by Gan and Tao

(Gan and Tao, 2017), which is a DBSCAN-based algorithm that inserts and deletes points

in the dataset and maintains data clusters. It is very fast in returning the updated result. In

stream clustering, time stamps are inserted in each of the arriving objects as a key feature

to define the freshness level of the objects to achieve cluster evolution tracking. Stream

clustering decays data based on the meaninglessness levels. Most of data stream cluster-

ing algorithms are version which are designed adapting the existing solutions from static

solutions, in an attempt to benefit from some strategies like the incremental capability or

online-offline learning (Aggarwal et al., 2003; Bhatia et al., 2004). Stream clustering can

be categorized into three main categories; prototype-based, density-based, and model-

based methods (Alazeez et al., 2017). Example of the prototype-based algorithms is K-

Means (MacQueen et al., 1967), which aims to partition the dataset objects into k clusters

in which each object belongs to the cluster corresponds to the closest mean, and then re-

fine these clusters iteratively. The density-based algorithms like DBSCAN (Ester et al.,

1

1996), groups the points which look closely alike, considering dense concentrated data

points areas, and then these dense areas form the final clusters. Then the low-density ar-

eas are marked as outliers. Density-based methods have the capability of finding arbitrary

shaped clusters, they are also robust to the outliers, and do not need a predefined num-

ber of clusters, but at the same time, they have some limitations like requiring memory

and being time-consuming. Model-based algorithms try to find the distribution of some

statistical model which is the way to find the final clusters of similar points. Expectation-

Maximization (EM) (Dempster et al., 1977) is an example. A new approximate algorithm

(Gong et al., 2017) is a recent further attempt to improve DBSCAN. DDCstream cluster-

ing algorithm (Li and Zhou, 2017) is an intrusion detection method based on a damped

window of data stream clustering which discusses the methods of abnormal detection (Liu

et al., 2016).

1.1. Stream Data Challenges

There are many data clustering methods for static data (Jain et al., 2006), and

there are various methods for clustering stream data too. The initial stream data cluster-

ing paradigms suffer from several limitations like buffering for later handling or dropping

some data which lead to poor-quality clustering results. These approaches deal with the

stream data clustering as static clustering but in a continuous version (Guha et al., 2003).

The evolving data are not taken into consideration in these paradigms and both recent and

the outdated data are handled in the same way. Moving window is proposed to solve this

problem (Barbará, 2002) to a certain extent. Other more recent stream clustering methods

tried to solve some of these limitations and several algorithms are proposed to cluster the

stream data, and we shall compare some of the density-based clustering ones such as the

ones detailed in (Aggarwal et al., 2003; Cao et al., 2006; Ruiz et al., 2010), and (Kranen

et al., 2011)in the related work section. Processing the endless amounts of data streams

generated by social media and other resources to evaluate on the fly or identify patterns

is a considerable challenge. Buffering or revisiting data while processing is not practical.

Patterns in the stream data may have random order of arrival and also may be active or

spread across a wider time-frame. So, temporal information is an important aspect of

data streams, it gives some intimation on the current and may be future patterns (Nutakki

and Nasraoui, 2017). Stream data clustering faces additional challenges beyond those the

static data clustering faces. Challenges include Single pass clustering. Since the data is

2

continuously arriving the data analysis must be performed in an online single pass fash-

ion. Another challenge is the Limited time. Stream analysis models must adhere to time

constraints since the data stream applications naturally impose a limited time constraint

and try to save computing time for clustering to be able to conform to the incoming stream

speed. It is impossible to stop the stream to perform analysis to perform offline clustering,

or to postpone displaying the results. In stream data analysis, in order to keep up with the

stream speed, the algorithm must compute the average time between any two arriving ob-

jects, so that the data clustering cannot be more than that average time. Abiding with the

time constraint ensures maintaining a current clustering model. Also, the Limited mem-

ory is an important data stream analysis challenge. As the data is unbounded and it has

an endless stream, keeping every coming data object in the memory is unpractical. Naive

approaches maintain all the data set points in memory, while stream clustering models

take this point into consideration and respect the memory constraints. Varying time al-

lowances is another data stream clustering challenge. It is a rarely the case that the stream

data is in a constant flow state. The usual case is to be in a bursty state. In these chang-

ing processing time cases, for the stream clustering algorithm to keep up with different

arrival speeds, it has to resort to the worst case which is the minimal time allowance in

the stream. Another important challenge is Evolving data which is so common in today’s

applications. We note how much the behavior of the model totally differs over time. This

leads to many interesting business application cases (Aggarwal et al., 2003). For exam-

ple, consumption patterns along the year ordinary days absolutely differ from those that

are seen during holidays. So, due to the possibility of changing the model underlying

the data stream across the time, evolving data stream has to be a point of consideration.

Concept drift, novelty, number and size of clusters and outliers should be detected as well.

Like these phenomena should be clearly captured and identified by the stream clustering

algorithms which introduced to gain useful knowledge from these streams in real-time.

Cluster Transitions, regarding an up to date view on data distribution and the clustering

result, (Aggarwal et al., 2004; Jain et al., 2006; Udommanetanakit et al., 2007) focusing

on keeping an up to date record by employing an exponential decay function to decrease

the influence of older data. There are several strategies in (Spiliopoulou et al., 2006) cat-

egorizing the cluster transitions in data stream into external and internal transitions and

express how to address these transitions like outlier detection, time horizon, concept drift

visualization, arbitrary shape clusters detection and novelty. As examples of these strate-

gies; (Van Leeuwen and Siebes, 2008) is an approach which discusses how to detect the

changes in the underlying stream by means of the minimal description length. CluStream

3

(Aggarwal et al., 2003) proposes pyramidal time frame approach which enables the user

to view arbitrary time horizons clustering’s. Tracking clusters over sliding windows in

evolving data streams is discussed in (Zhou et al., 2008). Outlier detection, time hori-

zon, arbitrary shape clusters detection, novelty, concept drift, and concept drift received

widespread attention recently. There are many methods and solutions focusing on it re-

cently; some of these solutions are in (Gama et al., 2014). During the last decade a lot of

the solutions handle concept drift in supervised learning employing ensemble classifiers

(Farid et al., 2013) or decision trees (Yang and Fong, 2013), while investigating concept

drift solutions for unsupervised methods have started recently.

There are a huge number of clustering algorithms both for static and stream data.

Earlier stream data clustering algorithms are designed as continuous versions of the static

ones. We shall, therefore, describe briefly the algorithms developed for clustering static

data in Section 2.1. We shall then continue with the others developed for clustering the

stream data focusing on the density-based ones more than others in Section 2.2. That is be-

cause density-based clustering, clustering which depends on density-connected points or

employing density function, has many merits such as discovering the clusters of arbitrary

shapes, handling noise, performing calculations without relying on too many parameters,

and they can do it in just one scan.

1.2. Performance Metrics and Basic Definitions

We will be exposed to some of the terms over and over again in this thesis. So,

we shall first explain some theoretical notions by defining the concepts like the SPtree,

Density Grids and the Characteristic Vector in Section 1.2.1. And after explaining the

methodology of our proposed algorithm in details, to prove how well it performs we

compared it with other related stream clustering algorithms. Regarding some performance

metrics in the assessment process, so let’s move over the used metrics in some brief in

Section 1.2.2.

1.2.1. Basic Definitions

Definition 1.1 SPtree is a clustered multidimensional index structure called as the seg-

mentpage clustering (SP-clustering) for efficient sequential access. In our proposed al-

gorithm, we used it to improve the query performance by continuous sorting the relevant

4

points in contiguous related grids. Using SPTree in our density-based algorithm is im-

portant because dependency on density relies on the neighborhood relationships in grow-

ing clusters through the continuity of arriving data points, the connectedness of micro-

clusters, and the convergence between them. Topological Spaces allows for the definition

of concepts such as continuity, connectedness, and convergence, though accelerating and

improving the clustering process afterwards.

Definition 1.2 Characteristic Vector (CV) is a tuple (tg, tm, D, label, status), where tg is

the last updating time for the grid g, tm is the last removing time, if ever, for g from grid

list as a sporadic grid, D is the last grid density, label is the grid class label, and status is

either sporadic or normal, which is used to test the grid kind to remove it afterward(Chen

and Tu, 2007).

Definition 1.3 Micro-cluster for a set of d dimensional points Xi1...Xin with time stamps

Ti1...Tin is defined as the 2 ∗ d + 3 tuple (CF2x, CF1x, CF2t, CF1t, n), wherein CF2x and

CF1x each correspond to a vector of d entries. The definition of each of these entries is

as follows:

• CF2x contains d values, these are the sum of the squares of the data values for each

dimension. The pth entry of CF2x is equal to
n∑

j=0

xp
i j

2

• CF1x contains d values, these are the sum of the data values for each dimension.

The pth entry of CF2x is equal to
n∑

j=0

xp
i j

• CF2t contains the sum of the squares of the time stamps Ti1...Tin.

• CF1t contains the sum of the time stamps Ti1...Tin.

• n donates the number of data points.

(Aggarwal et al., 2003).

Definition 1.4 Cluster feature CF is a triple summarizing, which is maintained about a

cluster. It is a triple vector, which includes the number of the data points, the linear sum

of data points, and the squared sum of them (Zhang et al., 1996).

Definition 1.5 Core-micro-cluster (c-micro-cluster) defines as CMC (w, c, r) for a group

of close points pi1 ... pin with timestamps Ti1...Tin (Ren and Ma, 2009).

Definition 1.6 Potential c-micro-cluster (p-micro-cluster) defines as PMC: p-micro-cluster

at the time t for a group of close points pi1...pin with timestamps Ti1...Tin defines as (CF1,

CF2, w) (Ren and Ma, 2009).

5

Definition 1.7 Outlier micro-cluster (o-micro-cluster) defines as OMC: The definition of

o-micro-cluster is similar to p-micro-cluster. It is defined as (CF1, CF2, w, t0), t0 = Ti1 is

the o-micro-cluster creation time. It is used to define the o-micro-cluster life extent. When

the micro-cluster weight is less than the outlier weight threshold, βμ, in this case we can

consider it as an outlier (Ren and Ma, 2009).

Definition 1.8 Temporal Cluster Feature (TCF) is a temporal extension of CF with the

timestamp of the most recent record for keeping cluster properties in the sliding window

mode. It is defined as a (CF2x,CF1x, t, n), which is similar to CF, and t is added as the

timestamp of most recent record (Ren and Ma, 2009).

Definition 1.9 Exponential Histogram of Cluster Feature(EHCF) data structure is pro-

posed to construct cluster features based on sliding window model. In EHCF only the

most resent N records are considered at any time (Ren and Ma, 2009).

Definition 1.10 Density grids: the grid contains many data records. Each record x inside

the grid has its own density coefficient, and this density coefficient decreases as the data

record ages. To illustrate this concept by mathematical equations, we suppose that the

data record x arrives at time tx, so it’s timestamp T (x) = tx , and its density coefficient

at this time is D(x, t) = λt−T (x) = λt−tc , where λ is the decay factor constant, t ∈ (0,

1). Integrating from this point, so we can define the grid density at some time t as the

whole summation of the density coefficients of all the records belonging to that grid. Let

R(g,t) be the set of all data records belong to grid g at time t, so the density of g is

D(g, t) =
∑

x∈R(g,t) D(x, t).

Definition 1.11 Neighbouring Grids (ND): Consider two density grids g1= (j1
1, j1

2, ..., j1
d)

and g2 = (j2
1, j2

2, ..., j2
d), g1 and g2 are neighboring grids in the kth dimension, denoted

as g1 ≈ g2, if there exists k, 1 ≤ k ≤ d, such that:

ji
1 = ji

2, i = 1, ..., k − 1, k + 1, ..., d; (1.1)

| jk
1 − jk

2| = 1. (1.2)

(Chen and Tu, 2007).

Definition 1.12 Grid Group (GG) is a set of density grids is a grid group if for any two

grids in the set there exist a sequence of grids indirectly connecting these two grids to

each other by a chain of neighboring grids (Chen and Tu, 2007).

6

Definition 1.13 Inside and Outside Grids (IOG): Consider a grid g, belongs to grid

group G, has neighboring grids in every dimension, then g is an inside grid in G. Other-

wise g is an outside grid in G (Chen and Tu, 2007).

Definition 1.14 Grid Cluster (GC) is a grid group G is a grid cluster if every inside grid

of G is a dense grid and every outside grid is either a dense grid or a transitional grid

(Chen and Tu, 2007).

Definition 1.15 ClusTree is a balanced multi-dimensional indexing structure with fanout

parameters m, M and leaf node capacity parameters l, L, with the following properties:

• An inner node nodes contains entries between m and M.

• Leaf nodes contain between l and L entries.

• The root has at least one entry.

• An entry in an inner node of a ClusTree stores:

– A cluster feature of the objects it summarizes

– A cluster feature of the objects in the buffer. (May be empty.)

– A pointer to its child node.

• An entry in a leaf of a ClusTree stores a cluster feature of the object(s) it represents.

• A path from the root to any leaf node has always the same length (balanced).

(Kranen et al., 2011).

Proposition 1.1 Let C1 and C2 be two sets of points. Then the cluster feature vector CFT

(C1

⋃
C2) is given by CFT (C1) + CFT (C2) (Aggarwal et al., 2003).

Proposition 1.2 Let C1 and C2 be two sets of points such that C2 ⊆ C1. Then, the cluster

feature vector CFT (C1 −C2) is given by CFT (C1) - CFT (C2) (Aggarwal et al., 2003).

1.2.2. Performance Metrics

Clustering is unsupervised learning; it is interested in dividing the data into similar

groups in the absence of class labels in contrast to supervised learning where you have the

data, the class labels, and the algorithm. Supervised learning just learns a function from

7

the input. The absence of class labels in clustering makes the evaluation and the quality

assessment more difficult and complicated than supervised classification. So, in cluster-

ing, to learn about the data helps to model its distribution and underlying structure. In this

sub-section, we summarized the performance metrics we used to evaluate the results of

our experiments in Section 4.

Performance metrics determine how good the obtained clustering reflects the ac-

tual data. We can classify the Cluster evaluation methods into two kinds: extrinsic meth-

ods and intrinsic methods.

Extrinsic methods (supervised) when the ground truths are available, so we can as-

sign like score to the clustering. In Extrinsic methods, the ground truth compared against

the clustering results. Here are some definitions of the used metrics in this study.

Precision-Recall Purity, Precision metrics are examples of extrinsic methods. They

measure of how much the prediction is successful, especially in the case of very imbal-

anced classes. In information retrieval, Precision measures the output relevancy, i.e. the

fraction of retrieved relevant documents, but Recall deals with the returned results and

measures the fraction of the relevant documents that are successfully retrieved.

Recall refers to the sensitivity of the system, Equation (1.3).

Recall = True positive/(True positive + False negative) (1.3)

And Precision refers to how precise of your recall, Equation (1.4).

Precision = True positive/(True positive + False positive) (1.4)

To calculate the precision and recall, you need to sum up how many times you

were right or wrong among your predictions. There are four ways of being right or wrong

see Figure (1.1): True Negative: the case is negative and predicted negative too. True Pos-

itive: the case is positive and predicted positive too. False Negative: the case is positive

but predicted negative. False Positive: the case is negative but predicted positive.

F1-score: (or F1-measure) can be defined as the mean or weighted average of

Recall and Precision to evaluate an algorithm. It measure a test accuracy, i.e. it F1-score

provides a single measurement for a system. If a machine learning algorithm is good

at recall, it doesn’t mean that algorithm is good at precision. That’s why we also need

F1 score which is the (harmonic) mean or weighted average of recall and precision to

8

Figure 1.1. Precision-Recall (Manning et al., 2010).

evaluate an algorithm. F1 score reaches its best score at 1 and worst score at 0. The

F1-score formula is:

F1 = 2 ∗ p ∗ r
p + r

(1.5)

Purity: measures the extent to which clusters contains a single class (Manning

et al., 2010). To calculate the purity for each cluster, find out the most common class

in it and count the number of its data points. After that, compute the average of overall

clusters. A perfect purity score of 1 can be reached by mapping each data record to its

own class. Formally, given some set of clusters C, data points N, purity can be defined as:

9

Figure 1.2. Purity example calculation.

Purity =
1

N

C∑
n=1

max(number o f ma jority class in cluster n) (1.6)

The higher the purity is the better. A purity score of 1.0 is possible by putting each data

point in its own class. For example, the purity for the following clusters in Figure (1.2),

Purity =(1/20)*(3+4+6)=0.65.

SSQ: The sum of squared distances over all data points to their corresponding

cluster centers. The smaller the SSQ is the better. Homogeneity: Each cluster contains

only members of a single class. The Homogeneity bounds are from the lower, 0.0 to

the upper bound which is 1.0, the closer Homogeneity to 1.0 is better. The higher the

Homogeneity is the better. Completeness we suppose that all members of some class are

assigned to the same cluster. The Completeness bounds are 0.0 as the lowest and 1.0 is

the highest. The higher the Completeness is the better.

Intrinsic methods (unsupervised): when the ground truths are unavailable. In In-

trinsic methods, how compact the clusters are, how well the clusters are separated are

evaluated, i.e. Intrinsic methods are all about measuring the clustering goodness. Sil-

houette coefficient is an example of intrinsic methods. Silhouette Coefficient is a metric

which is used to measure the performance of the clustering methods, it compares how

the point will fit to some cluster with the assigned one by computing both values. It is

proposed by Pravilovic (Pravilovic et al., 2014) to use Silhouette Coefficient in choos-

ing the number of clusters right value, and by Rousseeuw (Rousseeuw, 1987) to measure

the clustering algorithms quality. It is used in various works including the MOA frame-

work (Bifet et al., 2010; Kranen et al., 2010). Silhouette Coefficient is a combination of

10

(a) Cohesion (b) Separation

Figure 1.3. Cohesion and Separation

Cohesion and Separation measures.

Cohesion: is measured by the within cluster sum of squares. It is also called Sum

of Squared Error (SSE) and used as a commonly performance measure.

WS S =
∑

i

∑
xinci

(x − mi)
2 (1.7)

Separation: is measured by the between cluster sum of squares.

BS S =
∑

i

|Ci|(x − mi)
2 (1.8)

Where |Ci| is the size of cluster i, and m is the centroid of the whole data set. The sum-

mation of cohesion and separation is constant,

BS S +WS S = constant (1.9)

We can calculate the Silhouette Coefficient for both individual points and clusters

as well. For individual point, the Silhouette Coefficient is defined as:

S = 1 − a
b

(1.10)

11

where a donates the averaged summed distances from some point in cluster to all points

in the same cluster, while b donates the averaged summed distances of the same point to

all points in the other clusters. Silhouette Coefficient bounds are between 0 and 1. The

higher Silhouette Coefficient is the better.

The remainder of this thesis is organized as follows: in Chapter 2, we shall present

a quick overview of the algorithms for clustering static data, then we will go in more detail

over some related work in the field of stream clustering. Chapter 3 describes our new

proposed stream clustering method, DGStream, in detail. In Chapter 4, we will present

the results of many experiments carried out on one synthetic and many real-world datasets

and show their results along with many performance metrics of our proposed algorithm,

and also present the comparison of the results with several outstanding stream clustering

algorithms in terms of precision, recall, F1-score measure, clustering purity, and time

complexity. Finally, Section 5 will conclude our thesis.

12

CHAPTER 2

STREAM CLUSTERING ALGORITHMS

There are a huge number of clustering algorithms both for static and stream data.

Earlier stream data clustering algorithms are designed as continuous versions of the static

ones. We shall, therefore, describe briefly the algorithms developed for clustering static

data. We shall then continue with the others developed for clustering the stream data

focusing on the density-based ones more than others. That is because density-based clus-

tering, clustering which depends on density-connected points or employing density func-

tion, has many merits such as discovering the clusters of arbitrary shapes, handling noise,

performing calculations without relying on too many parameters, and they can do it in

just one scan. We will describe some of them in the following subsections.

2.1. Static Clustering Algorithms

Several density-based clustering algorithms are developed to cluster the static data

like DBSCAN (Cao et al., 2006), DENCLUE (Hinneburg et al., 1998), OPTICS (Ankerst

et al., 1999), and CLIQUE (Agrawal et al., 1998). We shall describe them in some detail

in th folowing sections below.

2.1.1. DBSCAN: Density-Based Spatial Clustering of Application

with Noise

DBSCAN is a density-based algorithm that focuses on clustering large and noisy

spatial datasets. It performs a neighborhood density analysis according to two parame-

ters, MinPts, and Eps, so a point which has in its Eps radius at least MinPts points, is

classified as the core one. A point which does not qualify as the core point but exists in

the neighborhood of one core point can be classified as the border point. Any point that

is neither a core point nor a border point is a noise point. The core and border points are

assigned to one cluster but the noise points are not. DBSCAN can discover not only the

spherical clusters but also the clusters of interwoven arbitrary shapes due to the clusters

13

growing according to a density-based connectivity analysis (Ester et al., 1996). DBSCAN

has its limitations; DBSCAN classifies the dataset into two types of regions depending on

a predefined threshold, the high density regions that are used in forming the final result of

clustering as the cluster sets, and the low density regions that will be considered as noise.

However, in some cases, many points identified as noises by DBSCAN may end up be-

ing meaningful data but with a low density that is under the threshold set. So, DBSCAN

doesn’t work well on datasets with varying densities and the high-dimensional ones.

2.1.2. DENCLUE: DENsity-based CLUstEring

DENCLUE (Hinneburg et al., 1998) is based on a solid mathematical foundation;

it is like DBSCAN as it is also based on neighborhoods analysis. It figures out how one

data point in the dataset can affect its neighborhood. The summation of influences of all

data points is the overall density of the data space. It computes the local maxima of the

density function and identifies it as density attractors that are used to assign data points to

the clusters. Objects belong to related or the same cluster depending on whether they are

associated with related or the same density attractor. It has been designed for clustering

the multimedia in high-dimensional spatial datasets and having large amounts of noise.

DENCLUE is significantly faster than DBSCAN but it depends on a large number of

parameters.

2.1.2.1. OPTICS: Ordering Points to Identify Clustering Structure

OPTICS (Ankerst et al., 1999) is a phase in the clustering process; it can identify

the clustering structure. It orders the points and the reachability distances in a better way

to be used by other density-based algorithms afterwards.

2.1.3. CLIQUE

CLIQUE is both a grid and a density-based clustering algorithm. It is designed

for clustering high dimensional spatial datasets. It partitions the dimensions into grids,

the dense grids that contain at least a threshold number of data points, and the non-dense

grids. Then it tries to find the embedded clusters in subspaces of the dataset (Ruiz et al.,

14

2010). However, the above-mentioned algorithms do not work when the data is a stream.

They are applicable only to spatial datasets. As mentioned before, earlier data stream

clustering algorithms have been developed to be the continuous versions of the static

clustering algorithms. These approaches deal with the recent data and the outdated data

in the same way. They do not consider the evolving data. Many techniques like moving

window are proposed to partially solve this problem (Barbará, 2002; Babcock et al., 2003;

Gama, 2010). Recently, many algorithms have been developed to cluster data streams.

We intend to review in the following section some of them focusing on the density-based

clustering approaches.

2.2. Stream Clustering Algorithms

The clustering algorithms that depend on user-defined parameters make the clus-

tering difficult due to the changes which may lead clustering output result to change over

time like clusters disappearing, emerging, splitting, or merging. Intuitively there is no

way to previously fix the model in stream clustering. So, the old unsophisticated data

stream algorithms suffer from many problems. One naive suggested solution refers to

buffer stream for later handling, but this is impossible because the stream is endless.

Some approaches lost valuable information due to dropping some data in order to keep up

with the stream speed. Other approaches have suggested solving the stream speed adapta-

tion, which try to scale only for the fastest stream speed, which resulted in a poor-quality

clustering. Clearly these solutions mentioned above do not make the best use of the infor-

mation that the stream contains and of the time available. The current stream clustering

algorithms each try to solve some of the above mentioned problems. Recently, there have

been different views and approaches to the data mining. For instance, (Aggarwal, 2009;

Gaber et al., 2007) are proposed for classification, (Cheng et al., 2008; Dang et al., 2008;

Li et al., 2008) are proposed for frequent item set mining. There are different clustering

paradigms studying the data stream clustering. Earlier data stream clustering paradigms

like (Guha et al., 2003, 2000; O’callaghan et al., 2002) treats data stream clustering as

a continuous version of the static clustering, they are single phase divide and conquer

schemes based. These data stream algorithms partition data streams into segments and

based on a k-means algorithm to discover clusters in data streams. Such approaches don’t

consider the evolving data and they treat the recent and the outdated data the same way.

To solve the evolving data problem, moving window techniques are proposed (Babcock

et al., 2003). StreamKM++ (Ackermann et al., 2012) data stream clustering algorithm is a

15

k-means++ (Arthur and Vassilvitskii, 2007) dependent. It employs coreset constructions

to computes a small weighted sample of the data stream. It uses a coreset tree for speed

up. A little bit more recent approach, CluStream data stream algorithm, proposed by Ag-

garwal et al (Aggarwal et al., 2003). It uses a two-phase strategy. And recently many

clustering algorithms are developed to cluster the stream data using the two-component

technique: online-offline. Generally, in the online phase, the algorithm captures neces-

sary summary statistics of the incoming data records. The output from the online phase

is the micro-clusters that will be used in the offline phase to derive the macro-clusters via

re-clustering. In the offline phase, the stream algorithm employs one of the algorithms

usually used for static data clustering approaches like K-means or DBSCAN. Figure (2.1)

shows the idea of using the online phase to convert the stream data points to micro-clusters

and the offline phase to convert the micro-clusters to macro-clusters(Silva et al., 2013;

Amini et al., 2014; Ahmed et al., 2018).

Figure 2.1. Online-offline stream clustering process(Carnein et al., 2017).

(Wang et al., 2004) clustering data stream algorithm is two-tier structure online-

offline framework which is based on CluStream but in an improved offline phase. It

uses an incomplete partitioning strategy. Adaptive multiple evolving data streams clus-

tering (Dai et al., 2006), distributed data steams clustering in peer-to-peer environments

(Bandyopadhyay et al., 2006), and Online-clustering of parallel data streams (Beringer

and Hüllermeier, 2006), are all extensions of this work beside several applications of data

stream mining (Nasraoui et al., 2006; Sun et al., 2005; Oh et al., 2005). CobWeb (Kan-

ageswari and Pethalakshmi, 2017) is one of the first incremental systems for hierarchical

conceptual clustering data. It uses a classification tree in organizing observations such

that each node in the tree represents some class or concept. The class is a probabilistic

16

concept and it summarizes the objects classified under the node by attribute-value dis-

tributions. The classification tree is used in predicting the class of a new object or the

missing attributes. CobWeb, in building the classification tree, it employs four basic op-

erations. The operations are: merging two nodes, splitting a node, inserting a new node

and passing an object down the hierarchy.

In Convex stream clustering (O’callaghan et al., 2002) data stream is processed

in separate chunks and by using k-means or k-median it clusters data into k clusters in

each chunk, and then it uses these clusters to generate the final clustering result. In this

approach, sometimes it is a need for merging chunks results to free some space for new

chunks when the case in space exceeding.

A variant approach (Spinosa et al., 2007) uses a stored list of objects besides k-

means clustering in which these objects in the list do not fit the current clustering w.r.t. a

"global boundary". A clustering is restarted once the list becomes large.

BIRCH (Zhang et al., 1996), maintained a hierarchical index for faster access in

the very large databases. (Assent et al., 2008) represents a mapping to a frequent item set

for multidimensional streams.

Kernels based approach (Jain et al., 2006) is proposed to discover arbitrary shape

clusters in stream data. Alternative graphs based is proposed in (Lühr and Lazarescu,

2009), and fractal dimensions grid based is proposed in (Barbará and Chen, 2000), and

(Cao et al., 2006; Chen and Tu, 2007) proposed density-based approach. None from

the above approaches is capable of adapting the clustering model size to keep up with

the online stream speed nor capable of delivering such a result or has the possibility of

interrupting the process at any given point in time.

Density-based clustering method is a natural and attractive basic data streams clus-

tering strategy, because it can find arbitrary and interwoven shaped clusters and can detect

and handle noises. Density-based clustering methods, due to the enormous data size, don’t

maintain the density information for every data record. In addition to that they only need

to test the raw coming data only once, in which we can call them as a one-scan method.

Furthermore, they do not ask for any prior knowledge of parameters like the number of

clusters k, in contrast to k-means algorithm.

DenStream is the first density-based stream algorithm we will discuss in this the-

sis(Cao et al., 2006). It presents core-micro-cluster and outlier micro-cluster structures to

maintain, summarize clusters and distinguish the potential clusters and outliers. We will

explain about DenStream briefly in Section 2.3.1.1.

D-Stream is another density-based stream algorithm which is more appropriate

17

and applicable for application with little domain knowledge. The stream data clustering

framework, D-Stream (Chen and Tu, 2007), is a density-based clustering method that

studies the relationship between all the following factors: time horizon, decay factor, and

data density, so that it can generate clusters with high quality. We will explain about

DStream briefly in Section 2.3.2.

The anytime idea is a very active research field in data mining and there are vari-

ant algorithms in that field, such as anytime learning (Street and Kim, 2001; Wang et al.,

2003), anytime classification (DeCoste, 2002; Kranen et al., 2010; Kranen and Seidl,

2009; Seidl et al., 2009; Ueno et al., 2006; Yang et al., 2007) and top k processing (Arai

et al., 2007). A wavelet-based anytime clustering algorithm has been proposed in (Vla-

chos et al., 2003). It is for k-means clustering of time series and not directly applied to

stream data. ClusTree (Kranen et al., 2011) is a free parameter algorithm, it adapts itself to

the stream speed automatically in addition to its capability of detecting novelty, outliers,

and concept drift in the stream. To maintain stream summaries, it uses a self-adaptive

and compact index structure. ClusTree is considered to be the first anytime stream data

clustering algorithm. We will explain about ClusTree briefly in Section 2.3.3.

2.2.1. CluStream

CluStream is an online-offline Algorithm which discusses different points of view

regarding data stream clustering. CluStream uses a two-phase strategy as mentioned be-

fore. In the online phase CluStream analyzes the coming data stream and stores its sum-

mary statistics using micro-clusters. These micro-clusters are temporal extensions of CF

vectors and stored at snapshots in time following a pyramidal pattern in which to allow

recalling the summary statistics from different time horizons. While in the offline phase

it uses these statistics along with other parameters to generate final clusters. CluStream

algorithm adopts the idea of streaming over many time windows, that’s because streaming

over many time windows gains more understanding about what is going on in the cluster-

ing process and the clusters’ behaviors. So that the CluStream algorithm considered data

stream clustering in one pass is not a good idea from an application point of view. Fur-

thermore, it is too difficult in large data streams to perform such dynamic clustering over

all time horizons at once. CluStream algorithm handles different data streaming ideas,

each guided by requirements of real applications.

18

2.2.1.1. CluStream Stream Clustering Framework

CluStream has its special framework that we will discuss in this section. Being

an online-offline algorithm makes it important to clarify some points. Summary statis-

tics in the online component are temporal information prepared for the offline clustering

component. This online information incrementally updated to cope with offline cluster-

ing. Secondly, online-offline clustering algorithms, in general, should determine the time

interval between the times they store the online summary statistics. There is an effective

trade-off between the time intervals between the process of storing the online summary

statistics in one hand and clustering for this time interval which we called the time hori-

zon. Thirdly, addressing how CluStream can use the online information for clustering,

such that it gains hints for the user to set the time horizon and how to deal with the data

evolving over time. The online statistics stored in a form of micro-clusters which is in a

tuple feature vector (Zhang et al., 1996). Data stream clustering algorithms use feature

vector due to its natural properties of addition, subtraction, and multiplications. The algo-

rithm stores these micro-clusters in periods of time following a pyramidal pattern which

provides good and reasonable trade-off between the ability to get the summary statis-

tics stored in the micro-clusters from various time horizons and the storage requirements.

These summary statistics depend on some user parameters like the granularity of clus-

tering, time horizon or number of clusters. Definition (1.3) facilitates understanding the

above-mentioned concepts.

The additive property over stream objects leads up to choose summary statistics in

data stream algorithms (Arthur and Vassilvitskii, 2007). The algorithm frequently main-

tains the statistical summaries about the dominant micro-clusters in specific time snap-

shots, these snapshots have time-gap between every two snapshots. The algorithm while

taking these statistics makes sure of gaining such a large number of micro-clusters and en-

sure such a high granularity with online updating because this increases the quality of the

clusters by changing the evolved data stream. Over a particular time horizon, CluStream

uses these current micro-clusters to process data and results with a higher level of clusters

up to the final clustering result. For more explanation to the above concepts let us, for

instance, assume that some user wants the clusters in a period of length h down from the

current time tc. Here we can benefit from the cluster feature subtractive property to find

the micro-clusters stored in the interval between the current time (tc) and the (tc−h). These

clusters are the historical higher-level clusters stored in the h-lengthy time horizon. To

ensure approximating clusters at any time interval, it is necessary to store micro-clusters

19

at specific time points, i.e. snapshots every gap time interval, that’s because it is impos-

sible to store them at every time instance. In the pyramidal time frame concept which is

based on the objects recency, the snapshots are categorized in different orders and stored

at different levels of granularity. The orders vary from 1 to log T in a form that enables

us from finding the granularity level. The passed clock time since the very beginning of

the stream is referred by T. The CluStream algorithm preserved the snapshots such that at

any point of time the algorithm stores only the last α+1 snapshots of ith order, α ≥ 1 is an

integer and the snapshots of the ith order occurs at time horizons of αi, so this allows for

storage redundancy, that if α = 3, so the state of micro-clusters at clock time 27 is related

to orders of 0, 1, 2 and 3. That’s mean each ith order snapshot is taken in a time such that

the stream clock time value since the beginning is divisible by αi.

The time horizon can be approximated for large L values as close as the user wants.

Also, regarding preferences, the pyramidal time window can be determined, so that it can

be specified according to specific time points like the month’s midst, the week’s ends and

so on. And to improve the granularity, small intervals can be chosen for taking the snap-

shots. In addition to the importance of applying strategies to eliminate the redundancy in

various snapshots times.

2.2.1.2. CluStream Online Phase

CluStream algorithm prepares the online information, which is the summary statis-

tics, which will be used by the offline phase afterward. In this phase, the online phase,

there is no need to know specific user parameters because there is no dependency on

any of them. Unlike in the offline phase, sometimes it is important to determine some

user parameters. Evolution analysis and Horizon-specific macro-clustering are some of

the offline components which use the online information. We can explain some of the

details by assuming that the algorithm, at any point of time, preserves n micro-clusters.

The n parameter is specified according to the main memory restriction, such that n is

larger than the number of clusters but at the same time it is less than the number of the

data stream points which still flow for a long time. So, the algorithm denotes the micro-

clusters by Mc1...Mcn, each has an identified unique id once it has been created. Merging

micro-clusters results with a new micro-cluster with id consists from the list of merged

micro-clusters iIDs. At any time, the algorithm shows a result which is the micro-clusters

current snapshot. And this result changes over time whenever the clock time becomes

divisible by αi and there is new object arriving from the flow data stream, where i is an

20

integer. Additionally, the algorithm removes any r-order micro-cluster that stored in more

than α1+r units past time.

CluStream uses k-means clustering algorithm in the offline phase to create the

clusters as the initial n micro-clusters. To do that it uses a large number of points in

which it depends on the algorithm complexity. Now and after the creation of these initial

micro-clusters, CluStream starts the online process with every arriving data point in order

to update the stored micro-clusters created previously. The new coming data point either

it get absorbed in the nearest one or it may create its new own micro-cluster. When new

point arrives, the algorithm computes the distance between the new point and the nearest

micro-cluster center, and if the choice is to merge the arriving data point, the algorithm

merges it with the nearest micro-cluster. Otherwise, if the new point doesn’t been founded

to be within the range of the closest micro-cluster regarding its radius parameter, the new

data point may be categorized as an outlier or as a seed of a new micro-cluster with new

unique id to distinguish it in the ahead coming steps. If creating a new micro-cluster

with a new id is the decision, it leads to reduce the total number of micro-clusters by

one to prepare such a space due to the memory limits constraints. We can do that by

one of the two solutions. The first solution is merging two close micro-clusters. And the

second solution is deleting the oldest micro-cluster after considering it as an outlier. If the

solution is the second one, we must ensure deleting it safely. It is important to show that

choosing the micro-cluster with the fewest number of data points to delete is not always

the best choice.

2.2.1.3. CluStream Offline Phase

Micro-clusters are efficiently maintained to be as intermediate statistical represen-

tations using the stored micro-clusters’ summary statistics instead of the large volume data

stream. This process is an offline process that enables the user from flexibility exploring

stream clusters over different horizons, so there is no one-pass requirements constraint.

But at the same time, the user provides two parameters, the first one is the time-horizon

h, and this is a benefit in determining the history amount needed to create higher-level

clusters. The second parameter is the higher-level clusters number k, and this to deter-

mine if we can find extra detailed clusters, or if we can mind more rough clusters. Note

that at each stage of the algorithm, the current set of micro-clusters depends on all the

stream processing entire history since the very beginning of it. To find the clusters over a

specific time horizon, we need to find the corresponding micro-clusters making use from

21

the additive and subtractive properties which extended from (Zhang et al., 1996) as in the

property 1.1 and property 1.2. Property 1.2 helps a lot in the approximation of the micro-

clusters over a pre-specified time horizon by using two snapshots at pre-defined intervals.

It is important to know that every time a new micro-cluster is created, the algorithm cre-

ates a unique id for it. And whenever two micro-clusters are merged, the micro-clustering

algorithm creates a list of the entire original ids in that micro-cluster in which we can call

it as an id-list.

2.3. Clusters Evolution Analysis

In the evolving data stream, a lot of significant changes may be recorded. So,

evolving data, as well as evolution analysis, are so important for a lot of business applica-

tions (Aggarwal et al., 2003). There are some important users’ parameters if one wishes

to be aware of these changes over specific time intervals such as a year or a week or a

decade changes. For that the algorithm have input parameters t1 and t2, t1 is some time in

the past, t2 is the current time, t2 > t1. Another parameter is the time horizon of length d

in which the micro-clusters will be compared over. When we compare between the micro-

clusters existing in the period [t1 − d, t1] with the micro-clusters existing in the period

[t2−d, t2], most of the cases intuitively gives reasonable results which can help in building

notes and concluding results which lead to the future decisions. For that, there are some

important questions we must ask about. We should know the micro-clusters exist at time

t2 and weren’t at time t1, that’s mean these newly created micro-clusters were created in

the period between the two times t1 and t2. If there is an indictable portion of missing

micro-clusters, so we can conclude that there are frequent changes in the data stream. At

the same time, if there are some micro-clusters were at the time t1 and still at the time t2

and how many portions they present from the current existing micro-clusters at all, to in-

dicate the stream stability. Algorithm store micro-clusters along with their corresponding

id and id lists, this will benefit so much in following up micro-clusters information and

changes details. Up to this point, we can classify the micro-clusters into three categories.

The first set of micro-clusters are these micro-clusters in the interval [t2 − d, t2] which

not of them were in the interval [t1 − d, t1]. So these micro-clusters were created in the

time interval between t1 and t2 and we can donate them by Madded(t1,t2). The second set

of micro-clusters are these micro-clusters interval [t1 − d, t1] and not of them are in the

interval [t2 − d, t2]. So these micro-clusters were omitted in the time interval between

t1 and t2 and we can donate them by Mdeleted(t1,t2). The third set of micro-clusters are

22

these micro-clusters interval [t2 − d, t2] and some or all of them were in the time interval

[t1 − d, t1]. So these micro-clusters were created before the time t1 and still to the time

t2 and we can donate them by Mretained(t1, t2). If this set of micro-clusters form a big

portion from the size of micro-clusters, this indicates how much the stream is stable over

time. So, CluStream algorithm is applied over each set of micro-clusters as own, so that it

updates them and creates newly updated sets of micro-clusters depending on the evolving

arrival data points.

2.3.1. Density Micro-Clustering Streams Algorithms

In a clustering data stream, it is impossible to record all the data. Therefore, it is

important to discover algorithms with a single pass clustering, unknown parameters like

number and size of clusters and with limited time and memory and evolving the changed

data. The idea of Micro-clusters arised from this need. So, Micro-cluster is a technique in

stream clustering that saves important information about the data objects in data streams,

which compresses the data effectively. In this section, we illustrate the density-based clus-

tering algorithms on data streams using micro-clusters, introducing their characteristics

along with merits and limitations analysis. We will highlight those density-based algo-

rithms that adopt and extends the micro-clusters concept (Zhang et al., 1996; Aggarwal

et al., 2003). These are DenStream, C-Denstream, rDenStream, and SDStream. We will

start illustrating DenStream algorithm with more details because the others based on it.

The micro-clusters concept is two-phase clustering and it is a widely known frame-

work for data stream clustering, which split the clustering process into an online compo-

nent and offline component. In the online component, the algorithm tries to capture and

store the important statistics from the data stream. While in the offline component it

generates the final clustering results, depending on the stored summary statistics stored

in the online phase. Density concept benefits in discovering the arbitrary shaped clus-

ters by distinguishing those dense areas from the scattered sparse areas. DBSCAN is an

important algorithm used in the offline component in the density-based data stream algo-

rithms. Due to memory limits and the unbounded flow of data stream. It is impossible

to store each coming object. So, micro-cluster is a well-known strategy special for this

purpose. Micro-clusters are the optimal representation for the summary statistics stored

in the online component and to be used afterward for the offline component clustering.

The framework for clustering evolving data streams in (Zhang et al., 1996) is the first to

present the micro-cluster concept, and it was such as a feature vector representation. See

23

Definition (1.4) and Definition (1.5). Figure (2.2) shows the framework of micro-clusters

in density-based clustering.

Figure 2.2. Micro-Clusters framework in density-based clustering (Ren and Ma, 2009).

2.3.1.1. DenStream

DenStream (Aggarwal et al., 2004) is a micro-cluster density-based data streams

clustering algorithm. DenStream is mainly based on CluStream (Zhang et al., 1996)

framework. It has two online-offline components. While density-based algorithms use

the number of points in some radius as a parameter in determining the high dense areas

from the low ones in the clustering process, micro-cluster density adopts a different con-

cept. It uses the fading function (Ren and Ma, 2009) which sums up the timestamps of

all points in some area. In other words, it based on neighborhood weighting areas. Den-

Stream keeps the frequent changes and differences between clusters so that the role of

these clusters changes over time along with outliers. To keep this evolved data stream,

DenStream uses p-micro-cluster and o-micro-cluster (Aggarwal et al., 2004) as special

structures, which are different mainly in their constrained weights. Definition (1.5), (Def-

inition 1.6) and Definition (1.7) define respectively what are core micro-cluster, potential

core micro-cluster and the outlier micro-cluster (Ng and Dash, 2010). Outlier buffer is

used in the process of p-micro-clusters and o-micro-clusters for separation. DenStream

24

is a DBSCAN-based online-offline stream clustering algorithm. By finishing the offline

component, the final clustering result can be achieved. In the online component, o-micro-

clusters in outlier-buffer are all kept in separate memory spaces. When new data records

arrived, they merged with the current existing p-micro-clusters and o-micro-cluster. But

how is that? If the new radius of the nearest p-micro-cluster after adding the new data

point to it is not more than the threshold, we add this data point to it. Otherwise, the

new point is added to the nearest o-micro-clusters. And we check for any change of this

o-micro-clusters weight, we can upgrade it to become p-micro-cluster if the new weight

becomes higher than the specified threshold. So, we can create a new p-micro cluster and

the old o-micro cluster will be deleted from the outlier buffer. Otherwise, the new data

point becomes like a seed for a newly created o-micro-cluster. These o-micro-clusters in

the outlier buffer may upgrade to become p-micro-cluster or they can downgrade to be-

come an outlier. In the offline component, DenStream generates the final clusters up to the

current point. Any density-based clustering algorithm, like DBSCAN, can be applied to

the p-micro-clusters created in the online phase. Based on the weights of micro-clusters,

the DenStream algorithm checks their weights every gap time interval to make new deci-

sions if need. The weight must be higher than the threshold to be able to make a decision

because it is all about to distinguish between the potential and real outliers micro-clusters

which will change to potential micro-clusters or removed from the outlier buffer depend-

ing on its weight. That’s means that the o-micro-clusters are a real outlier. At the same

time, if the o-micro-cluster weight becomes more than the specified threshold it will up-

grade to become p-micro-cluster. DenStream is an effective algorithm compared with

CluStream, and the results from many conducted experiments proof that. DenStream

execution time grows linearly with the stream proceeds.

2.3.1.2. SDStream

The SDStream (Zhou et al., 2008) is an online-offline stream clustering algorithm

that depends mostly on DenStream, the previously illustrated Algorithm. It is also a

density-based algorithm, so it can discover clusters with arbitrary shapes. SDStream

adopts sliding windows (Ester et al., 1996) technique in clustering data points, so it re-

gards only the data records in sliding window length and neglects the others. SDStream

algorithm like DenStream, assign a weight to its micro-clusters depending on the number

of points in each. So that it can distinguish between three types of micro-clusters, these

are c-micro-cluster, o-micro-cluster and p-micro-cluster. These micro-clusters take the

25

form of Exponential Histogram of Cluster Feature (EHCF). Definition (1.9) explore the

EHCF concepts (Ng and Dash, 2010), which depend on TCF in Definition (1.8) (Ng and

Dash, 2010).

2.3.1.3. rDenStream

rDenStream (Ruiz et al., 2009) algorithm depends on DenStream. While Den-

Stream algorithm has two phases, rDenStream algorithm has three phases. rDenStream’s

first two phases are perfectly like DenStream’s two phases, while the third phase is some-

thing special for rDenStream algorithm. This third phase is all about to improve the

quality of clustering by giving a second chance to the omitted data records, so that this

algorithm is suitable to those applications with a massive quantity of outliers. It leads to

an increase in the clustering’s robustness and quality as well. rDenStream keeps these

omitted records in memory to relearn from the omitted data points. So, rDenStream al-

gorithm is considered as memory usage and time complexity compared with DenStream,

but its results are better than DenStream.

2.3.1.4. C-DenStream

C-DenStream is a density-based algorithm (Ruiz et al., 2009), it uses domain or

background knowledge on the stream in a proposed semi-supervised method as an exten-

sion to the base algorithm DenStream to guide the clustering process. This knowledge

information is in the form of constraints. Constraints are either specific which refer to

those instances that must be in the same cluster (Must-Link constraints) or popular which

refer to those instances that must be in different clusters (Cannotlink constraints) (Ruiz

et al., 2007). The new with C-DenStream algorithm that it applies this idea of constraints

on streaming data taking cluster evolution and changes over time into consideration. So,

the differences between C-DenStream algorithm and DenStream algorithm are; firstly,

while DenStream uses the DBSCAN algorithm in the offline phase, C-DenStream uses C-

DBSCAN (Ruiz et al., 2007) for constraints. Secondly, C-DenStream uses the constraint

concept between micro-clusters when they are created, removed or maintained (Aggarwal

et al., 2003).

26

2.3.1.5. Density Micro-Clustering Discussions

In this section, we will show in brief the density-based micro-clustering four-

stream algorithms mentioned above, DenStream, SDStream, rDenstream, and C-DenStream

with their cons and pros. So, the user can choose a suitable algorithm according to his

own preferences and what he is interested in like the speed, the low memory usage, higher

accuracy and so on. The DenStream algorithm puts a weight for each data point. It is a

fast algorithm due to its ability to delete those outdated data points and the outliers before

merging. And because it doesn’t merge data points into a micro-cluster and that facilitates

exploring the outliers and saves time. SDStream only uses the most recent data streams,

while other algorithms consider the whole data stream points. It stores the micro-clusters

in the EHCF data structure form. So, SDStream saves memory and it can process only

with the most recent data points over the sliding window length, which means better ad-

dressing the clusters’ changes and evolutions. This algorithm is suitable when the applica-

tions interested more in the recent data streams. rDenStream algorithm based mainly on

DenStream; however, rDenStrean emphasizes handling outliers, such that it chose not to

remove the data in the outlier buffer and relearn from it which result in a higher accuracy

compared to DenStream algorithm. But on the other hand, it is slower than DenStream

and memory usage as well. C-DenStream is a real applicable algorithm. It adopts the

constraint concept on micro-clusters. In addition, it uses background knowledge to guide

the clustering process. In this algorithm, the clusters can’t have formed unless they con-

form to application semantics like geographical natural borders and objects.

2.3.2. DStream

DStream is a density-based framework for clustering stream data. Algorithms

which based on k-means, like CluStream, require some user-specified parameters, like the

number of clusters and time window, these algorithms can only find a cluster of spherical

shapes and cannot handle outliers and not suitable to find clusters of arbitrary shapes.

DStream addressed these issues. DStream is an online-offline algorithm, it has online

and offline components. The online component continuously reads input data records

and maps it into a density grid while the offline component computes the grid density,

detects and removes sporadic grids from the grid-list and adjusts the clustering. DStream

algorithm is a real-time clustering algorithm, it exploits the complicated relationships

27

between the decay factor, data density, and cluster structure, in addition, it captures the

dynamic changes by adopting a density decaying technique to the data stream in order

to generate clusters of arbitrary shapes effectively and efficiently. Another technique is

used for detecting sporadic grids, so to remove them and get a result with improved space

and time. So, DStream is a high-speed, efficiency and quality data stream clustering. To

forms clusters, it partitions the data space into many density grids since it is impossible

to retain all the raw data according to memory limits, and what all it needs is to work

with these grids. In the DStream algorithm, every grid has a characteristic vector and

then a model with discrete time steps is adopted. In Figure (2.3), the overall algorithm

steps are outlined. Line 4 shows the continuously reading data stream. In every step,

the while loop in lines 5-8, the algorithm reads a new record, maps this input data record

into some density grid and updates its characteristic vector. This is the online component

of the DStream algorithm. In lines 9-11, the algorithm performs the initial clustering

which is after one gap of time. In lines 12-15, every gap time, the algorithm detects and

removes sporadic grids from the grid-list and adjusts the clustering. And this is the offline

component of the DStream algorithm.

Figure 2.3. The overall process of DStream (Chen and Tu, 2007).

The grid density is always changing. It is possible to update the density of a grid

only when a new data record is mapped to that grid instead of updating the density values

28

of all grids and data records at each time step. And the time of receiving the last data

record should be recorded so that the density of the grid can be updated according to the

last update time when a new data record mapped to the grid. See Definitions (1.10, 1.2,

1.11, 1.12, 1.13, 1.14)

2.3.2.1. Grid Inspection and Bgap Determination

To capture the dynamic characteristics of data streams, the DStream algorithm

progressively decreases the density for each grid and data records. This is so important

stage since the grids become sparse after dense and vice versa, also dense and sparse

can downgrade or upgrade to transitional respectively. A sparse grid can downgrade to

the transitional one if it receives some new data records. That’s why the algorithm must

inspect the density for each grid and adjust the clustering process every time gap (line

14 in code Figure (2.3)). Note that if we choose this time interval to be too long, data

streams’ dynamical changes will not be recognized well. On the other hand, if we choose

this time interval to be too small, then it will result in too much computation in the offline

component, which makes the work heavy and leads to a speed mismatch between the input

data and the offline computations. DStream adopts the idea of setting the time interval to

be the smaller of those two times intervals: The first time interval is the minimum needed

time for the dense grid to downgrade to sparse.

δ0 =

⌊
loglamda

(
Cl

Cm

)⌋
(2.1)

While the second-time interval is the minimum time for the sparse grid to upgrade to

become dense grid.

δ1 =

⌊
loglamda

(
N −Cm

N −Cl

)⌋
(2.2)

So, DStream looks at both and then chooses the small between them to ensure that the

inspection process successfully detects and recognizes all dynamic characteristics of the

29

data stream in all grids.

Gap = minδ0, δ1 (2.3)

Gap = min
⌊
loglamda

(
Cl

Cm

)⌋
,

⌊
loglamda

(
N −Cm

N −Cl

)⌋
(2.4)

Gap =

⌊
loglamda

(
max

Cl

Cm
,

N −Cm

N −Cl

)⌋
(2.5)

2.3.2.2. Sporadic Grids Removing

The very high number of grids is a critical big challenge the DStream algorithm

faces especially when the data is high-dimension andmost space grids are either empty or

do not receive data stream records over and over. So, in processing and storing, only those

non empty grids can be regarded and put into consideration, and the others are neglected.

But the problem appears when there are outlier data in the grid space that are present in

non empty grids which must be taken into consideration when processing, storing and

clustering. The number of grids that contain very few numbers of data records, sporadic

grids, increases extremely fast as the data stream flow at high speed, which causes an

overall system slowness. So, what kind of grids the DStream mention about in code line

13 in Figure (2.3)? There are two kinds of sporadic grids whose density becomes less than

some specified threshold. The first one is the sporadic grids who receive small amounts of

data. This kind of grids can be deleted from the data space along with their characteristic

vectors and reset their density to zero. It is experimentally proven that deleting this kind

of grids doesn’t affect the clustering quality. After that, if many data records from the

streamflow are mapped to the previously deleted grid, this grid is added back to the grid

list with a zero density. While the other kind of sporadic grids is the grids with many data

records but their densities became less than the threshold by the effect of decay factor.

These grids have a hope to upgrade and to become dense or transitional grids, so it is

wrong to delete this kind of sporadic grids.

30

2.3.2.3. DStream Clustering Algorithm

Figure (2.4) and Figure (2.5) are describing initial clustering and adjust cluster-

ing process respectively. The algorithm continues reading from the flow stream of data

records and computes the density of all grids in the grid list. The initial clustering process

used in lines 10 in Figure (2.3) used only in the first-time gaps to generate the initial clus-

ter. After the first gap then Adjust clustering process used in lines 14 in Figure (2.3) is

executed repeatedly every time gap. Initial clustering and Adjust clustering processes are

shown in Figure (2.4) and Figure (2.5) respectively. Depending on all the grids’ current

densities, the DStream algorithm continues removing sporadic grids that are candidates

for removal and depending on that, it adjusts clustering every time gap considering only

the grids in the grid list to maintain an efficient, fast and high-quality DStream algorithm.

Figure 2.4. The procedure for initial clustering.

2.3.3. ClusTree

ClusTree is a parameter-free and any-time data stream algorithm, it finds a solu-

tion for a lot of challenges like limited memory and time, maintaining results at any point

31

Figure 2.5. The Procedure for dynamic adjusting clusters (Chen and Tu, 2007).

in time and adapting the clustering process according to the steam speed. Besides, Clus-

Tree uses novel descent strategies for handling the slow streams, and it uses aggregation

mechanisms for handling the fast streams. Also, ClusTree puts the data stream point’s

ages into consideration for giving the more recent data points more importance by using

such an exponential decay function. Whenever new data records come, ClusTree algo-

rithm updates the results according to the newly arrived data records through performing

single pass over them as well as it changes all the stream inter-arrival times. ClusTree al-

gorithm is an experimentally approved that it is an efficient and effective in self-adaptive

data stream clustering as well as it is scalable for giving any-time clustering results.

32

2.3.3.1. Self-Adaptive Anytime Stream Clustering

ClusTree is an index structure based algorithm, it can store and maintain a compact

view any time the user seeks it. It is the first stream clustering algorithm for the anytime

merit. ClusTree is a self-adaptive algorithm which has the ability to adapt to the coming

data points stream speed automatically. And due to that, ClusTree preserves the model as

whole and doesn’t omit any data point, so that it inserts the coming stream object into the

index structure and may merge it into the previous aggregated objects too. The structure

of this section is organized as follows: In section 2.3.3.2, we define the data structure of

the ClusTree along with the anytime insertion process. Section 2.3.3.3 describes older

objects aging in the anytime algorithm. Sections 2.3.3.4 and 2.3.4 describe how to deal

with fast streams and slow streams respectively. Section 2.3.5 summarize how ClusTree

can handle different cluster shapes and transitions. The final summarization, solutions,

and benefits of the ClusTree streaming algorithm are in Section 2.4.

2.3.3.2. Micro-Clusters and Anytime Insert

The data distribution in ClusTree algorithm based mainly on the idea of micro-

clusters. Micro-cluster is a famous technique when the case is streaming a massive data

(Aggarwal et al., 2003, 2004; Zhang et al., 1996). So that, micro-cluster which is in a

tuple feature vector is the suitable representation for the data as all. Periodically, ClusTree

algorithm computes the mean and variance of its micro-clusters, so that there is no need

to access all stream data records or even store them due to the memory limit. The cluster

feature tuple, CF = (n, LS, SS) is the form of representation instead of the store all objects,

n is the number of objects, LS is the linear sum of these objects and SS is their squared

sum. As stream data points flow, the cluster feature is updated incrementally, it can be

considered as the true representation of the micro-clusters. So that, stream data points

can be mapped to the true or the most similar micro-cluster easily. ClusTree algorithm

builds a hierarchy of micro-clusters at different levels of granularity (Kranen et al., 2011).

So that, it adopts hierarchical indexing structures from R-tree family (Beckmann et al.,

1990; Guttman, 1984; Seidl et al., 2009) which render preserving cluster features as well

as provide such an efficiently locating a right place to insert any coming stream object

into a micro-cluster. For the algorithm to determine leaf entry that contains the most

similar micro-cluster to the new coming object, it descends the tree down until reach

33

that leaf. If the similarity is enough, the algorithm updates the micro-cluster tuple values.

Otherwise, it creates a new micro-cluster and forms its cluster feature (CF) with its values.

But here is an important point to mention about, sometimes there is no enough time to

descend the tree down to reach the leaf whenever and in anytime there is a new data

point comes from the stream to insert it to the tree. So, ClusTree proposes techniques

to handle such a case before reaching the tree leaf. The first technique is about keeping

a global queue. But the global queue strategy has cons and pros. It is so simple and

straightforward technique; however, it requires a big buffer and this needs time to deal

with like time to empty that buffer, for example, resulting in a time-consuming algorithm.

The second strategy maintains a global aggregate. This technique also has cons and pros.

Maintaining a global aggregate solves the memory usage problem, but at the same time,

it loses too much information when aggregating arbitrary objects. So, there is a third

strategy proposed by ClusTree, which is interrupting the insertion process. This strategy

is the local aggregate, which solves the problem of losing information, so that it preserves

the clustering necessary information, as well as ensures that the algorithm can insert any

newly coming data points at once. So, when there is a new object arrives, it stored in a

local aggregate temporarily and this needs a space slightly larger than the space required

in the global aggregate but with more accuracy. Local aggregates are a perfect solution

compared with the two other discussed solutions that are the local aggregates that can be

naturally integrated into the tree structure, and moreover, in the local aggregate, the time is

used for regular inserts and to take a buffered local aggregate as a hitchhiker. Node entries

in ClusTree hierarchy characterizes the subtrees cluster feature along with its properties,

i.e. it contains the number n of aggregated objects in its subtree, their linear sum LS, and

their squared sum SS, a pointer to its subtree, as well as a temporary buffer entry for local

aggregates (CFs) as temporary insertions. These temporary buffers only can be existing

in the inner nodes; the leaf entries don’t have buffers, due to that the insertion operation

happens at leaves. Figure (2.6.a) illustrates the structure of an inner and leaf entries.

R-tree, R*-tree, etc. (Beckmann et al., 1990; Guttman, 1984; Seidl et al., 2009)

are examples of a multidimensional index tree structures in which the ClusTree index

structures can be created and updated and only stores CFs. ClusTree in the insertion

process, descents down to the closest mean subtree depending on distance calculations.

The same with splitting, it outs two groups from one after minimizing the intra-group

distances depending on the pairwise distances between all entries inside the node that

going to be split. ClusTree has a buffer in each entry, which provides the ability to anytime

34

Figure 2.6. a) Inner and leaf nodes structures. b) Insertion process (Kranen et al., 2011).

stream algorithm. A buffer is a temporary place for storing either objects or aggregates

that during insertion, due to the fast stream, can’t reach the leaf level. The CF is stored

in a buffer of a suitable entry when the insertion is interrupted. By suitable entry, we

mean the entry that forms the root of the subtree in which we can descend next. Any time

after that whenever this subtree is reached, the data object stores in its buffer are handled

along with the hitchhiker and the insertion process continues. Figure (2.6.b) illustrates

an insertion process example. Assume that we want to insert the blue dashed object next

to the tree root node, and the right place for this object is the leaf node entry pointed by

the dashed black arrow. In this process let us assume that the buffer of the leftmost entry

on the second level is full. This full buffer belongs to the leaf node which is pointed by

the solid red arrow. The insertion process descends to the second level and then it picks

up the left entry buffer in its buffer CF for hitchhikers. It is shown in Figure (2.6.b) as a

solid box at the right of the insertion object. Afterward, to the third level, the insertion

object along with the hitchhiker descends the tree. The insertion object descends to the

right entry alone to become a leaf or part from a leaf entry. But the hitchhiker stored

in the left entry buffer for further future handling that’s because the insertion object and

the hitchhiker don’t belong to the same subtrees. Taking the hitchhiker along with the

insertion object and the buffer temporary storage is the point that the algorithm is an any-

time stream clustering algorithm. Any time the algorithm got interrupted, it makes the

best use future descents down the tree. Whenever the insertion process descents down to

the target leaf node, the closest two entries are merged if there is no still time for splitting.

Each leaf node entry contains an ordered unique id. It benefits in the tracking of concept

drift, changes in clusters, novelty, outlier detection, etc.

35

2.3.3.3. Maintaining an Up-To-Date Clustering

ClusTree algorithm, to give the most recent objects more importance, uses an

exponential time-dependent famous decay function w(t) = β − λΔt, with the λ is the

decay rate to control the objects weighs in such a way makes the algorithm can control

the forgotten or maintaining objects more by playing with the decay rate value. As the

value of the decay factor increases, the old objects forgotten in a faster way and so on.

ClusTree sets β = 2. For this basis, 1/λ is the half-life of objects. So that it can keep

such an up to date clustering view. Making elements of a micro-cluster feature depending

on the current time t incorporates decay factor and ensures that the inner entries of the

ClusTree still summarize their subtrees accurately (Kranen et al., 2011):

n(t) =

n∑
i=1

w(t − tsi) (2.6)

LS (t) =

n∑
i=1

w(t − tsi) ∗ xi (2.7)

S S (t) =

n∑
i=1

w(t − tsi) ∗ xi
2 (2.8)

n is the number of unweight contributing objects, and tsi denotes the timestamp of

adding the data xi to the CF. Cluster features are suitable for clustering stream data due to

the additive and multiplicity properties (Aggarwal et al., 2004): if in some period of time

from the current time (t) to (t + Δt), no object is added to a CF(t), then the new value of

the cluster feature is the old one at the time (t) multiplied with the decay function of the

time interval (Δt) : CF(t+Δt) = w(Δt) ∗CF(t). This property’s proof found in (Aggarwal

et al., 2004). Every object has its arrival timestamp and every entry has its last update

timestamp too. These parameters are needed in computing the decay function. While the

insertion process and descend the tree down to the leaf, all entries in the node are updated

to the arrival timestamp, tx. So that all entries in the same node have the same timestamp,

tx always. The new timestamp’s results are:

36

es ∗CF = w(tx − es ∗ ts) ∗ es ∗CF (2.9)

es ∗ bu f f er = w(tx − es ∗ ts) ∗ es ∗ bu f f er (2.10)

es ∗ ts = tx (2.11)

tx is the object x timestamp, es.ts denotes the last update timestamp of the entry

es. Every inner node in the tree structure summarizes its subtree. So, contacting the last

update timestamp field in every node, besides using this formula in Equation (2.12) in

weighting, ensures capturing decay with time correctly.

es ∗CF(t+Δt) =

⎛⎜⎜⎜⎜⎜⎝w(Δt) ∗
vs∑

k=0

esoi ∗CF(t)

⎞⎟⎟⎟⎟⎟⎠ + es ∗ bu f f er(t+Δt) (2.12)

As in Definition (1.15), the weighted cluster features are merely replaced with the

non-weighted ones, and this means there is no need for space to store the weighted ones.

In order to avoid splitting, the algorithm weighs with time, so that it just checks over

the least significant entry, because it is the least entry that can contributes or even affects

the clustering, and see whether it can discard it or not. If so, the algorithm discards it

and subtracts its summary statistics values from its entire path up to the root. By that, it

prepares a place for another future insertion entry.

2.3.3.4. Speed-up Through Aggregation (Very Fast Streams Case)

ClusTree algorithm speed-up through aggregation before insertion when it faces

fast data streams. The algorithm firstly needs to determine which objects through the

coming objects should be together in the same leaf to aggregate together. That will facil-

itate pretty much when descending the tree down to insert a new object. ClusTree creates

different aggregates due to that most of the time the incoming objects are dissimilar and

so ClusTree creates different aggregates each for the most similar incoming objects. So,

till now the objects in the same aggregate are mostly similar. When the stream is so fast,

the algorithm stores the incoming objects in the closest aggregate, so that to be not more

37

than some specified distance threshold with respect to the distance to the mean.

2.3.4. Making Better Use of Time Through Alternative Descent

Strategies (Slow Streams Case)

ClusTree algorithm suggests alternative techniques for non-interrupting inserting

objects into micro-clusters as ways how to traverse the tree structure and explores the

down paths. Using these alternative descent strategies, the concept of anytime clustering

is completed and we can use any remaining time to improve the insertion process. In

slow streams, the insertion process just follows a single path. It starts by picking the

leaf node with the smallest distance between this leaf child and the insertion object. And

after reaching the leaf, we still think about how to exploit the remaining time. One most

important strategy is the depth-first strategy. Almost in slow streams, there is no such

interruption while inserting some incoming objects. So, the process in the depth-first

strategy continues to traverse down the tree in some path regarding the similarity between

the object to be inserted and the reachable leaf. And considering the time we have the

insertion continues down as far as we can until reaching the leaf in Figure (2.7).

Figure 2.7. Descent strategies. a) Depth first. b) Priority breadth first. c) Best first

(Kranen et al., 2011).

This result is with a good micro-clusters resolution. And if there is still time, we

can do a lot of things, like for instance, we can use it anytime another incoming object

to insert. Furthermore, we can adapt the model size to the stream speed by splitting

the leaf. In slow streams, the tree continues to grow due to mostly reaching the tree

leaves, unlike in the fast stream case, we use aggregation strategy to avoid inserting on

the higher levels. But we know that the stream clustering algorithms have to handle the

38

limited memory challenge, so the tree growth due to the time available in slow streams is

not ideal and there is a limitation on this grows. So, the depth-first strategy is good for

algorithm ideality when reaching the most down level, leaves. Actually, reaching the leaf

level needs just a few steps of computations and that’s why ClusTree is considered a fast

anytime stream clustering algorithm. ClusTree suggests other strategies to deal with the

slow streams like Best first traversal, Priority breadth-first traversal, and Iterative depth-

first descent, Figure (2.7). The most difference between these three descent strategies that

the depth-first descent strategy stops once the maximal model size is obtained and a leaf is

reached, but the Priority breadth-first and best first make use of the additional remaining

time to check if there are any alternative insertion options. So, the best first traversal and

priority breadth-first traversal has the same drawback which is depending on how soon the

algorithm is interrupted and on how often it has to go back and continue from upper-level

nodes. The algorithm might buffer the object at the upper levels and it still there. But

in depth-first strategy, the algorithm is mostly able to reach leaf level nodes. According

to the previous analysis, ClusTree suggests an alternative descent strategy which is like

a compromise between the three previous strategies. It is the Iterative depth-first descent

strategy. In this strategy, the algorithm tries to reach leaf level, and if still there any more

time, the algorithm uses it to validate the taken decisions. Due to that ClusTree algorithm

adopts the last strategy, Iterative depth-first descent, so we will focus on it ahead.

The idea of iterative depth-first descent strategy is starting with the original version

strategy which is the depth-first descent strategy. As shown in Figure (2.8), upon reaching

leaf level, and as the time permits, the algorithm evaluates the alternatives taken decisions

at the nodes along the depth-first path iteratively. Start the tree descending down, Figure

(2.8.a). Assume the insertion process is not interrupted. So, it returns back to the first level

and from the previously chosen entry starts descending the tree down. Up to this point

as in Figure (2.8.b), we have more two alternatives leaf node candidates in which we can

choose the best from the three options to insert the newly coming object, Figure (2.8.c).

And again as time permits, we can repeat the process as a recursive by considering the

chosen root child, the chosen node at the second level, to behave as the new current root on

the current best path so far, Figure (2.8.d). The process continues like that, Figure (2.8e-

f), until no more unchecked siblings on the path remains or any interruption happened.

On interruption case, the algorithm buffer/insert and update as all other strategies do.

Iterative depth-first descent does at most log2 n comparisons. As an example, for

50,000 micro-clusters and setting the fanout by 3, it needs only like 100 comparisons and

39

Figure 2.8. Iterative depth first descent (Kranen et al., 2011).

it is such an incredible contrast to 50,000 comparisons in (Aggarwal et al., 2003; Cao

et al., 2006). So, ClusTree algorithm uses further optimization of inserts accounts for

very long-time spans and aggregation for very short time spans per object (Kranen et al.,

2011).

2.3.5. Cluster Shapes and Cluster Transitions

Up to this point, as the algorithm stores in the tree leaves a set of cluster features.

So, by that, we can say that we finished the online component of the ClusTree algorithm.

And now it is the time to apply any static algorithm to these cluster features to get the

final clustering result. If we want to explore such an arbitrary shapes clusters, so (Cao

et al., 2006) is for density-based clustering and so (O’callaghan et al., 2002) for k-center

clustering and we have various kind of algorithms to apply in the offline mode. The most

interesting thing with the ClusTree compared to others (Aggarwal et al., 2003, 2004;

O’callaghan et al., 2002; Cao et al., 2006) that in its online component try to preserve

such a very big number of cluster features, so that it prepares a good input for the offline

clustering component. There are several strategies suggested by details in (Spiliopoulou

et al., 2006), can process cluster transitions like outlier detection, concept drift detection,

and novelty. Furthermore, there are many of these techniques we mentioned in the intro-

duction in Chapter 1. ClusTree can apply any from these approaches to its output clusters.

So, ClusTree algorithm can be used to detect arbitrary shaped clusters, outlier detection,

concept drift detection, novelty and time horizon.

40

2.4. ClusTree Algorithm Conclusion

Here is a summary for all ClusTree data stream clustering algorithm techniques

and solutions supported by a flowchart, in Figure (2.9), for all algorithm steps using depth-

first descent strategy in slow streams. So, the strategies and techniques are as follows:

• Tree hierarchical data structure is to let the insert process to be logarithmic and so

decrease the further computations.

• Buffering is to adapt the tree size, in addition to enabling anytime processing ad-

vantage.

• Decay factor function is such an exponential function to age older objects and so it

gives the recent objects more importance.

• Aggregation is to speed-up clustering when the stream is fast.

• Descent strategies (the depth-first): let the algorithm better use the available time

when the stream is slow beside insertion optimizing.

• Cluster features facilitate dealing with cluster transitions like outlier detection, con-

cept drift detection, and novelty.

Here is a summary for all ClusTree data stream clustering algorithm techniques

and solutions supported by a flowchart, in Figure (2.9), for all algorithm steps using depth-

first descent strategy in slow streams. So, the strategies and techniques are as follows:

• Tree hierarchical data structure is to let the insert process to be logarithmic and so

decrease the further computations.

• Buffering is to adapt the tree size, in addition to enabling anytime processing ad-

vantage.

• Decay factor function is such an exponential function to age older objects and so it

gives the recent objects more importance.

• Aggregation is to speed-up clustering when the stream is fast.

• Descent strategies (the depth-first): let the algorithm better use the available time

when the stream is slow beside insertion optimizing.

• Cluster features facilitate dealing with cluster transitions like outlier detection, con-

cept drift detection, and novelty.

41

Figure 2.9. Flow chart of the ClusTree algorithm (Kranen et al., 2011).

42

CHAPTER 3

OUR PROPOSED ALGORITHM: DGSTREAM

DGStream algorithm assumes special architecture to cluster such unlimited data

records. Like most stream algorithms, DGStream also assumes a model with a discrete-

time step model, where every incoming record is labeled by an integer timestamp 0, 1,

2. . . n. The timestamp indicates the record arrival time. As the online-offline approach

has been integrated successfully with many stream clustering algorithms (Cao et al., 2006;

Chen and Tu, 2007; Kranen et al., 2011), DGStream has an online-offline processing

framework as well. In the online phase, it uses feature vectors represented by a micro-

cluster for each grid to dynamically maintain the necessary information about the uninter-

rupted arriving data records. While in the offline phase, DGStream employs a DBSCAN

algorithm to benefit from its speed and to improve the running time. And it depends on

grids to reduce the time complexity and accelerates the speed once more (Mekky, 2016;

Alhanjouri and Ahmed, 2012). DGStream also employs a decay function mechanism to

accurately reflect the stream evolution process. In addition, it uses a mechanism to delete

the sparse grids to maintain processing only with a limited number of dense grids, which

saves both time and memory of the system. DGStream also employs a mechanism to get

rid of the noise and to handle outliers. We will see all the steps that DGStream follows in

the following subsections.

3.1. Dataset Input and Standardization

Standardization of the features of the dataset is a general requirement for many

data mining algorithms. It aims to rescale the distribution of data values; i.e. make the

data in the dataset dimensionless, though it helps in defining data in some standard indices.

So, in our algorithm, it is necessary to standardize the datasets because we are going to

calculate the similarity, dissimilarity and a number of associated performance metrics of

the resulted clusters after the clustering process. Z-score and minimum-maximum (or

normalization, or min-max scaling) are popular examples for standardizations. In imple-

menting DGStream, we used min-max standardization that maps the minimum value to

0, and the maximum value to 1. This type of scaling gets the standard deviations smaller,

43

which can reduce the effect of the outliers. Since the stream data distribution is almost

non-stationary, i.e. it changes over time, which is also known as concept drift; our algo-

rithm detects and considers these changes through the damped window model. To deal

with this phenomenon, DGStream assigns the most recent incoming data points to higher

weights than the weights of the older points. These weights exponentially decrease as

the time goes via an employed decaying function. The density-based algorithms in (Cao

et al., 2006; Chen and Tu, 2007; Isaksson et al., 2012) also adapted this model. Regarding

non-stationary stream, DGStream decides to delete or create some grid according to the

overall sum of all weights of data points in that grid. So that if one grid keeps receiving

new data points the weight of the grid will be high because of the high weight of the

new data. In case the grid does not receive any new data and its data points age over the

time to become below some threshold, DGStream decides to delete this grid. In this way,

DGStream’s grids can be adapted to support the nonstationary data stream.

3.2. Divide the Multi-Dimensional Data Stream into Grids

DGStream divides the multi-dimensional space of the input data into density grids;

we used this technique because it is impractical to maintain all the raw data. These small

grids each has its density which is associated with its data records counted in it (Alhan-

jouri and Ahmed, 2012). And after that, the clustering process keeps these density grids

and deals with each grid as a local unit to output the final cluster set. Figure (3.1) shows

how the density grids can be used between the online and offline phases to cluster the data

streams.

Figure 3.1. Explanation art of using the density grids in stream clustering.

44

3.3. Choosing Representative Points from the Density Grids

In the clustering step, instead of taking all the data points to process together, it is

better to choose a set from them to represent the whole data stream we want to process.

As in CURE clustering algorithm (Guha et al., 2001), it adapts the idea of choosing points

from each cluster which are well scattered and can represent the cluster. After this process,

it shrinks them towards the mean of the cluster by some fraction to mitigate the outliers’

effects. Using representative points in clustering helps in identifying both spherical and

non-spherical clusters and speed up the clustering process. Therefore, DGStream uses the

same principle of choosing well-scattered representative points to represent all the read

time horizon bunch of objects such that the chosen representative points attempt to cap-

ture the physical shape and the geometry of the dataset. Choosing representative points

instead of all the data points they represent in DGStream, provides many benefits. It saves

execution time because this leads us to deal only with these representative points instead

of all the data they represent. For example, in the case of computing the distance between

two clusters, the only needed distance to compute is the distance between the closest pair

of representative points from each cluster. It also saves the system memory because we

need only to store the representative points as input to the clustering algorithm. In this re-

gard, there are other techniques to do this like the constructions in (De Silva and Carlsson,

2004). For instance, the lazy-witness construction robustly computes topological invari-

ants of geometric objects. It samples the dataset and uses only a comparatively small

subset point cloud that can accurately capture the dataset shape. It firstly selects land-

mark points from the dataset randomly. On the other hand, for achieving more spaced

points, it may select this subset by performing a sequential maximum-minimum selec-

tion such that selecting the point that maximizes the minimum distance to all the selected

points chosen so far.

As we said; it is important for the chosen representative data points to capture

the data stream from which they are chosen from, i.e. the original stream and the chosen

representative set of points must have the same shape. It is clear from Figure (3.2) that the

black points that are used in the pre-clustering process are representing the input stream.

Moreover, every time we read a number of examples from the incoming stream, according

to the time horizon parameter, we choose well-scattered data points from the read data to

represent it and continue repeating this process as the stream flow over time. The non-

chosen data points from the stream will be labeled to the resulted clusters, as we will see

later in this study. This step benefits in giving our algorithm a good time improvement

45

(Mekky, 2016; Alhanjouri and Ahmed, 2012), as depicted in the experimental results

section.

Figure 3.2. Black points are the representative points in each cell.

3.4. DGStream Clustering Process

Figure (3.3) outlines the overall DGStream algorithm. First, the algorithm reads

a large number of normalized data points, and then it chooses a number of points to

represent them. The large number must be enough to form such initial cluster set, it chosen

about 4000 data points from the synthetic dataset in the first experinment, and 5000 points

in other real-world datasets. After that, DGStream can build the SP tree of density grids

and computes the initial cluster set by clustering the tree leaves. Then, it updates the

characteristic vectors of the clustered grids from their initial values. Depending on the

values stored in the characteristic vectors, DGStream classifies the grids to dense and

sparse ones. The other points which are not chosen are labeled to the output clusters

using some strategy for labeling the points to the best clusters they can belong. After

that, whenever some data record arrives, the online phase of DGStream reads and maps

it to the most suitable density grid in the SP tree, and accordingly updates the grid’s

characteristic vector values. While in the offline phase, at every pre-specified gap time,

DGStream computes the densities of the grids and checks out if there is any sparse grid

upgrade to become dense or if there is any grid that must be marked as a sparse grid to

be deleted afterwards. The cluster set is checked and corrected dynamically by calling

MainClustering method indicated in Figure (3.4).

To hold the dynamic characteristics of data streams, DGStream algorithm progres-

sively decreases the density for each dense grid over time if it does not receive any data

46

records. This is an important stage since the dense grids may become sparse and vice

versa. A sparse grid can be upgraded to become dense if new stream objects are mapped

to it. That is why the algorithm must inspect the density for each grid and depending on

that, it calls the MainClustering procedure at every gap time to adjust the final cluster set

result (line 4 in the code in Figure (3.3)). The grid density is always changing. DGStream

updates the grid’s density only in the case the grid receives new input data records instead

of updating all data records’ weights and therefore the SP tree grids’ characteristic vectors

as well at each time step. The time of receiving the last data record, which is the time of

updating the density of the grid which received that record, should be recorded to be the

last update time of that grid which is considered when a new data record is mapped to the

grid (Chen and Tu, 2007). Following this step saves θ(N) to θ(1) in running time, which

means that it improves time efficiency since N, the number of grids, is large. Additionally,

this leads to memory saving since there is no need to resave all the densities and all the

corresponding timestamps of all records of the updated and not updated grids. What we

need to save for each grid is the characteristic vector.

Figure 3.3. DGStream algorithm pseudocode.

3.5. Removing Sparse Grids

The very high number of grids is a critical big challenge DGStream algorithm

faces especially when the data has high-dimensions. And since most of the grids are either

empty i.e. contains very few number of data records or do not receive stream data records

47

Figure 3.4. MainClustering method pseudocode in DGStream algorithm.

for long periods, the number of these sparse grids increases extremely fast as the data

stream flows in a high speed, which causes an overall system slowness. So, the solution is

to detect the grids whose density become less than some specified threshold due to small

data input and remove them afterwards. Only the dense grids taken into consideration

in processing and storing. The other sparse grids are neglected and removed afterwards.

After that, if one removed grid receives a number of records, it will be added back to the

SPTree grids but with a zero density in a hope to be upgraded to a dense one.

3.6. Labeling All Points to the Resulted Cluster Set

As it has been mentioned before, the clustering process occurs only on the well-

chosen data points from the incoming stream after each time horizon. So, now is the

time to do the labeling step which works with the rest of the not-chosen stream data

points in placing each to the existing point to the most suitable or similar macro-cluster

in the resulted macro-clusters so far. Each data point is assigned to the macro-cluster

that contains the closest representative point to this one. After doing the labeling step,

all the stream data points will be allocated to macro-clusters. Additionally, there is a

post-processing step that specialized in merging and deleting such macro-clusters. That

is macro-clusters with the same density and close enough to each other if found, they will

be merged in one macro-cluster in the post-processing step. In addition, when there is

any macro-cluster whose weight is lower than some specified threshold value, it will be

deleted from the cluster set and considered as an outlier.

48

3.7. Handling Outliers

Generally, the datasets have outliers as a result of the problems that may be faced

while entering data or errors in the measurement process. The distances between the

outlier points and the nearest micro-clusters are high and more than the specified threshold

in the DBSCAN offline algorithm. DGStream detects outliers and while the algorithm

continue reading data points from the stream if some outliers near each other form such a

dense grid with weight more than the specified threshold value it is upgraded to become

a new micro-cluster. Otherwise, if its weight becomes less and less until become less

than some threshold due to the decay factor aging, DGStream safely deletes it without

degrading the algorithm quality. Handling outliers is a very important step to finish the

clustering process in the data stream clustering to save both time and space of the system.

3.8. DGStream Clustering Stability

It is attractive to use stability-based principles when we want to choose our mod-

els. Interestingly, it does not require a specific model to be applied to, but it can be applied

to any clustering algorithm. One could intuitively assume that clustering stability is very

much related to simple solutions that have the most stable parameters, but this is not nec-

essarily true. Many studies show that the more complicated solutions can also be stable

by choosing their parameters well, that it is needed to look at the theoretical results when

deciding the stability-based model selection.

So, we can claim that algorithm A is stable if it almost surely outputs the same

clustering result on a sample whose size approaches to infinity every time we run it. That

is limm→∞ Pr(A(Wm) = Ck); m is the sample size, W is the relative frequency, Ck is the

k output clustering result. Then, we can measure the instability from instability(A) :=

1 − limm→∞ Pr(A(Wm) = Ck), which yields zero if algorithm A is stable. Instability of

an algorithm is also obtained by computing the expected distance between two cluster-

ing’s results on two different datasets of the same size (Von Luxburg et al., 2010) that is

instability(A) := E(distance(Ck(xn),Ck(x̀n))).

When it comes to our proposed algorithm, stability of DGStream lies in its robust-

ness against independent resampling, random fluctuations in the data, and the replace-

ments of the subsamples. We achieve this by choosing the best combinations with right

values for the parameters and so we can get good clustering results with the best stability

49

and avoid wrong ones such as wrong split for at least one true cluster or wrong merge for

at least two clusters. In more detail, in DGStream to evaluate the clustering stability, we

need to run it several times on slightly different datasets. To achieve this, we need to gen-

erate a number of troubled versions of the dataset. These dataset versions are generated by

subsampling or adding noise and outliers. In subsampling, we need to work with samples

of different sizes. We drew such random noise-inlaid subsamples. In order not to lose the

structure we want to discover by clustering with our algorithm, we must not change the

samples too often. On the other hand, we might observe no significant stability results if

the change in the dataset is not sufficient. So, it is a trade-off which we must cautiously

deal with in all cases. Then, as usual, doing the dimensionality reduction to work with a

low-dimension dataset is important. In this regard, DGStream doesn’t commit any over-

sensitive reactions to noise and outliers, which is considered as the most prominent factor

in stumbling these bad results of splitting or merging clusters.

Let’s compare our algorithm with the stable approach proposed by Carlsson and

Memoli (Carlsson and MÃŠmoli, 2010) regarding clustering stability. Carlsson and Mem-

oli’s approach constructs a hierarchical relationship among data to do the clustering pro-

cess. DGStream is a clustering algorithm based on density and grids which detects and

handles the dense clusters in the dataset in a different way from Carlsson and Memoli’s

approach.

Carlsson and Memoli’s approach obtains an existence and uniqueness theorem in-

stead of a non-existence result obtained by Kleinberg (2002) previously which tells that

it is impossible for any standard clustering algorithm to simultaneously satisfy scale in-

variance, richness, and consistency. In Carlsson and Memoli’s approach, the stability and

convergence are established for a single linkage hierarchical clustering (SLHC) and that

relaxes Kleinberg’s impossibility result. Carlsson and Memoli’s approach allows getting

a hierarchical output from clustering methods, and then one can obtain uniqueness and

existence. Carlsson and Memoli convergence results also refine the Hartigan’s previous

observation (Hartigan, 1985) regarding the underlying density. It does single linkage (SL)

clustering of an independent, identically distributed (i.i.d.) samples from that density. The

convergence results adopt general settings and it neither assumes such a smooth manifold

underlying space nor assumes that the underlying probability measure must be with a

density related to any reference measure. It does not matter how the points are distributed

inside the space grids in the dataset. So, the SLHC is insensitive to variations in the

density (Hartigan, 1981).

DGStream does care about how the data is distributed inside the space grids, the

50

order of arrival of the records, time they arrived and enter the clustering process is impor-

tant in DGStream because DGStream employs a decay factor which ages the points over

time. The point may exist and may belong to some cluster in some time, while it does

not exist later or may belong to another cluster. It depends mainly on the timestamp of

the point and its assigned weight and what happens to its weight by the decay factor as

the time goes. So, DGStream is not an order invariant method; clustering a set of pints

randomly in a different order can produce a different cluster set. In topology as well; the

location of the point, to which grid it belongs is also of interest in DGStream. There-

fore, the order of the records in the space grids also matters and that is what DGStream

depends on while capturing the shape of the dataset, and deciding to merge these points

together to form a cluster, and separating those points from those to form two or more

clusters depending on the distribution of data points in the dataset. Moreover, at any time,

DGStream can output a real-time result of the obtained cluster set up to that instant.

DGStream deals with weighted data points and hence weighted grids and these

weights controlled by decay factor which ages the points and so the grids over time. This

approach makes DGStream strong against random fluctuations in the data. DGStream

takes notice of which data is outdated and deletes it. It is also aware of which grid at

which time must be upgraded to become dense or downgraded to become a candidate to

be deleted later. It is aware of clusters when they must be merged with another clusters

or when one becomes necessary to be divided into two clusters. The number of clusters

in DGStream is a parameter in a constant change with time in line with the shape of

the data which is naturally in a constant change. Grids change due to their ages, which

expose deleting some, while emerging others to address the evolving data over time better.

DGStream is based on intuitive considerations to achieve good stability, and that is why

it can be used in a wide range of practical real-life applications.

51

CHAPTER 4

EXPERIMENTAL RESULTS

DGStream algorithm is an algorithm which combines quality and efficiency. We

evaluated the quality and the efficiency of our proposed algorithm DGStream and com-

pared it with DenStream (Cao et al., 2006), DStream (Chen and Tu, 2007), and ClusTree

(Kranen et al., 2011). We mainly conducted our experiments and demonstrated their re-

sults on five datasets. One is a synthetic dataset, which is Chameleon dataset. And the

others, KDDCup’99 (Hettich and Bay, 1999), Covertype (Blackard et al., 1998), Adult

(Kohavi and Becker, 1996), and NSE Stocks (NSE, 2017) are real-world datasets. For

both synthetic and real-world datasets, we focus on the numeric variables. So, for all

datasets, we first standardize the features by minimum-maximum normalization. This

means, the minimum value in one feature is mapped to 0 and the maximum value in it is

mapped to 1. Note that this considerably improves the clustering result. The algorithms

were implemented in Java programming language and the experiments were conducted

on an Intel Core(TM) i7-4510U CPU @ 2.60GHz, 6.00GB RAM machine.

4.1. Chameleon Synthetic Dataset Results

The Chameleon dataset is an important and famous synthetic dataset in data min-

ing and machine learning field, and contains 8000 elements. In this study, we used the

first and second numerical attributes of the dataset. The chameleon dataset is a compli-

cated dataset with nested arbitrary shaped clusters, multi-dense clusters with a lot of noise

(Mekky, 2016; Alhanjouri and Ahmed, 2012). Our experiments show good results in both

the clustering quality and efficiency. For the same dataset, Chameleon, our proposed al-

gorithm DGStream, gives a better result in quality by solving the overlapping problem

between clusters and reduces the noise. Also, it catches the outlier points much better,

and so, a more accurate shape of clusters appears. Applying DGStream on the synthetic

dataset gives very good results that demonstrate how much our proposed algorithm solved

the problems that CluStream and all other k-means based algorithms are suffering from.

In our experiment with Chameleon dataset evaluation, we set the horizon length value h

to 1000. Every time we read h samples from the stream, we update the current result of

52

the cluster set with these new h samples and continue repeating this process. This pro-

cess improves the quality of clustering over time (Cao et al., 2006; Hahsler and Bolaños,

2016). Figure (4.1.a) shows the original Chameleon dataset containing all the 8000 data

records. Figure (4.1.b, c, d, e) show the results for clustering the dataset with DenStream,

DStream, ClusTree, and our proposed algorithm DGStream respectively. These results

show that our algorithm handles the outliers better with high accuracy and within lower

time compared to the others. rDenStream (xiong Liu et al., 2009) is an enhanced version

from DenStream algorithm which handles the outliers as well but with high time com-

plexity. So, our algorithm gave better quality results in determining the real clusters in the

given dataset with a more appropriate output.

(a) Chameleon dataset (b) DenStream (c) DStream (d) ClusTree

(e) DGStream

Figure 4.1. Clustering 8000 points from Chameleon Synthetic dataset results.

Table (4.1) shows the Chameleon synthetic dataset clustering performance met-

rics results of our proposed algorithm DGStream, along with other streaming algorithms.

Performance metrics are time, purity, precision, recall, and F1-score. It is clear that

DGStream algorithm and all other compared algorithms can perfectly determine the true

classes. The purity values of all algorithms are approximately or almost exactly 1. That

does not contradict the empirical study in (Carnein et al., 2017) for comparing the most

important stream clustering algorithms which operate on t8.8k dataset, a similar synthetic

dataset, to calculate the purity of the algorithms. We notice that the clustering output

depends on the insertion order. Regarding recall, DGStream works well in retrieving al-

most all the relevant records to each cluster without lifting except a little. That is why

53

DGStream’s recall is better and almost outperforms all other algorithms. However, nei-

ther the precision nor the recall alone can measure the success of the prediction, especially

in the case of very imbalanced classes like our dataset examples. Therefore, F1-score is

the best to be calculated for the algorithm evaluation according to it is the harmonic mean

or weighted average of recall and precision. It is clear that the score for DGStream is

a little bit better than ClusTree’s F1-score measure, but in DenStream case, it is much

better, that is because the DenStream algorithm cannot retrieve all the required records,

which resulted in its bad recall measure. Finally in the other important measure, which

is the time; DGStream is remarkably faster than all other algorithms as shown in Table

(4.1).

Table 4.1. Performance matrices for clustering 8000 data records from Chameleon

synthetic dataset by using DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 8569 9389 6734 3238

F1-score 0.2964 1 0.92 0.9575

Purity 1 1 1 0.918

Precision 1 1 1 0.921

Recall 0.174 1 0.85 0.997

4.2. Real-World Datasets Results

We tested DGStream on three real-world datasets; KDDCup’99, Covertype, and

Adult. Each dataset poses different challenges and different cluster shapes. The details

are described in the following sub-subsections. Applying DGStream on the real-world

datasets gives very good results, which indicates that our proposed algorithm improves

both quality and efficiency compared to all existing density-based stream clustering algo-

rithms so far.

54

4.2.1. KDDCup’99 Real-World Dataset Results

Among the most popular real-world datasets used for clustering data streams that

we utilize is the KDDCup’99 dataset. This dataset contains 4,898,431 network traffic data

records. Its attributes describe information about the connection such as the duration of

the connection or the protocol type. And it’s class label predicts if the connection was

normal or attack, and there are 22 different attack types (Hettich and Bay, 1999).

We use the first and second numerical features of the data set. Which are "src-

bytes", bytes sent in one connection, and "dst-bytes", the bytes received in one connection.

Then we standardize the dataset according to the number of points we operate on. Firstly,

we consider clustering the first 8000 observations from this dataset with a time horizon

of 1000. Figure (4.2.a) shows the first 8000 data records from the original KDDCup’99

real-world dataset. Figure (4.2. b, c, d, e) show the results for clustering the same number

of data records from the dataset with DenStream, DStream, ClusTree, and our algorithm

DGStream respectively. Here, too, we observed the same outcomes as in the previous

experiment with the synthetic Chameleon dataset, that our algorithm is more successful

in handling the outliers and with less time complexity than all other stream algorithms.

(a) KDDCup’99

dataset

(b) DenStream (c) DStream (d) ClusTree

(e) DGStream

Figure 4.2. Clustering 8000 points from KDDCup’99 real-world stream data results.

For this dataset, the clustering with DGStream gives good performance metric re-

sults as shown in Table (4.2) and Table (4.3). All stream algorithms along with DGStream

give very good purity results. For the F1-score, the same, all algorithms perform very well

or near perfect results and that is due to the good measures for both precision and recall

for all algorithms. About the time performance, our proposed algorithm, DGStream, is

55

the best with much better than all other compared stream algorithms. The time for clus-

tering 8000 points from KDDCup’99 dataset is 1737 ms. While it is 16513 ms, 15295

ms, and 4458 ms for DenStream, DStream, and ClusTree respectively.

Table 4.2. Performance matrices for clustering 8000 data records from KDDCup’99

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 16513 15295 4458 1737

F1-score 0.969 0.9995 0.979 0.99066

Purity 1 1 1 0.9815

Precision 1 1 1 0.98147

Recall 0.966 0.999 0.96 1

Since this data contains more than just 8000 points, we clustered more than this

number of points to test and compare the scalability of the stream clustering algorithms.

Again, we repeated the above process with the first 20000 observations, and the results are

in the Figure (4.3) and Table (4.3). All algorithms, in clustering 20000 points from KDD-

Cup’99, produce high purity clusters. As shown in Figure (4.3) it is clear that DGStream

is the best in outputting high accurate clustering results.

(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Figure 4.3. Clustering 20000 points from KDDCup’99 real-world stream data results.

DGStream’s precision and recall values are nearly perfect and so its F1-score. The

same applies to the results of DStream algorithm. The average running times, in the case

of 20000 data records with the time horizon of value 1000 are 9091, 10917, 6081, and

56

4570 ms. for DenStream, DStream, ClusTree, and DGStream respectively are shown in

Table (4.3)., DGStream is the fastest algorithm when compared with the other stream

clustering algorithms.

Table 4.3. Performance matrices for clustering 20000 data records from KDDCup’99

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms with 5000 time horizon.

DenStream DStream ClusTree DGStream

Time (ms) 67422 69552 9012 4570

F1-score 0.0498 1 0.95 0.9993

Purity 1 1 1 0.9987

Precision 1 1 1 0.9986

Recall 0.981 1 0.905 1

DGStream performs better than all other compared algorithms according to Figure

(4.2) and Figure (4.3). When Table (4.2) and Table (4.3) are studied, however, it seems

that there is a contradiction with the results depicted in the figures. The performance of

the other algorithms like DStream displays perfect recall and perfect precision so perfect

F1-score must be better. The explanation is that: for example DStream recall is perfect

because the fraction of the relevant data records that are successfully retrieved is 100%

but actually the relevant data records are the remaining ones as this algorithm deletes the

past records hence the performance is based on the kept ones only. In DGStream, on the

other hand, the remaining ones which are received up to that point in time for clustering

process are more than the remaining points in DStream case. And even if DGStream do

not retrieve the relevant records by 100%, it still seen better as the figures show. Therefore

the shape of the final cluster set obtained is different in DStream from the result of the

final cluster set in DGStream case.

4.2.2. Covertype Real-World Dataset Results

Real-world dataset, Covertype, appears to be a challenging one for most of the

stream clustering algorithms. It contains about 581,012 data records where each record

describes a defined area of forest. The information its attributes use to describe the area

57

are such as the area slope, the area shade or its elevation, and a class label attribute that

is a number from one to seven which shows the forest cover type. The US Forest Service

(USFS) determined the forest cover types for the observations (Blackard et al., 1998). In

this thesis, we used the first and the third numerical attributes, then we standardized the

dataset according to the number of points we operated on. Firstly, we consider cluster-

ing the first 8000 observations from this dataset with a time horizon of 1000, in order to

make a fair comparison between all stream algorithms on both synthetic and real-world

datasets. Table (4.4), Table (4.5), along with Figure (4.4) and Figure (4.5) show the results

for clustering 8000 and 30000 data records from the dataset with DenStream, DStream,

ClusTree, and our algorithm, DGStream respectively. It is clear that the DGStream clus-

tering result is the highest quality compared with the other algorithms. It handles the

outliers accurately and with high efficiency.

(a) Covertype dataset (b) DenStream (c) DStream (d) ClusTree

(e) DGStream

Figure 4.4. Clustering 8000 points from Covertype real-world stream data results.

Table (4.4) shows the clustering results based on other performance metrics for

Covertype dataset first 8000 observations. Most algorithms yield high purity after slowly

increasing in purity to become perfect as the clusters adjust. F1-score in both DGStream

and DStream are the highest due to the high value of their recall values, as F1-score

depends on both precision and recall. While DenStream’s F1-score is low depending on

its recall measure, and in ClusTree case, F1-score is quite better also because its recall

58

is better. To test and compare the running time efficiency, we run the experiments many

times for each algorithm and then compute the average time consumed for each algorithm.

We observed the best performance is for our proposed algorithm, DGStream, and it is

much faster than all other stream algorithms. While DStream is the worse one, time

performance is 9383 ms and ClusTree is better than DStream and DenStream, its time

performance is 4058 ms. But ours is the best, its time performance is 1899 ms, as shown

in Table (4.4).

Table 4.4. Performance matrices for clustering 8000 data records from Covertype

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 8883 9383 4058 1899

F1-score 0.3051 1 0.882 0.973

Purity 1 1 1 0.9688

Precision 1 1 1 0.9687

Recall 0.18 1 0.79 0.97713

Again, we repeated the above process with the first 30000 observations, and the

results are in the Figure (4.5) and Table (4.5), DGStream is the most successful algorithm

to capture the dataset shape and in handling the outliers. All algorithms produce high

purity clusters. DStream’s F1-score is perfect due to the perfect values of its precision and

recall values. Our algorithm has the second-best F1-score because of its high precision

and mostly perfect recall values. The average running times, in this case, are 14423,

9589, 7974 and 6178 ms for DenStream, DStream, ClusTree, and DGStream respectively.

Therefore, DGStream is the fastest among all algorithms in clustering 30000 data records

from Covertype real-world dataset.

4.2.3. Adult Real-World Dataset Results

The Adult real-world dataset, also known as "Census Income" (Kohavi and Becker,

1996), predicts whether the income exceeds 50K/yr or not. We use the first and third nu-

merical features of the Adult real-world dataset. We standardize the dataset according to

59

the number of points we operate on. Firstly and as we did with previously datasets all,

we considered clustering the first 8000 observations from this dataset with a time horizon

of 1000. Table (4.6), Table (4.7), along with Figure (4.6) and Figure (4.7) show the re-

sults for clustering the 8000 and 32500 of data records from the dataset with DenStream,

DStream, ClusTree, and our algorithm, DGStream respectively. We observed in the pre-

vious experiments with the synthetic Chameleon, real-world KDDCup’99 and real-world

Covertype datasets, that our algorithm is better in handling the outliers with less time

complexity than all other stream algorithms. Clustering with Adult confirms the same

result. Therefore, DGStream algorithm is better in both quality and efficiency among the

most important algorithms for clustering data streams.

(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Figure 4.5. Clustering 30000 points from Covertype real-world stream data results.

Table 4.5. Performance matrices for clustering 30000 from Covertype real-world

stream data by DenStream, DStream, ClusTree, and DGStream stream

clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 32858 40542 11605 6178

F1-score 0.6385 1 0.8833 0.9488

Purity 1 1 1 0.91

Precision 1 1 1 0.9098

Recall 0.469 1 0.791 0.9913

60

(a) Adult dataset (b) DenStream (c) DStream (d) ClusTree

(e) DGStream

Figure 4.6. Clustering 8000 points from Adult real-world stream data results.

For this data set, the clustering with DGStream gives good performance metric

results as shown in Table (4.6) and Table (4.7). Purity is perfect with all stream algo-

rithms for both 8000 and 32500 data records. For the F1-score, apart from the DenStream

algorithm, all the other algorithms give very good results and that is due to the good out-

comes for both precision and recall. DenStream’s recall measure is bad and that is why

its F1-score is poor. We can notice that our proposed algorithm’s time performance is the

best among all other compared stream algorithms. The average running time for cluster-

ing 8000 data points from Adult dataset is 1661 ms in DGStream algorithm. While it is

11451 ms, 2922 ms, and 5758 ms for DenStream, DStream, and ClusTree respectively

as shown in Table (4.6). The average running time for clustering 32500 data points from

Adult dataset is 4885 ms for DGStream algorithm. While it is 11959 ms, 6237 ms, and

5206 ms for DenStream, DStream, and ClusTree respectively as shown in Table (4.7).

4.2.4. Stock Marketing Real-World Dataset Results

In this experiment, we chose clustering the NSE Stocks real-world dataset. It is the

National Stock Exchange of India’s stock listings for each trading day of 2016 and 2017.

The data is compiled to facilitate machine learning tasks on stocks, without disturbing

the Stock APIs. The data has been obtained from the NSE official site (NSE, 2017), The

National Stock Exchange of India Ltd. Retrieved from https://www.nseindia.com/.

61

Table 4.6. Performance matrices for clustering 8000 data records from Adult

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 11451 2922 5758 1661

F1-score 0.575 1 0.8538 0.99553

Purity 1 1 1 0.99115

Precision 1 1 1 0.9911

Recall 0.404 1 0.745 1

(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Figure 4.7. Clustering 32500 points from Adult real-world stream data results.

In clustering open-ended data streams such as stock market data, it is important

to capture temporal dependencies. While Bayesian networks (Buntine, 1991) and depen-

dency networks (Heckerman et al., 2000) model the dependencies of variables, Dynamic

Bayesian Networks model discrete time temporal dependencies (Dean and Kanazawa,

1988; Friedman et al., 1998). However, in our stream clustering, we want to model the

continuous data record timestamps, that is the arrival times of data records. Therefore,

sampling is a solution we can apply on continues variable in order to use such a tech-

nique. Nevertheless, the sampling rate would have to be determined. Slow sampling

ends up with poor data representation, and fast sampling leads to a need for multiple

steps of past dependence with costly clustering of the stream (Gunawardana et al., 2011).

Continuous-Time Noisy-Or (Simma et al., 2012), Continuous Time Bayesian Networks

(Nodelman et al., 2002, 2012), Poisson Networks (Rajaram et al., 2005; Truccolo et al.,

2005), and Poisson Cascades (Simma and Jordan, 2012), are such recent solutions pro-

posed for this problem. In clustering this real-world dataset, NSE Stocks, we used the

numerical features; “OPEN” which is the opening market price of the equity symbol on

the date, and the “TOTTRDQTY” which is the total traded quantity of the equity symbol.

62

Table 4.7. Performance matrices for clustering 32500 data records from Adult

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 49880 29723 11958 11615

F1 -score 0.685 1 0.848 0.9995

Purity 1 1 1 0.999

Precision 1 1 1 0.999

Recall 0.521 1 0.736 1

We standardize the dataset according to the number of points we operate on.

In this context, we try to discover the temporal dependencies and relations be-

tween intervals in NSE open-ended data stream states. DGStream learns how the recently

arrived records affect the currently arriving ones and the near future arriving as well. Stock

markets’ consecutive data is all related and depends on each other. We have conducted

experiments with a sampling that can benefit the stability setting. Therefore, we gener-

ated such perturbed versions of many samples from this dataset without replacement, and

then added noise to these samples. Then by applying DGStream several times on them,

we find that the most meaningful one is the seasonal sampling. The depicted clustering

results for clustering the different same size samples from this real-world stream data

by DGStream, and comparison with DenStream, DStream, and ClusTree clustering algo-

rithms are shown in Figure (4.8). The average values of some performance matrices for

all these experiments and comparisons are all in Table (4.8). In every sample, we cluster

10000 observations from the dataset with a time horizon of 1000. In this sampling, the

results show how the stock records in the past affects related future stock records based

on their types, daily prices and arrival time, and so they emerged in related micro-clusters

and also the same macro-clusters . It is clear from the results in Table (4.8) that evaluating

purity, precision, recall, and F1-score in all experiments, DGStream is still the top first or

second most of the time. We again repeated the same sampling steps with replacement

and applied our algorithm and the other compared algorithms several times on 40000 data

points from NSE dataset. In this experiment, we measured and compared the time effi-

ciency of our algorithm with the other algorithms. Figure (4.9) shows that DGStream is

the best followed by ClusTree algorithm. It gives the best results in clustering quality and

handling outliers compared to other algorithms.

63

In both cases sampling with replacement and without replacement, we notice that

the resulted cluster set is the same cluster set every time we run DGStream on the sample.

So applying the stability equation limm→∞ Pr(A(Wm) = Ck)

is limm→∞ Pr(DGS tream(W10000,40000) = S ameClusterS et). So, DGStream stability is 1.

First Sample
(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Second Sample
(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Third Sample
(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Forth Sample
(a) DenStream (b) DStream (c) ClusTree (d) DGStream

Figure 4.8. Clustering same size of different samples from NSE real-world stream data

without replacement results.

In all previous experiments, we observed with both the synthetic and real-world

datasets, that our algorithm outperforms all other algorithms in handling the outliers,

learning the underlying dependency structure of data records, time performance, and

equality . Applying the clustering algorithms to NSE dataset verifies the same claim

that our proposed algorithm DGStream is the best in both quality and efficiency among

the most important stream clustering algorithms.

64

Table 4.8. Performance matrices for clustering same size of different samples from

NSE real-world stream data without replacement by DenStream, DStream,

ClusTree, and DGStream stream clustering algorithms

DenStream DStream ClusTree DGStream

Time (ms) Sample 1 34210 33896 7053 3430

Sample 2 35283 36599 8938 3375

Sample 3 57484 9500 5723 3287

Sample 4 35574 39461 6825 3464

F1-score Sample 1 0.97 1 0.98 0.9993

Sample 2 0.97 1 0.98 1

Sample 3 0.98 1 0.98 1

Sample 4 0.98 1 0.98 1

Purity Sample 1 1 1 1 0.9989

Sample 2 1 1 1 1

Sample 3 1 1 1 1

Sample 4 1 1 1 0.9996

Precision Sample 1 1 1 1 0.9994

Sample 2 1 1 1 1

Sample 3 1 1 1 0.9996

Sample 4 1 1 1 1

Recall Sample 1 0.95 1 0.95 0.9992

Sample 2 0.95 1 0.96 0.9997

Sample 3 0.98 1 0.96 1

Sample 4 0.96 1 0.96 0.9989

65

Figure 4.9. Time efficiency for clustering different sizes samples from NSE real-world

stream data with replacement results.

66

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this study, we proposed a new stream clustering algorithm, DGStream. It

is a density and grid-based algorithm with insightful implications for clustering stream

data. DGStream algorithm has been tested and compared over many datasets, both syn-

thetic and real-world datasets and under different scales and compared with DenStream,

DStream, and ClusTree stream algorithms in the same field. So, experimentally under the

same conditions and datasets, we have demonstrated that DGStream outperforms several

well-known density-based stream clustering algorithms. It can find datasets with clusters

of arbitrary shapes, multi-density and without the prior knowledge of parameters like the

number of clusters. It is shown by many experiments that our proposed algorithm is sig-

nificantly fastest among all the compared algorithms; it achieves the best time efficiency

along with the best quality. Its recall measurement is always high due to its ability in

assigning almost all relevant records to the corresponding correct clusters with, to a large

extent, perfect purity, which means that our algorithm can create clusters much close to

the true structure of the stream data. DGStream has also many good features; it is a

strong and robust algorithm to noise and presence of outliers; needs only one-pass for

processing stream data; it considers the evolving data by employing a decaying function

that decreases the weights of the outdated data over time. Therefore, it is suitable for

real-world applications where the most interest is in the recent information while the old

information decreases over time like stock marketing. From all conducted experiments,

we can say that our proposed algorithm outperformed all other density-based stream clus-

tering algorithms in both efficiency and accuracy. However, we have to realize that stream

clustering algorithms cluster streaming data from different points of view, and choosing

between them depends on what we want to achieve from applying them, such as more

accuracy is better than more reliability in some instances, and sometimes for particular

application low time complexity is the most important property. Therefore, we can say

for sure that for some applications or for a particular dataset and under specific conditions

there is an algorithm that is much better than one another.

67

5.1.1. Future Work

As future work, it will be good to find a way to detect dense grids so that we can

tune the parameters according to how much the density is and how many grids in the

space have this density.

Another improvement may be changing the parameters dynamically according to

the dataset we process on.

In addition, it is good to enter the prediction factor and trying to predict which

grids might be useless in the future depending on how the incoming stream points map to

grids so we can focus more on the grids at the borders of the clusters.

In our algorithm, we can improve the quality to become 100% by retrieving all the

relevant data records in the stream and not delete or eliminate any point.

68

REFERENCES

Ackermann, M. R., M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and C. Sohler

(2012). Streamkm++: A clustering algorithm for data streams. Journal of Experimen-

tal Algorithmics (JEA) 17, 2–4.

Aggarwal, C. C. (2009). On classification and segmentation of massive audio data

streams. Knowledge and information systems 20(2), 137–156.

Aggarwal, C. C., J. Han, J. Wang, and P. S. Yu (2003). A framework for clustering evolv-

ing data streams. In Proceedings of the 29th international conference on Very large

data bases-Volume 29, pp. 81–92. VLDB Endowment.

Aggarwal, C. C., J. Han, J. Wang, and P. S. Yu (2004). A framework for projected clus-

tering of high dimensional data streams. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30, pp. 852–863. VLDB Endowment.

Agrawal, R., J. Gehrke, D. Gunopulos, and P. Raghavan (1998). Automatic subspace

clustering of high dimensional data for data mining applications, Volume 27. ACM.

Ahmed, R. D., G. Dalkılıç, and M. Erten (2018). Survey: Running and comparing stream

clustering algorithms. CEUR Workshop Proceedings.

Alazeez, A. A. A., S. Jassim, and H. Du (2017). Einckm: An enhanced prototype-based

method for clustering evolving data streams in big data. In ICPRAM, pp. 173–183.

Alhanjouri, M. A. and R. D. Ahmed (2012). New density-based clustering technique:

Gmdbscan-ur. New Density-Based Clustering Technique: GMDBSCAN-UR. 3(1).

Amini, A., H. Saboohi, T. Ying Wah, and T. Herawan (2014). A fast density-based clus-

tering algorithm for real-time internet of things stream. The Scientific World Jour-

nal 2014.

Ankerst, M., M. M. Breunig, H.-P. Kriegel, and J. Sander (1999). Optics: ordering points

to identify the clustering structure. In ACM Sigmod record, Volume 28, pp. 49–60.

ACM.

69

Arai, B., G. Das, D. Gunopulos, and N. Koudas (2007). Anytime measures for top-k

algorithms. In Proceedings of the 33rd international conference on Very large data

bases, pp. 914–925. VLDB Endowment.

Arthur, D. and S. Vassilvitskii (2007). k-means++: The advantages of careful seeding. In

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

pp. 1027–1035. Society for Industrial and Applied Mathematics.

Assent, I., R. Krieger, B. Glavic, and T. Seidl (2008). Clustering multidimensional

sequences in spatial and temporal databases. Knowledge and Information Sys-

tems 16(1), 29–51.

Babcock, B., M. Datar, R. Motwani, and L. O’Callaghan (2003). Maintaining variance

and k-medians over data stream windows. In Proceedings of the twenty-second ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 234–

243. ACM.

Bandyopadhyay, S., C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta (2006).

Clustering distributed data streams in peer-to-peer environments. Information Sci-

ences 176(14), 1952–1985.

Barbará, D. (2002). Requirements for clustering data streams. ACM sIGKDD Explo-

rations Newsletter 3(2), 23–27.

Barbará, D. and P. Chen (2000). Using the fractal dimension to cluster datasets. In KDD,

pp. 260–264.

Beckmann, N., H.-P. Kriegel, R. Schneider, and B. Seeger (1990). The r*-tree: an ef-

ficient and robust access method for points and rectangles. In Acm Sigmod Record,

Volume 19, pp. 322–331. Acm.

Beringer, J. and E. Hüllermeier (2006). Online clustering of parallel data streams. Data

& Knowledge Engineering 58(2), 180–204.

Bhatia, S. K. et al. (2004). Adaptive k-means clustering. In FLAIRS conference, pp. 695–

699.

70

Bifet, A., G. Holmes, R. Kirkby, and B. Pfahringer (2010). Moa: Massive online analysis.

Journal of Machine Learning Research 11(May), 1601–1604.

Blackard, J. A., D. J. Dean, and C. Anderson (1998). The forest covertype dataset.

Buntine, W. (1991). Theory refinement on bayesian networks. In Proceedings of the Sev-

enth conference on Uncertainty in Artificial Intelligence, pp. 52–60. Morgan Kauf-

mann Publishers Inc.

Cao, F., M. Estert, W. Qian, and A. Zhou (2006). Density-based clustering over an evolv-

ing data stream with noise. In Proceedings of the 2006 SIAM international conference

on data mining, pp. 328–339. SIAM.

Carlsson, G. and F. MÃŠmoli (2010). Characterization, stability and convergence of hi-

erarchical clustering methods. Journal of machine learning research 11(Apr), 1425–

1470.

Carnein, M., D. Assenmacher, and H. Trautmann (2017). An empirical comparison of

stream clustering algorithms. In Proceedings of the Computing Frontiers Conference,

pp. 361–366. ACM.

Chen, Y. and L. Tu (2007). Density-based clustering for real-time stream data. In Pro-

ceedings of the 13th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 133–142. ACM.

Cheng, J., Y. Ke, and W. Ng (2008). A survey on algorithms for mining frequent itemsets

over data streams. Knowledge and Information Systems 16(1), 1–27.

Dai, B.-R., J.-W. Huang, M.-Y. Yeh, and M.-S. Chen (2006). Adaptive clustering for

multiple evolving streams. IEEE Transactions on Knowledge and Data Engineer-

ing 18(9), 1166–1180.

Dang, X. H., W.-K. Ng, and K.-L. Ong (2008). Online mining of frequent sets in data

streams with error guarantee. Knowledge and information systems 16(2), 245–258.

De Silva, V. and G. E. Carlsson (2004). Topological estimation using witness complexes.

SPBG 4, 157–166.

71

Dean, T. L. and K. Kanazawa (1988). Probabilistic temporal reasoning. In AAAI, pp.

524–529.

DeCoste, D. (2002). Anytime interval-valued outputs for kernel machines: Fast support

vector machine classification via distance geometry.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from in-

complete data via the em algorithm. Journal of the Royal Statistical Society: Series B

(Methodological) 39(1), 1–22.

Ester, M., H.-P. Kriegel, J. Sander, X. Xu, et al. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Kdd, Volume 96, pp.

226–231.

Farid, D. M., L. Zhang, A. Hossain, C. M. Rahman, R. Strachan, G. Sexton, and K. Da-

hal (2013). An adaptive ensemble classifier for mining concept drifting data streams.

Expert Systems with Applications 40(15), 5895–5906.

Friedman, N., K. Murphy, and S. Russell (1998). Learning the structure of dynamic prob-

abilistic networks. In Proceedings of the Fourteenth conference on Uncertainty in

artificial intelligence, pp. 139–147. Morgan Kaufmann Publishers Inc.

Gaber, M. M., A. Zaslavsky, and S. Krishnaswamy (2007). A survey of classification

methods in data streams. In Data streams, pp. 39–59. Springer.

Gama, J. (2010). Knowledge discovery from data streams. Chapman and Hall/CRC.

Gama, J., I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia (2014). A survey on

concept drift adaptation. ACM computing surveys (CSUR) 46(4), 44.

Gan, J. and Y. Tao (2017). Dynamic density based clustering. In Proceedings of the 2017

ACM International Conference on Management of Data, pp. 1493–1507. ACM.

Gong, S., Y. Zhang, and G. Yu (2017). Clustering stream data by exploring the evolution

of density mountain. Proceedings of the VLDB Endowment 11(4), 393–405.

Guha, S., A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan (2003). Clustering

72

data streams: Theory and practice. IEEE transactions on knowledge and data engi-

neering 15(3), 515–528.

Guha, S. and N. Mishra (2016). Clustering data streams. In Data stream management,

pp. 169–187. Springer.

Guha, S., N. Mishra, R. Motwani, and L. o’Callaghan (2000). Clustering data streams.

In Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.

359–366. IEEE.

Guha, S., R. Rastogi, and K. Shim (2001). Cure: an efficient clustering algorithm for

large databases. Information systems 26(1), 35–58.

Gunawardana, A., C. Meek, and P. Xu (2011). A model for temporal dependencies in

event streams. In Advances in Neural Information Processing Systems, pp. 1962–

1970.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching, Volume 14.

ACM.

Hahsler, M. and M. Bolaños (2016). Clustering data streams based on shared density be-

tween micro-clusters. IEEE Transactions on Knowledge and Data Engineering 28(6),

1449–1461.

Hartigan, J. A. (1981). Consistency of single linkage for high-density clusters. Journal of

the American Statistical Association 76(374), 388–394.

Hartigan, J. A. (1985). Statistical theory in clustering. Journal of classification 2(1), 63–

76.

Heckerman, D., D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie (2000). De-

pendency networks for inference, collaborative filtering, and data visualization. Jour-

nal of Machine Learning Research 1(Oct), 49–75.

Hettich, S. and S. Bay (1999). The uci kdd archive [http://kdd. ics. uci. edu]. irvine, ca:

University of california. Department of Information and Computer Science 152.

73

Hinneburg, A., D. A. Keim, et al. (1998). An efficient approach to clustering in large

multimedia databases with noise. In KDD, Volume 98, pp. 58–65.

Isaksson, C., M. H. Dunham, and M. Hahsler (2012). Sostream: Self organizing density-

based clustering over data stream. In International Workshop on Machine Learning

and Data Mining in Pattern Recognition, pp. 264–278. Springer.

Jain, A., Z. Zhang, and E. Y. Chang (2006). Adaptive non-linear clustering in data

streams. In Proceedings of the 15th ACM international conference on Information

and knowledge management, pp. 122–131. ACM.

Kanageswari, V. and A. Pethalakshmi (2017). A novel approach of clustering using cob-

web. International Journal of Information Technology (IJIT) 3(3).

Kohavi, R. and B. Becker (1996). Adult dataset [online] available: http://archive. ics. uci.

edu/ml/d atasets.

Kranen, P., I. Assent, C. Baldauf, and T. Seidl (2011). The clustree: indexing micro-

clusters for anytime stream mining. Knowledge and information systems 29(2), 249–

272.

Kranen, P., H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and B. Pfahringer (2010).

Clustering performance on evolving data streams: Assessing algorithms and evalua-

tion measures within moa. In 2010 IEEE International Conference on Data Mining

Workshops, pp. 1400–1403. IEEE.

Kranen, P., R. Krieger, S. Denker, and T. Seidl (2010). Bulk loading hierarchical mixture

models for efficient stream classification. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pp. 325–334. Springer.

Kranen, P. and T. Seidl (2009). Harnessing the strengths of anytime algorithms for con-

stant data streams. Data Mining and Knowledge Discovery 19(2), 245–260.

Li, H.-F., M.-K. Shan, and S.-Y. Lee (2008). Dsm-fi: an efficient algorithm for mining

frequent itemsets in data streams. Knowledge and Information Systems 17(1), 79–97.

Li, S. and X. Zhou (2017). An intrusion detection method based on damped window of

74

data stream clustering. In 2017 9th International Conference on Intelligent Human-

Machine Systems and Cybernetics (IHMSC), Volume 1, pp. 211–214. IEEE.

Liu, H., X. Hou, and Z. Yang (2016). Design of intrusion detection system based on

improved k-means algorithm. Computer Technology and Development 1, 101–105.

Lühr, S. and M. Lazarescu (2009). Incremental clustering of dynamic data streams using

connectivity based representative points. Data & Knowledge Engineering 68(1), 1–

27.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical statis-

tics and probability, Volume 1, pp. 281–297. Oakland, CA, USA.

Manning, C., P. Raghavan, and H. Schütze (2010). Introduction to information retrieval.

Natural Language Engineering 16(1), 100–103.

Mekky, A. R. (2016). Fuzzy neighborhood grid-based dbscan using representative points.

Feature Engineering in Hybrid Recommender Systems, 63.

Nasraoui, O., C. Rojas, and C. Cardona (2006). A framework for mining evolving trends

in web data streams using dynamic learning and retrospective validation. Computer

Networks 50(10), 1488–1512.

Ng, W. and M. Dash (2010). Discovery of frequent patterns in transactional data streams.

In Transactions on large-scale data-and knowledge-centered systems II, pp. 1–30.

Springer.

Nodelman, U., C. R. Shelton, and D. Koller (2002). Continuous time bayesian networks.

In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence,

pp. 378–387. Morgan Kaufmann Publishers Inc.

Nodelman, U., C. R. Shelton, and D. Koller (2012). Expectation maximization and com-

plex duration distributions for continuous time bayesian networks. arXiv preprint

arXiv:1207.1402.

Nutakki, G. C. and O. Nasraoui (2017). Clustering data streams with adaptive forgetting.

75

In 2017 IEEE International Congress on Big Data (BigData Congress), pp. 494–497.

IEEE.

O’callaghan, L., N. Mishra, A. Meyerson, S. Guha, and R. Motwani (2002). Streaming-

data algorithms for high-quality clustering. In Proceedings 18th International Con-

ference on Data Engineering, pp. 685–694. IEEE.

Oh, S.-H., J.-S. Kang, Y.-C. Byun, G.-L. Park, and S.-Y. Byun (2005). Intrusion detection

based on clustering a data stream. In Third ACIS Int’l Conference on Software Engi-

neering Research, Management and Applications (SERA’05), pp. 220–227. IEEE.

Pravilovic, S., A. Appice, and D. Malerba (2014). Integrating cluster analysis to the arima

model for forecasting geosensor data. In International Symposium on Methodologies

for Intelligent Systems, pp. 234–243. Springer.

Rajaram, S., T. Graepel, and R. Herbrich (2005). Poisson-networks: A model for struc-

tured point processes. In Proceedings of the 10th international workshop on artificial

intelligence and statistics, pp. 277–284. Citeseer.

Ren, J. and R. Ma (2009). Density-based data streams clustering over sliding windows.

In 2009 Sixth international conference on fuzzy systems and knowledge discovery,

Volume 5, pp. 248–252. IEEE.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics 20, 53–65.

Ruiz, C., E. Menasalvas, and M. Spiliopoulou (2009). C-denstream: Using domain

knowledge on a data stream. In International Conference on Discovery Science, pp.

287–301. Springer.

Ruiz, C., M. Spiliopoulou, and E. Menasalvas (2007). C-dbscan: Density-based clus-

tering with constraints. In International Workshop on Rough Sets, Fuzzy Sets, Data

Mining, and Granular-Soft Computing, pp. 216–223. Springer.

Ruiz, C., M. Spiliopoulou, and E. Menasalvas (2010). Density-based semi-supervised

clustering. Data mining and knowledge discovery 21(3), 345–370.

76

Seidl, T., I. Assent, P. Kranen, R. Krieger, and J. Herrmann (2009). Indexing density

models for incremental learning and anytime classification on data streams. In Pro-

ceedings of the 12th international conference on extending database technology: ad-

vances in database technology, pp. 311–322. ACM.

Silva, J. A., E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho, and J. Gama

(2013). Data stream clustering: A survey. ACM Computing Surveys (CSUR) 46(1),

13.

Simma, A., M. Goldszmidt, J. MacCormick, P. Barham, R. Black, R. Isaacs, and

R. Mortier (2012). Ct-nor: representing and reasoning about events in continuous

time. arXiv preprint arXiv:1206.3280.

Simma, A. and M. I. Jordan (2012). Modeling events with cascades of poisson processes.

arXiv preprint arXiv:1203.3516.

Spiliopoulou, M., I. Ntoutsi, Y. Theodoridis, and R. Schult (2006). Monic: modeling

and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pp. 706–711. ACM.

Spinosa, E. J., A. P. de Leon F de Carvalho, and J. Gama (2007). Olindda: A cluster-based

approach for detecting novelty and concept drift in data streams. In Proceedings of

the 2007 ACM symposium on Applied computing, pp. 448–452. ACM.

Street, W. N. and Y. Kim (2001). A streaming ensemble algorithm (sea) for large-scale

classification. In Proceedings of the seventh ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 377–382. ACM.

Sun, H., G. Yu, Y. Bao, F. Zhao, and D. Wang (2005). Cds-tree: An effective index

for clustering arbitrary shapes in data streams. In 15th International Workshop on

Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-

SDMA’05), pp. 81–88. IEEE.

Truccolo, W., U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown (2005). A

point process framework for relating neural spiking activity to spiking history, neural

77

ensemble, and extrinsic covariate effects. Journal of neurophysiology 93(2), 1074–

1089.

Udommanetanakit, K., T. Rakthanmanon, and K. Waiyamai (2007). E-stream: Evolution-

based technique for stream clustering. In International conference on advanced data

mining and applications, pp. 605–615. Springer.

Ueno, K., X. Xi, E. Keogh, and D.-J. Lee (2006). Anytime classification using the nearest

neighbor algorithm with applications to stream mining. In Sixth International Confer-

ence on Data Mining (ICDM’06), pp. 623–632. IEEE.

Van Leeuwen, M. and A. Siebes (2008). Streamkrimp: Detecting change in data streams.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pp. 672–687. Springer.

Vlachos, M., J. Lin, E. Keogh, and D. Gunopulos (2003). A wavelet-based anytime algo-

rithm for k-means clustering of time series. In In proc. workshop on clustering high

dimensionality data and its applications. Citeseer.

Von Luxburg, U. et al. (2010). Clustering stability: an overview. Foundations and

Trends R© in Machine Learning 2(3), 235–274.

Wang, H., W. Fan, P. S. Yu, and J. Han (2003). Mining concept-drifting data streams

using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 226–235. AcM.

Wang, Z., B. Wang, C. Zhou, and X. Xu (2004). Clustering data streams on the two-tier

structure. In Asia-Pacific Web Conference, pp. 416–425. Springer.

xiong Liu, L., Y. fei Guo, J. Kang, and H. Huang (2009). A three-step clustering algo-

rithm over an evolving data stream. 2009 IEEE International Conference on Intelli-

gent Computing and Intelligent Systems 1, 160–164.

Yang, H. and S. Fong (2013). Countering the concept-drift problem in big data using

iovfdt. In 2013 IEEE International Congress on Big Data, pp. 126–132. IEEE.

Yang, Y., G. Webb, K. Korb, and K. M. Ting (2007). Classifying under computational

78

resource constraints: anytime classification using probabilistic estimators. Machine

Learning 69(1), 35–53.

Zhang, T., R. Ramakrishnan, and M. Livny (1996). Birch: an efficient data clustering

method for very large databases. In ACM Sigmod Record, Volume 25, pp. 103–114.

ACM.

Zhou, A., F. Cao, W. Qian, and C. Jin (2008). Tracking clusters in evolving data streams

over sliding windows. Knowledge and Information Systems 15(2), 181–214.

79

VITA

Date and Place of Birth: 22.11.1984, Gaza-Palestine

EDUCATION

2015 - 2018 Doctor of Philosophy in Computer Engineering

Graduate School of Engineering and Sciences, İzmir Institute of Technology,

İzmir -Turkey

Thesis Title: DENSITY BASED STREAM CLUSTERING ALGORITHM

Supervisor: Assoc. Prof. Dr. Tolga Ayav, Prof. Dr. Yusuf Erten, Assoc. Prof. Dr.

Gökhan Dalkılıç

2009 - 2011 Master of Science in Computer Engineering

Graduate School of Engineering and Sciences, Islamic University, Gaza -Palestine

Thesis Title: NEW DENSITY-BASED CLUSTERING TECHNIQUE

Supervisor: Assist. Dr. Mohammed Alhanjouri

2002 - 2007 Bachelor of Computer Engineering

Department of Computer Engineering, Faculty of Engineering, Islamic University,

Gaza - Palestine

PROFESSIONAL EXPERIENCE

2007 - 2014 Research and Teaching Assistant, Academic Teaching

Instructor for many computer engineering courses in many universities and a

Computer Engineer in many ministries, Gaza- Palestine

PUBLICATIONS

• Rowanda Ahmed, Gökhan Dalkılıç, Yusuf Erten, "DGStream: High Quality and

Efficiency Stream Clustering Algorithm", Expert Systems With Applications, 2019,

112947.

• Rowanda Ahmed, Gökhan Dalkılıç, Yusuf Erten, "Survey: Running and Compar-

ing Clustering Algorithms", Ulusal Yazılım Mühendisliği Sempozyumu UYMS’ 18

Conference, Sabancı Universitesi, Istanbul, Turkey.

• Rwand Ahmed, Mohammed Al Hanjouri, "New Density-Based Clustering Tech-

nique: GMDBSCAN-UR", International Journal of Advanced Research in Com-

puter Science (IJARCS).

• Aiman Abu Samra, Emad Kehail and Rwand Ahmed, "Software Framework Analy-

sis for IUG", 3rd International Conference on Engineering and Gaza Reconstruction

at IUG in 2010. Theme5.

