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Here we show that tapered ducts emerge in volumetrically bathed porous materials to decrease the resistance to the flow
in laminar and turbulent flow regimes. The fluid enters the volume from one point and it is distributed to the entire
volume. After bathing the volume, it is collected and leaves the volume from another point, i.e., two trees matched
canopy to canopy. This paper shows that the flow architecture (i.e., design of the void spaces in a porous material)
should be changed to obtain the minimum resistance to the flow as its size increases. Tapering the ducts decreases the
order of the transition size, i.e., the size for changing from one construct to another to obtain the minimum pressure
drop. The decrease in the pressure drop is 16% and 38% with the tapered ducts when the flow is laminar and turbulent,
respectively. In addition, the volume ratios and the shape of the tapered ducts are documented. There is no design existing
in nature with diameters of constant size in order to distribute and/or collect heat, fluid, and/or stress such as bones,
rivers, veins, and tree branches. The emergence of the tapered ducts in designed porous materials is natural.
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1. INTRODUCTION

Advanced technologies require designing porous materi-
als by embedding vascular flow channels in them to gain
smart capabilities such as self-healing and self-cooling
(Aragon et al., 2013; Bejan et al., 2006; Cetkin et al.,
2011; Hamilton et al., 2010; Lorente and Bejan, 2009;
Therriault et al., 2003; Soghrati et al., 2012). These smart
capabilities are the result of the ability of the porous
materials to bathe their entire body volumetrically. In
the current literature, vascular structures with designed
porosity consist of ducts of constant diameters embed-
ded in them to bathe its volume with a fluid (Cetkin et
al., 2010; Chen and Cheng, 2005; Cho et al., 2011; Er-
rera and Bejan, 1999; Kim et al., 2008; Liu and Li,
2013; Miguel, 2010a,b). However, no constant diameter
collecting or distributing system exists in nature. In na-
ture, all the channels are tapered (i.e., finger-shaped) such
as tree roots and branches, blood veins, bones, rivers,
and even snowflakes independent of what flows along
the channel, i.e., fluid, heat, and/or stress (Bejan and

Lorente, 2008; Bejan and Zane, 2012; da Silva and Bejan,
2005).

This tapered design is the result of minimizing the flow
resistances along the channel in which heat, fluid, and/or
stress flow. This phenomenon of design evolution is de-
scribed as the constructal law in the literature (Bejan and
Lorente, 2008, 2010; Bejan and Zane, 2012; da Silva
and Bejan, 2005). Every flow system changes its shape
in time to decrease the flow resistances. The current liter-
ature also shows that constructal law is valid for the ani-
mate (Miguel, 2006; Reis and Miguel, 2006; Reis et al.,
2004) and inanimate (Bejan and Lorente, 2013; Beyene
and Peffley, 2009; Lorenzini and Rocha, 2009; Raja et
al., 2008; Reis, 2006a,b; Rocha et al., 2005; Tondeur and
Luo, 2004; Wang et al., 2006; Wechsatol et al., 2006; Wu
et al., 2007a,b; Xu et al., 2008; Zhou et al., 2007).

This paper introduces the merit of the tapered ducts
in designed porous materials by comparing the pressure
drops of the vascular designs with ducts of constant diam-
eter and tapered ducts. The pressure drops in the vascular
structures are calculated for laminar and turbulent flows.
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NOMENCLATURE

Cl factor for laminar flow, m2/s, Eq. (1) y element width, m, Fig. 1
Ct factor for turbulent flow, m3/kg, Eq. (2)
d element thickness, m, Fig. 1 Greek Symbols
D channel diameter, m ∆P pressure difference, Pa
f constant friction factor for fully rough ν kinematic viscosity, m2/s

and fully developed turbulent flow ρ density, kg/m3

H element height, m, Fig. 2 ϕ porosity
L stack length, m, Figs. 1 and 2
ṁ mass flow rate, kg/s Subscripts
n number of elements cons constant
p number of pieces, Fig. 3 e element
r number of pieces, Fig. 5 i rank of construct
V flow volume, m3 l laminar
Vs solid volume, m3 min minimum
x the distance from the closed end of t turbulent

the duct, m, Fig. 1 var variable

2. DISTRIBUTION DUCT

Consider a duct which discharge fluid along its length,
Fig. 1. This duct is connected to a number of elemental
volumes receiving the fluid along its length. The flow rate
in the duct varies linearly,̇m(x) = ṁx/L. The pressure
drops for laminar and turbulent flows are

∆Pl = Cl
ṁ

L

∫ L

0

x

D4
dx (1)

FIG. 1: Duct with longitudinally distributed discharge:
tube with constant diameter(top) and tapered tube(bot-
tom)

∆Pt = Ct
ṁ2

L2

∫ L

0

x2

D5
dx (2)

whereCl = 128/νπ andCt = 32f/π
2
ρ. ν, ρ, and f are

the kinematic viscosity and the density of the fluid and the
constant friction factor for turbulent flow in the fully de-
veloped and fully rough regime, respectively (Bejan and
Lorente, 2008).̇m, L, x, and D are the mass flow rate that
enters the duct, the length, the distance from the closed
end of the duct, and the diameter, respectively. The sub-
script of l and t represents laminar and turbulent flows,
respectively.

The volume constraint is

V =

∫ L

0

π

4
D2dx (3)

The pressure drops for laminar and turbulent flow
regimes along the duct with constant diameter are

∆P0,l = Cl
ṁL

2D4
cons

(4)

∆P0,t = Ct
ṁ2L

3D5
cons

(5)

Now consider the duct shape is free to vary. By using
variational calculus, Eqs. (1) and (2) can be minimized
subject to the volume constraint of Eq. (3). The diameters
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of the tapered ducts and the pressure drop corresponding
to the tapered ducts for laminar and turbulent flows are

Dvar,l =

(
16

3π

V

L

)1/2 ( x
L

)1/6
(6)

∆Pmin,l =
33π2

45
ClṁL3

V2
(7)

Dvar,t =

(
44

7π

V

L

)1/2 ( x
L

)2/7
(8)

∆Pmin,t = Ctṁ
2

(
7

11

)7/2 (π
4

)5/2 L7/2

V5/2
(9)

Dividing Eqs. (7) and (9) by Eqs. (4) and (5), respec-
tively, shows the reduction in the flow resistance by taper-
ing the ducts in laminar and turbulent flows

∆Pmin,l

∆P0,l
=

332

43
= 0.84 (10)

∆Pmin,t

∆P0,t
= 3

(
7

11

)7/2

= 0.62 (11)

The results of Eqs. (10) and (11) show that the flow re-
sistance of the tapered ducts is smaller when the duct dis-
charges fluid along its length. In the laminar flow regime,
modeling the channel as a constant diameter duct would
not affect the results as much as it does in turbulent flow.

3. FIRST CONSTRUCT

Consider now the stack of n number of elemental vol-
umes, Fig. 2. The streaṁm is distributed to the elemen-
tal volumes along the discharge duct. Then it is collected
from the elemental volumes with the collecting duct. The
porous material gains smart capabilities with the dis-
tributed and collected stream of coolant and/or healing
agent throughout the solid volume. The solid material
is removed in order to create distributing and collecting
ducts shown in Fig. 2. The porosity of the vascular struc-
ture is the ratio of the solid volume divided by the created
void volume for fluid to flow, i.e.,ϕ = Vs/V. The solid
volume throughout the paper is fixed, and it isL×H× y.

The stream is distributed and collected by two hori-
zontal channels (diameter D1), one along the top and the
other along the bottom. The stack of n elements of size
d×H×y fills a volume of length L = nd, height H, and
thickness y, which is perpendicular to the plane of Fig. 2.
The pressure drop from one end of the elemental volume
to the other is fixed. The flow ratėm is steady and known.

FIG. 2: Stack of n elemental volumes bathed by a single
stream

The pressure drop along the supply duct of Fig. 2 is the
expression of Eqs. (7) and (9) in tapered ducts for laminar
and turbulent flows, respectively.

4. SECOND CONSTRUCT

Consider next the question of whether it is beneficial to
configure the stack in a way which is different than in
Fig. 2. A two-dimensional alternative is shown in Fig. 3,
which is the result of cutting the stack of Fig. 2 into p

FIG. 3: Stack of p elemental volumes of size L/p
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equal pieces, and stacking these pieces in the vertical di-
rection. This new design has a two-dimensional pattern
with the vertical dimension pH and the horizontal dimen-
sion L/p. The flow is distributed by p horizontal channels
of length L/p and diameter D1 and a vertical channel of
height (p – 1)H and diameter D2.

To compare Figs. 1 and 3 analytically and on the same
basis, we assume that the configuration and flow needs of
a single d× H × y element are fixed. This means that H,
d,ṁe = ṁ/n, and the diameter of the thin channel that runs
along the centerline of the element is fixed. Therefore, the
pressure drop∆Pe from one end of the d× H× y element
to the other end is fixed.

The pressure drop for a channel with laminar and tur-
bulent flows are as in Eqs. (4) and (5) with constant di-
ameter and as in Eqs. (7) and (9) with tapered ducts. The
pressure drop along the distributing ducts in Fig. 3 has
two parts: the pressure drop along one duct of diameter
D2 and length (p – 1)H and p ducts of diameter D1 and
length L/p. The total volume of the distributing ducts are

V = V2 + pV1 (12)

The pressure drops along the distributing tapered ducts
are

∆P2,l =

(
3

4

)3 (π
4

)2
Clṁ

[(p− 1)H]
3

(V2)
2 +

(
3

4

)3 (π
4

)2
× Cl

ṁ

p

(L/p)
3

(V1)
2 (13)

∆P2,t =

(
7

11

)7/2 (π
4

)5/2
Ctṁ

2 [(p− 1)H]
7/2

(V2)
5/2

+

(
7

11

)7/2 (π
4

)5/2
Ct

ṁ2

p2
(L/p)

7/2

(V1)
5/2

(14)

where the diameters of the ducts vary as in Eqs. (6) and
(8),

Di,l =

(
16

3π

Vi

Li

)1/2(
x

Li

)1/6

(15)

Di,t =

(
44

7π

Vi

Li

)1/2(
x

Li

)2/7

(16)

whereL1 = L/p andL2 = (p− 1)H. The flow rate
through the D1 duct isṁ/p, and it appears aṡm2/p2 in
Eq. (14) because in turbulent flow the pressure drop is
proportional toṁ2.

The total space occupied by the first and second con-
structs (Figs. 1 and 3) is the same, (pH)× (L/p) = LH. The
only degree of freedom in the minimization of the pres-
sure drop is the ratio ofV2/V1. By minimizing∆P2 with
respect to theV2/V1 subject to constraint of Eq. (12), we
find (

V2

V1

)
l

= p2/3
(p− 1)H

L/p
(17)(

V2

V1

)
t

= p6/7
(p− 1)H

L/p
(18)

The minimized pressure drops are

∆P2,l=

(
3

4

)3(π
4

)2
Cl

ṁL3

p2V2

[
H

L
(p− 1)p2/3+1

]3
(19)

∆P2,t =

(
7

11

)7/2 (π
4

)5/2
Ct

ṁ2L7/2

p3V5/2

×
[
H

L
(p− 1)p6/7 + 1

]7/2
(20)

The minimized pressure drops for the constant diame-
ter ducts are (Kim et al., 2008; Cetkin et al., 2010)

∆P2,l,D=const =

(
1

2

)(π
4

)2
Cl

ṁL3

p2V2

×
[
H

L
(p− 1)p2/3 + 1

]3
(21)

∆P2,t,D=const =

(
1

3

)(π
4

)5/2
Ct

ṁ2L7/2

p3V5/2

×
[
H

L
(p− 1)p6/7 + 1

]7/2
(22)

Dividing Eq. (19) by Eq. (21) and Eq. (20) by Eq. (22),
we discover the merit of the tapered ducts,

∆P2,l

∆P2,l,D=const
= 0.84 (23)

∆P2,t

∆P2,t,D=const
= 0.62 (24)

These ratios are the same as in Eqs. (10) and (11). The
gain in the pressure drop by introducing the tapered ducts
is a constant for the second construct as in the first con-
struct. Tapering the ducts decreases the pressure drop by
16% and 38% for laminar and turbulent flows, respec-
tively.
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Figure 4 shows the pressure drop of the second con-
struct relative to the size of the construct (nd/y) in lami-
nar (top) and turbulent (bottom) flows. The pressure drop
can be decreased by increasing p as nd/y increases. The
pressure drop of the second construct decreases when the
ducts are tapered. The nd/y ratio for increasing p to ob-
tain the minimum pressure drop also decreases with the
tapered ducts, Fig. 4.

FIG. 4: The flow performance of the second construct of
Fig. 3

5. THIRD CONSTRUCT

Stacking the second construct in three-dimensional ori-
entation [Fig. 5 (top)] and cutting it into r equal pieces,
and then stacking the equal pieces in the direction per-
pendicular to the D2–D1 plane, we obtain a new archi-
tecture, Fig. 5 (bottom). The size of this new design is
(rH)× (py/r)× (L/p) = LHy. The volume occupied by this
construct is same as in the first and second constructs.

The stream enters this body through one duct of diam-
eter D3 and length (r – 1)H. Then it is distributed from
the D3 duct to the D2 ducts, after which it follows the
same path as in the second construct, Fig. 3. The pressure
drop across the third construct consists of three terms for
tapered ducts in laminar and turbulent flows, respectively.

∆P3,l =

(
3

4

)3 (π
4

)2[
Clṁ

[(r − 1)H]
3

V2
3

+Cl
ṁ

r

[py/r]
3

V2
2

+Cl
ṁ

p

[L/p]
3

V2
1

]
(25)

FIG. 5: Third construct: the r segments are stacked in the
direction perpendicular to the D2-D1 plane
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∆P3,t =

(
7

11

)7/2 (π
4

)5/2 [
Ctṁ

2 [(r − 1)H]
7/2

V
5/2
3

+Ct
ṁ2

r2
[py/r]

7/2

V
5/2
2

+Ct
ṁ2

p2
[L/p]

7/2

V
5/2
1

]
(26)

The total volume of the distribution ducts is

V = V3 + rV2 + pV1 (27)

The diameter of the ducts vary as in Eqs. (15) and (16),
whereL1 = L/p, L2 = py/r, andL3 = (r − 1)H. By
minimizing ∆P3 with respect to theV2/V1 andV3/V1

subject to constraint of Eq. (27), we find(
V2

V1

)
l

=
(p
r

)2/3 py/r

L/p

(
V3

V1

)
l

=p2/3
(r−1)H

L/p
(28)

(
V2

V1

)
t

=
(p
r

)6/7 py/r

L/p

(
V3

V1

)
t

=p6/7
(r−1)H

L/p
(29)

The minimized pressure drops of the structures with ta-
pered ducts are

∆P3,l =

(
3

4

)3 (π
4

)2
Cl

ṁy3

V2

[
H

y
(r − 1) + pr−2/3

+ p−2/3nd

y

]3
(30)

∆P3,t =

(
7

11

)7/2 (π
4

)5/2
Ct

ṁ2y7/2

V5/2

[
H

y
(r − 1)

+ pr−6/7 + p−6/7nd

y

]7/2
(31)

The minimized pressure drops for the constant diameter
ducts are (Kim et al., 2008; Cetkin et al., 2010)

∆P3,l,D=const =

(
1

2

)(π
4

)2
Cl

ṁy3

V2

[
H

y
(r − 1)

+ pr−2/3 + p−2/3nd

y

]3
(32)

∆P3,t,D=const =

(
1

3

)(π
4

)5/2
Ct

ṁ2y7/2

V5/2

×
[
H

y
(r − 1) + pr−6/7 + p−6/7nd

y

]7/2
(33)

Dividing Eq. (30) by Eq. (32) and Eq. (31) by Eq. (33),
we discover the merit of the tapered ducts,

∆P3,l

∆P3,l,D=const
= 0.84 (34)

∆P3,t

∆P3,t,D=const
= 0.62 (35)

Similar to the second construct, these ratios of
Eqs. (34) and (35) are the same as in Eqs. (10) and (11).
Figure 6 shows the merit in the pressure drop relative to
nd/y ratio, namely 16% and 38% decrease with tapered
ducts for laminar and turbulent flows, respectively.

FIG. 6: The performance curves of the designs of Fig. 5
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Figure 7 shows the pressure drops of the first (Fig. 2),
second (Fig. 3), and third (Fig. 5) constructs divided by
the pressure drop of the first construct (Fig. 2) with lami-
nar and turbulent flows. Figure 7 illustrates that the shape
of the construct should be changed to keep the pressure
drop in minimum as the size of the construct increases.
The nd/y ratio corresponding to the shape change, i.e.,
transition point from one construct to the other, decreases
as the ducts of the construct are tapered, Fig. 7. Tapering
shifted the pressure drop by 16% and 38% less for laminar
and turbulent flows, respectively.

FIG. 7: The pressure drop of the designs of Figs. 2, 3,
and 5 divided by the pressure drop of the design of Fig. 1
with laminar(top) and turbulent(bottom) flows

6. CONCLUSIONS

In this paper, we showed that the pressure drop of the de-
signed porous material decreases with tapered ducts. The
finite-size porous material with embedded vascular struc-
ture is bathed volumetrically by one single stream, which
then leaves the structure as one stream through a collect-
ing duct. Every elemental volume receives fluid as every
cells receives blood in the veins of animals.

This paper shows how the ducts of a vascular structure
can be tapered in order to decrease the pressure drop in
laminar and turbulent flows. The volume ratio of the dis-
tributing ducts and their shapes are documented. Tapering
the ducts decreases the pressure drop in laminar and tur-
bulent flows, 16% and 38%, respectively. The decrease in
the pressure drop by tapering the ducts is the same in the
first, second, and third constructs. Therefore, the pressure
drop of the vascular design can be calculated for the ducts
of constant diameter and then the merit can be calculated
by using Eqs. (10) and (11).

This paper shows that the assumption of the ducts of
constant diameter is a good approximation of the tapered
ducts. However, the merit of 16% to 38% on the pressure
drop relative to the flow regime means the decrease in the
needed pumping power and the cost of pumping for the
distribution.

ACKNOWLEDGMENT

This work was supported by the Republic of Turkey.

REFERENCES

Aragon, A. M., Saksena, R., Kozola, B. D., Geubelle, P. H.,
Christensen, K. T., and White, S. R., Multi-physics optimiza-
tion of three-dimensional microvascular polymeric compo-
nents,J. Comput. Phys., vol. 233, pp. 132–147, 2013.

Bejan, A. and Lorente, S.,Design with Constructal Theory, Wi-
ley, Hoboken, NJ, 2008.

Bejan, A. and Lorente, S., The constructal law of design and
evolution in nature,Philos. Trans. R. Soc. B, vol. 365, pp.
1335–1347, 2010.

Bejan, A. and Lorente, S., Constructal law of design and evolu-
tion: Physics, biology, technology and society,J. Appl. Phys.,
vol. 113, p. 151301, 2013.

Bejan, A., Lorente, S., and Wang, K.-M., Networks of channels
for self-healing composite materials,J. Appl. Phys., vol. 100,
p. 033528, 2006.

Bejan, A. and Zane, J. P.,Design in Nature: How the Construc-
tal Law Governs Evolution in Biology, Physics, Technology
and Social Organization, Doubleday, New York, 2012.

Volume 17, Number 8, 2014



722 Cetkin

Beyene, A. and Peffley, J., Constructal theory, adaptive motion,
and their theoretical application to low-speed turbine design,
J. Energy Eng., vol. 135, pp. 112–118, 2009.

Cetkin, E., Lorente, S., and Bejan, A., Natural constructal emer-
gence of vascular design with turbulent flow,J. Appl. Phys.,
vol. 107, p. 114901, 2010.

Cetkin, E., Lorente, S., and Bejan, A., Hybrid grid and tree
structures for cooling and mechanical strength,J. Appl. Phys.,
vol. 110, p. 064910, 2011.

Chen, Y. and Cheng, P., An experimental investigation on
the thermal efficiency of fractal tree-like microchannel nets,
Int. Commun. Heat Mass Transfer, vol. 32, pp. 931–938,
2005.

Cho, K.-H., Chang, W.-P., and Kim, M.-H., A numerical and
experimental study to evaluate performance of vascularized
cooling plates,Int. J. Heat Fluid Flow, vol. 32, pp. 1186–
1198, 2011.

da Silva, A. K. and Bejan, A., Constructal multi-scale structure
for maximal heat transfer density in natural convection,Int.
J. Heat Fluid Flow, vol. 26, pp. 34–44, 2005.

Errera, M. R. and Bejan, A., Tree networks for flows in compos-
ite porous media,J. Porous Media, vol. 2, pp. 1–17, 1999.

Hamilton, A. R., Sottos, N. R., and White, S. R., Self-healing of
internal damage in synthetic vascular materials,Adv. Mater.,
vol. 22, pp. 5159–5163, 2010.

Kim, S., Lorente, S., Bejan, A., Miller, W., and Morse, J., The
emergence of vascular design in three dimensions,J. Appl.
Phys., vol. 103, p. 123511, 2008.

Liu, H. and Li, P., Even distribution/dividing of single-phase flu-
ids by symmetric bifurcation of flow channels,Int. J. Fluid
Flow, vol. 40, pp. 165–179, 2013.

Lorenzini, G. and Rocha, L. A. O., Constructal design of T–Y
assembly of fins for an optimized heat removal,Int. J. Heat
Mass Transfer, vol. 52, pp. 1458–1463, 2009.

Lorente, S. and Bejan, A., Vascularized smart materials: De-
signed porous media for self-healing and self-cooling,J.
Porous Media, vol. 12, pp. 1–18, 2009.

Miguel, A. F., Constructal pattern formation in stony corals, bac-
terial colonies and plant roots under different hydrodynamics
conditions,J. Theor. Biol., vol. 242, pp. 954–961, 2006.

Miguel, A. F., Dendritic structures for fluid flow: laminar, tur-
bulent and constructal design,J. Fluids Struct., vol. 26, pp.
330–335, 2010a.

Miguel, A. F., Fluid flow in tree-shaped constructal networks:
Porosity, permeability and inertial parameter,Defect Diffu-
sion Forum, vol. 297-301, pp. 408–412, 2010b.

Raja, V. A. P., Basak, T., and Das, S. K., Thermal performance of
a multi-block heat exchanger designed on the basis of Bejan’s

constructal theory,Int. J. Heat Mass Transfer, vol. 51, pp.
3582–3594, 2008.

Reis, A. H., Constructal theory: From engineering to physics,
and how flow systems develop shape and structure,Appl.
Mech. Rev., vol. 59, pp. 269–282, 2006a.

Reis, A. H., Constructal view of scaling laws of river basins,
Geomorphology, vol. 78, pp. 201–206, 2006b.

Reis, A. H. and Miguel, A. F., Constructal theory and flow archi-
tectures in living systems,Thermal Sci., vol. 10, pp. 57–64,
2006.

Reis, A. H., Miguel, A. F., and Aydin, M., Constructal theory
of flow architecture of lungs,Med. Phys., vol. 31, pp. 1135–
1140, 2004.

Rocha, L. A. O., Lorenzini, E., and Biserni, C., Geometric opti-
mization of shapes on the basis of Bejan’s Constructal theory,
Int. Commun. Heat Mass Transfer, vol. 32, pp. 1281–1288,
2005.

Soghrati, S., Thakre, P. R., White, S. R., Sottos, N. R., and
Geubelle, P. H., Computational modeling and design of
actively-cooled microvascular materials,Int. J. Heat Mass
Transfer, vol. 55, pp. 5309–5321, 2012.

Therriault, D., White, S. R., and Lewis, J. A., Chaotic mixing in
three-dimensional microvascular networks fabricated by di-
rect write assembly,Nat. Mater., vol. 2, pp. 265–271, 2003.

Tondeur, D. and Luo, L., Design and scaling laws of ramified
fluid distributors by the constructal approach,Chem. Eng.
Sci., vol. 59, pp. 1799–1813, 2004.

Wang, X.-Q., Mujumdar, A. S., and Yap, C., Numerical analysis
of blockage and optimization of heat transfer performance of
fractal-like microchannel nets,J. Electron. Packag., vol. 128,
pp. 38–45, 2006.

Wechsatol, W., Ordonez, J. C., and Kosaraju, S., Constructal
dendritic geometry and the existence of asymmetric bifurca-
tions,J. Appl. Phys., vol. 100, p. 113514, 2006.

Wu, W., Chen, L., and Sun, F., Heat-conduction optimization
based on constructal theory,Appl. Energy, vol. 84, pp. 39–
47, 2007a.

Wu, W., Chen, L., and Sun, F., On the “area to point” flow prob-
lem based on constructal theory,Energy Convers. Manage.,
vol. 48, pp. 101–105, 2007b.

Xu, P., Yu, B., Qiu, S., and Cai, J., An analysis of the radial flow
in the heterogeneous porous media based on fractal and con-
structal tree networks,Physica A, vol. 387, pp. 6471–6483,
2008.

Zhou, S., Chen, L., and Sun, F., Optimization of constructal
volume-point conduction with variable cross section conduct-
ing path,Energy Convers. Manage., vol. 48, pp. 106–111,
2007.

Journal of Porous Media




