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Introduction

Catchment sediment yield is a direct indication of surface 
erosion induced by rainfall run-off. Surface erosion by 
rainfall and run-off embodies the processes of detach-
ment, transportation and deposition of soil particles 
(Foster, 1982). Detachment occurs when the erosive forces 
of raindrop impact (and/or flowing water) exceed the 
resistance of soil to the erosion. Detached particles are 
then carried downstream by surface run-off. Deposition 
occurs when sediment load exceeds the transport capac-
ity of flow (Romkens et al., 2002).

Surface erosion by rainfall and run-off is also the pri-
mary source of fine sediment being transported to the 
receiving water bodies. As such, erosion can not only 
reduce the productivity of croplands but also degrade 
the water quality because of the association of pollutants 
to the fine sediment particles (Nord and Esteves, 2005; 
Julien, 2010). The deposition of the transported sediment 
in water conveyance structures such as irrigation canals, 
stream channels, reservoirs, estuaries and harbours can 

limit the functions of these structures (Aksoy and Kavvas, 

2005). Underestimation of the dead storage volume of a 

dam reservoir can shorten the project life of the reservoir. 

Overestimation of the dead storage, on the other hand, 

can result in unnecessary cost. River navigation and res-

toration projects, like dam reservoir planning, require the 

estimates of sediment loads from upland areas and trans-

ported within rivers. Hence, the rainfall run-off-induced 

erosion and sediment transport have been the topic of 

research for many decades.

Rainfall run-off-induced erosion on land surfaces has 

been experimentally studied by many researchers using 

laboratory flumes and/or experimental plots in the field 

(Wischmeier et al., 1971; Kilinc and Richardson, 1973; 

Meyer et al., 1975; Barfield et al., 1983; Govindaraju et 

al., 1992; Abrahams et al., 1998; Portner and Schleiss, 

2001; Nunes et al., 2006; de Lima et al., 2011, Aksoy et 

al., 2012; Montenegro et al., 2013). Modelling studies, at 

the same time, have been carried out for the erosion 

and sediment transport processes. Approaches ranged 
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Abstract

Based on three rainfall run-off-induced sediment transport data for bare surface 
experimental plots, the generalized regression neural network (GRNN) and empiri-
cal models were developed to predict sediment load. Rainfall intensity, slope, 
rainfall duration, soil particle median diameter, clay content of the soil, rill density 
and soil particle mass density constituted the input variables of the models while 
sediment load was the target output. The GRNN model was trained and tested. 
The GRNN model was found successful in predicting sediment load. Sensitivity 
analysis by the GRNN model revealed that slope and rainfall duration were the 
most sensitive parameters. In addition to the GRNN model, two empirical models 
were proposed: (1) in the first empirical model, all the input variables were related 
to the sediment load, and (2) in the second empirical model, only rainfall intensity, 
slope and rainfall duration were related to the sediment load. The empirical 
models were calibrated and validated. At the calibration stage, the coefficients 
and the exponents of the empirical models were obtained using the genetic 
algorithm optimization method. The validated empirical models were also applied 
to two more experimental data sets: (1) one data set was from a field experi-
ment, and (2) one set was from a laboratory experiment. The results indicated 
the success of the empirical models in predicting sediment load from bare land 
surfaces.
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from simple conceptualization to the process-based mod-
elling (Govindaraju and Kavvas, 1991; 1992; Tayfur, 2001; 
2002a; Merritt et al., 2003; Aksoy and Kavvas, 2005; Julien, 
2010).

Conceptual models require relatively less information 
than the process-based models, which often require 
numerical methods for the solution of governing equa-
tions (Storm et al., 1987; Govindaraju and Kavvas, 1991; 
1992; Tayfur and Singh, 2004; Tayfur, 2007; Julien, 2010). 
They can provide gross estimates of the sediment load 
at the outlet of land surfaces while the distributed process-
based models can also produce temporal and spatial 
variation of the variables over the surface. The process-
based models are effective provided that the spatial and 
temporal distribution of the required data is available 
and the objective is to develop local mitigation measures 
to prevent erosion, and sediment and contaminant trans-
port (Tayfur and Singh, 2004).

One of the major shortcomings of the existing empiri-
cal (conceptual) models is their limited applicability. In 
other words, they are effective only when the laboratory 
(or field) experiments from which they are derived are 
satisfied (Aksoy and Kavvas, 2005). These models mostly 
relate sediment rate to one or higher number of vari-
ables such as run-off rate, bed slope, rainfall intensity 
and sediment particle diameter (Meyer and Wischmeier, 
1969; Kilinc and Richardson, 1973; Foster, 1982; Julien 
and Simons, 1985; Gilley et al., 1992; Zhang et al., 2009; 
Grismer, 2011; Aksoy et al., 2013; 2017). They require 
the measurements of the flow rates from land surfaces 
to be able to make good estimates of sediment loads. 
This is another shortcoming of the empirical models, 
especially for the ungauged basins. Furthermore, the 
existing empirical models do not consider rainfall dura-
tion as an input variable, implicitly assuming that rainfall 
duration has no effect on soil loss. However, experiments 
have shown that as the rainfall duration increases, sedi-
ment rate increases (Kilinc and Richardson, 1973, 
Katebikord et al., 2017). Approaching the problem by 
means of a different methodology, Tayfur (2002b) 
employed the Feed Forward Neural Network (FFNN) to 
predict sediment load on the data of Kilinc and Richardson 
(1973) by considering the slope and rainfall intensity as 
input variables.

The objective of this study is twofold: (1) to apply the 
Generalized Regression Neural Network (GRNN) to predict 
sediment load from bare slopes, and (2) to develop more 
comprehensive empirical models, which would have a 
wide range of applicability, for the same predictive pur-
pose. The development of the models was carried out 
by considering in the input vector, data sets within a 
wide range of slope, rainfall duration, rainfall intensity, 
sediment particle density and diameter, rill density and 

the clay content of the soil. This is the first study con-
sidering rainfall duration, sediment particle density, rill 
density and the clay content of the soil along with other 
major variables to predict sediment load from bare slopes. 
Also, this study is the first to apply the GRNN in the 
rainfall run-off sediment transport modelling literature. 
The GRNN was preferred as it has basically two major 
advantages over the FFNN: that it does not face local 
minima problem, and it does not generate physically 
implausible values (Cigizoglu, 2005).

Data collection

Three data sets were obtained from the literature. The 
first data set was obtained from Kilinc and Richardson 
(1973) who carried out rainfall run-off-induced erosion 
and sediment transport experimental runs over a flume, 
1.5  m-wide, 4.9  m-long, and with an adjustable bed 
slope. The soil was sand with 10% clay content and 
there was no rill over the surface of the experimental 
plot. The mean sediment particle diameter was 0.35 mm 
and the soil density 2634  kg/m3. The experiments were 
carried out over six bare surfaces with bed slopes of 
5.7, 10, 15, 20, 30 and 40% subjected to four rainfall 
intensities of 32, 57, 93 and 117  mm/h. Sediment load 
was measured at different intervals of rainfall duration 
which lasted 60  minutes at most. From Kilinc and 
Richardson (1973), a total of 193 sets of sediment load 
measured at different rainfall durations, under different 
rainfall intensities, and over different bed slopes were 
compiled.

The second set of data was obtained from Aksoy et 
al. (2011)) who carried out rainfall run-off-induced ero-
sion and sediment transport experiments over a 
1.4  m-wide and 6.5  m-long flume having an adjustable 
slope within the range of 5–20%, both at the longitudinal 
and the lateral directions. Four different rainfall intensi-
ties (45, 65, 85, 105  mm/h) were applied. Two different 
size sands were used as sediments: (1) sand with a 
mean diameter of 0.45  mm and a density of 2650  kg/
m3 and (2) sand with a mean diameter of 0.15  mm and 
a density of 2600  kg/m3. Before the rain is applied in 
each experiment, a rill was pre-formed on the plot hav-
ing a 26  cm width, amounting to 19% rill density. In 
total, 80 sets of experiments, with 15-minute rainfall 
duration, were carried out.

The third data set was obtained from Katebikord et 
al. (2017) who carried out experiments over a 1  m2 field 
experimental plot under 40  mm/h rainfall intensity and 
18% slope. The soil texture was loam-clay having 0.023 mm 
particle diameter and 2786  kg/m3 density. A total of 18 
runs were carried for 6 different rainfall durations, rang-
ing from 5 to 30 minutes.
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Generalized regression neural network 
(GRNN)

The GRNN, which does not have a local minima problem 
and does not make physically implausible predictions, was 
employed in this study. It is a method for estimating a 
joint probability density function (pdf) of x and y given 
only a training set. If f(x,y) represents the joint continu-
ous pdf of the vector random variable x and the scalar 
random variable y, the estimation can be expressed as:

The pdf f(x,y) is usually estimated from a sample of 
the observations of the variables, x and y (Cigizoglu, 2005):

where f̂(x,y) is the probability estimator, which is based 
on the sample values xi and yi of the random variables 
x and y, respectively; n is the number observation in the 
sample, σ is the smoothing parameter and p is the dimen-
sion of the vector variable x.

A physical interpretation of the probability estimate 
f̂(x,y) is that it assigns the sample probability of width σ 
for each sample xi and yi, and the probability estimate 
is the sum of the sample probabilities. Let us define the 
scalar function di as:

and substitute it into Eq. (2). Performing the indicated 
summations in Eq. (2) yields the estimation of output 
variable, y as:

When σ is made large, the estimated density is forced 
to be smooth and at the limit, it becomes a multivari-
ate Gaussian function with the covariance σ 2 (Cigizoglu, 
2005). On the other hand, a smaller value of σ allows 
the estimated density to assume non-Gaussian shapes, 
but with a disadvantage that extreme points may have 
a negative effect on the estimate. Its optimal value is 
often determined experimentally (Kim et al., 2013). Eq. 
(4) is directly applicable to problems involving numerical 
data. The only parameter which should be adjusted in 
the GRNN simulations is the smoothing parameter, σ 
(Cigizoglu, 2005).

The GRNN structure has four layers (Fig. 1): input, pat-
tern, summation and output (Tsoukalas and Uhrig, 1997). 
Neurons in each layer are fully connected to each other. 
In this study, the number of input units in the first layer 
is equal to the total number of input variables, which 
are the rainfall intensity (R), slope (S), rainfall duration 
(Td), particle median diameter (D50), clay content (λ  c), rill 
density (λ r) and particle mass density (ρ  s). The second 
layer has the pattern units; its outputs are passed on 
to the summation units in the third layer. Each unit in 
the pattern layer represents a training pattern and its 
output is a measure of the distance of the input from 
the stored patterns. The summation layer has two units, 
the S-summation neuron and the D-summation neuron 
(Seckin et al., 2013). The S-summation neuron computes 
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Fig. 1. Schematic representation of the GRNN model.

 17476593, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/w

ej.12442 by Izm
ir Y

uksek T
eknoloji E

nstit, W
iley O

nline L
ibrary on [12/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Prediction of rainfall run-off-induced sediment load from bare land surfacesG. Tayfur et al.

Water and Environment Journal 34 (2020) 66–76 © 2018 CIWEM. 69

the sum of the weighted outputs of the pattern layer 
while the D-summation neuron does the same for the 
non-weighted outputs. The connection weights are set 
unity between the pattern layer neurons and the 
D-summation neuron (Kim et al., 2013).

The output layer divides the output of each S-summation 
neuron by that of each D-summation neuron, yielding 
the predicted value to an unknown vector, which is the 
sediment load (Qs) in this study. This can be, following 
Eq. (4), expressed as:

It should be noted that the GRNN is not a conceptual 
or an empirical model. It is one type of the artificial neural 
network (ANN) algorithms. The majority of the ANN appli-
cations in hydrology have involved the employment of 
the back propagation training algorithm in the FFNN 
(Tayfur, 2012). However, the FFNN algorithm has two major 
drawbacks: (1) they are very sensitive to the selected 
initial weight values, thus they can provide results dif-
fering from each other significantly, and (2) the local 
minima issue is a major problem. During the training stage, 
the network can be sometimes trapped by the local error 
minima preventing them to reach the global minimum. 
On the other hand, the GRNN does not require an itera-
tive training procedure as in the back propagation method. 

It approximates any arbitrary function between the input 
and output vectors, drawing the function estimate directly 
from the training data. As stated above, the GRNN simu-
lations do not face the frequently encountered local minima 
problem in the FFBP applications and the GRNN does 
not generate estimates that are not physically plausible 
(Cigizoglu and Alp, 2006).

Further details of the GRNN can be found elsewhere 
(Tsoukalas and Uhrig, 1997; Cigizoglu and Alp, 2006; Alp 
and Cigizoğlu, 2007; Tayfur, 2012; Seckin et al., 2013; Kim 
et al., 2013). In this study, NeuroTools, the package pro-
gram of Palisade Corporation (2012), was used.

GRNN application

The input vector for the GRNN was formed using the 
rainfall intensity (R), slope (S), rainfall duration (Td), particle 
median diameter (D50), clay content of the soil (λ c), rill 
density (λ r) and soil mass density (ρ s). The sediment rate 
(Qs) is the target output. A total of 233 data sets were 
used, of which 163 (70%) for the training (calibration) of 
the network and the rest (30%) for the testing (validation). 
The units of the variables in the training and testing were 
as follows: clay content (%), rill density (%), particle mass 
density (kg/m3), particle diameter (mm), rainfall intensity 
(mm/h), slope (%), rainfall duration (min) and sediment 
discharge (kg/m2).

Figure 2 presents the measured versus predicted total 
sediment loads for the training and testing stages of the 
constructed GRNN model. As seen in Fig. 2, the GRNN 
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Fig. 2. Sediment load, measured versus predicted by the GRNN model; (a) Training stage, (b) Testing stage.
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was successfully trained with the root mean squared error 
(RMSE) of 1.182  kg/m2. The coefficient and the intercept 
of the fitted linear equation were found close to one and 
zero, respectively. The distribution of the data around 
the perfect-fit (1  :  1) line is even, the determination coef-
ficient (R2) is 0.9861, implying a successful training (Sen, 
2004; Tayfur, 2012). As explained previously, the only 
parameter which should be adjusted in the GRNN simula-
tion is the smoothing parameter, σ. The lowest RMSE 
and the highest R2 values for the training period were 
obtained with σ  =  0.12.

Figure 2 also shows that the model can confidently be 
used for the prediction purpose. It predicted with 
RMSE  =  2.009  kg/m2 and R2  =  0.9368. As it was in the 
training stage, the distribution of the data around the 
perfect-fit line is even, successfully predicting all values, 
including the low and high sediment loads. The coefficient 
and the intercept of the fitting line are close enough to 
one and zero, respectively.

Sensitivity analysis by GRNN

A sensitivity analysis is carried out to see the most sensi-
tive parameters. For this purpose, in the input vector of 
the GRNN model, in each case, one variable was not 
considered. For example, in the first case, all the variables 
except D50 were considered in the input vector. Similarly, 
in the second case, all the variables but particle density 
were taken as the input parameters. As seen in Table 1, 
the most sensitive parameters were found to be the slope 
and the rainfall duration. Other parameters have a com-
parable sensitivity, not as significant as the slope and 
the rainfall duration.

Empirical models

Empirical models in the forms of

were proposed in this study. In Eqs (6) and (7) α  1 and 
α 2 are the coefficients, β  1, β 2, β 3, β 4, β 5, β 6, β 7, η  1, η 2, 
and η 3 are the exponents, whose optimal values are 
obtained by the genetic algorithm (GA). The clay content 
of the soil texture would reduce the erosion. Therefore, 
in Eq. (6), it was subtracted from the unity; i.e.; the soil 
becomes 100% sand when the clay content is zero. On 
the other hand, rill flow would increase erosion and sedi-
ment transport since its transport capacity is higher than 

that over the interrill areas (Govindaraju and Kavvas, 1992; 
Tayfur, 2007). That is why the rill density was added to 
the unity in Eq. (6). Equation (7) was proposed based 
upon the results of the sensitivity analysis obtained by 
the GRNN. The GA optimization method was employed 
as explained below to obtain the optimal values of the 
exponents and the coefficients of the proposed empirical 
models.

Genetic algorithm (GA) and its implementation

The genetic algorithm (GA) which has recently found wide 
applications in water resources engineering (Sen and 
Oztopal, 2001; Jain et al., 2004; Guan and Aral, 2005; 
Singh and Datta, 2006; Tayfur and Moramarco, 2008; 
Tayfur, 2009; Tayfur et al., 2009; Tayfur and Singh, 2011; 
Aksoy et al., 2016, 2017; Tayfur, 2017) is a nonlinear 
search and optimization method inspired by the biologi-
cal processes of the natural selection and the survival 
of the fittest. It makes relatively few assumptions and 
does not rely on any mathematical properties of the 
functions such as the differentiability and the continuity. 
This makes it generally applicable and robust (Liong et 
al., 1995; Goldberg, 1989). The basic units of the GA 
consist of ‘bit’, ‘gene’, ‘chromosome’ and ‘gene pool’. A 
gene consisting of bits [0 and 1] represents a model 
parameter (or a decision variable) to be optimized. The 
combination of the genes forms the chromosome, each 
of which is a possible solution for each variable. Finally, 
a set of chromosomes forms the gene pool. The main 
GA operations basically consist of the generation of initial 
gene pool, evaluation of fitness for each chromosome, 
selection, cross-over and mutation. Details of the GA can 
be obtained from Goldberg (1989) and Tayfur (2012), 
among others.

(6)Qs=�1
(
1−�c

)�1 (
1+�r
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Table 1  Sensitivity analysis of the variables; rainfall intensity (R), slope 

(S), rainfall duration (Td), particle median diameter (D50), clay content (λ c), 
rill density (λ r) and soil particle mass density (ρ s)

Case

Input 

vector

Unused variable in the 

input vector of GRNN RMSE (kg/m2) R2

Case 1 R, S, Td, λ c, 
λ r, ρ s

D50 3.87 0.88

Case 2 R, S, Td, D50, 

λ c, λ r

ρ s 2.90 0.91

Case 3 R, S, Td, D50, 

λ r, ρ s

λ c 3.30 0.89

Case 4 R, S, Td, D50, 

λ c, ρ s

λ r 3.14 0.90

Case 5 R, Td, D50, 

λ c, λ r, ρ s

S 6.29 0.48

Case 6 R, S, D50, λ c, 
λ r, ρ s

Td 5.40 0.70
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The GA can minimize (or maximize) an objective func-
tion under given constraints. In this study, the GA was 
employed to obtain the optimal values of the exponents 
and coefficients of the empirical models by minimizing 
the mean absolute error (MAE) between the measured 
sediment load and that calculated by the model.

The data sets randomly separated for the training and 
testing of the GRNN model were herein used, respectively, 
for the calibration and validation of the GA-based empiri-
cal models. Hence, 163 sets of the same data as in the 
GRNN model were employed to find the optimal values 
of the coefficients and the exponents of the empirical 
models (Eqs (6) and (7) by minimizing the MAE. For this 
purpose, 120 chromosomes, 80% crossover, 4% mutation 
rate and 16  000 iterations were used in Evolver, the GA 
package software of Palisade Corporation (2012). The 
calibrated (optimal) values of the coefficients are sum-
marized in Table 2. The exponents of the particle density 
(ρ s) and the particle diameter (D50) are negative, implying 
that sediment rate inversely varies with these variables. 
Similarly, the exponent of the slope is between 1 and 2, 
agreeing with the literature (Aksoy and Kavvas, 2005; 
Aksoy et al., 2017). Figure 3 compares the measured 

sediment load versus that predicted by Eq. (6) for the 
calibration stage. As seen, the coefficient and the inter-
cept of the best-fit line are close to one and zero, respec-
tively, RMSE is 2.68  kg/m2 and R2 is 0.9226, all implying 
a successful calibration. The same 70 data sets used for 
testing the GRNN model were predicted to check the 
validity of the model (Eq. (6) by using the optimal values 
of the parameters in Table 2. The performance of the 
model for the validation stage is also shown in Fig. 3. It 
is seen that the RMSE is 2.33  kg/m2 and R2 is 0.9156. 
The distribution of the data around the perfect-fit line is 
almost even; the model successfully predicts low and 
high values.

Equation (7) relates the sediment rate to the rainfall, 
slope and rainfall duration, as discussed above. The same 
163 data sets used for the training of the GRNN and the 
calibration of Eq. (6) were employed herein to obtain the 
optimal values of the coefficient and the exponents of 
Eq. (7) by using the GA optimization model. Figure 4 shows 
the measured versus predicted sediment loads, as a result 
of the performed calibration. Although the data are evenly 
distributed along the best-fit line, high values are under-
estimated in general. At the calibration stage, 

Table 2  Optimal values of the coefficients and the exponents of the empirical models

α 1 β 1 β 2 β 3 β 4 β 5 β 6 β 7

Empirical model 1 (Eq. (6)) 0.1647 4.0714 5.8937 −1.3561 1.7114 1.2104 0.9776 −0.1855
α 2 η 1 η 2 η 3

Empirical model 2 (Eq. (7)) 0.00045 1.2952 0.7419 0.5680

Fig. 3. Sediment load, measured versus predicted by the empirical model – Eq. (6) – (a) Calibration stage, (b) Validation stage.
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RMSE  =  6.41  kg/m2 (higher than the previous cases) and 
R2  =  0.58 (lower than the previous cases). The optimal 
values of the coefficient and the exponents in the best-fit 
line are given in Table 2. The application of Eq. (7), with 
the so-obtained optimal values for the data in the valida-
tion stage, resulted in a high RMSE of 6.50  kg/m2 and a 
low R2 of 0.36. Figure 4 also shows the results of the 
validation stage for Eq. (7). A clear underestimation prob-
lem is seen although the distribution of the data is even. 
The results indicate that when the data especially come 
from a rilled surface or clay soils, empirical models in 
the form of Eq. (7) may not be sufficient enough for the 
purpose of sediment load prediction.

As it was the case in the GRNN model, it should be 
noted that the units of the variables in Eqs (6) and (7) 
are as follows: clay content (%), rill density (%), particle 
mass density (kg/m3), particle diameter (mm), rainfall 
intensity (mm/h), slope (%), rainfall duration (min) and 
sediment discharge (kg/m2). If one were to work with dif-
ferent units, the model calibration should be redone 
accordingly.

Application to field experimental data

Equations (6) and (7) were applied to estimate the total 
sediment load from the field experiment carried out in 
September 1992 (Govindaraju et al., 1992) over a hill slope 
in Buckhorn Summit, California, USA. A steep hill slope 
section with 66.7% slope, 10  m width and 15  m length 
was subjected to 152.4  mm/h rainfall for a 12-minute 

duration (Govindaraju et al., 1992). The decomposed gran-
ite soil had size particles of, on the average, 
D50  =  0.625  mm (Govindaraju et al., 1992). The soil mass 
density was about 2580  kg/m3 and the rill density over 
the experimental section was observed to be almost 32% 
(Govindaraju et al., 1992). The total sediment load was 
measured as 199.2  kg/m2. With the given inputs, Qs was 
calculated as 217.4  kg/m2 by Eq. (6) with a relative error 
of 9.1%. If one were to apply Eq. (7) with the given inputs, 
Qs was obtained as 28  kg/m2, which is sevenfold less 
than the measured sediment load. Eq. (7) significantly 
underestimated the sediment load. Its poor performance 
is connected mainly to the fact that it does not consider 
the particle diameter, particle density, clay content and 
the rill density among which the rill density has a par-
ticular importance as Govindaraju et al. (1992) observed 
from the experiments that most of the sediment came 
down from the rill sections.

The empirical models (Eqs (6) and (7) were also applied 
on a data set from an experimental flume of 9% slope, 
subjected to 100  mm/h rainfall for a duration of 30 min-
utes with yellow podzolic soil of 0.2  mm-diameter and 
1480  kg/m3 mass density (Singer and Walker, 1983). No 
rilling was taken into account in the experiments. The 
total sediment load measured in the experiments was 
12.8 kg/m2. The predictions of Eqs (6) and (7) were 11.7 kg/
m2 with 8.6% error and 6.15  kg/m2 with 52% error, respec-
tively. Although the error is quite high, Eq. (7) could be 
considered for a gross prediction of total sediment load 
from a surface with no rill.

Fig. 4. Sediment load, measured versus predicted by the empirical model – Eq. (7) – (a) Calibration stage, (b) Validation stage.
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Discussion

A total of 233 data sets belonging to different experi-
mental studies were compiled from the literature to 
develop the GRNN and the empirical models for the pre-
diction of rainfall run-off-induced sediment load from bare 
and rilled land surfaces. The data covered a wide range 
of rainfall duration (5–60  minutes), rainfall intensity (32–
117  mm/h), bed slope (5.7–40%) and particle size (0.023–
0.45  mm median diameter). The clay content of the soil, 
rill density, particle mass density, particle diameter, rainfall 
intensity, slope, rainfall duration and sediment discharge 
were used in the development of the models.

From the data sets, 163 items were used in training 
the GRNN and 70 for testing it. It is the first time that 
the GRNN was applied to predict the rainfall run-off-
induced sediment load from bare and rilled surfaces. The 
model did not produce any physically plausible negative 
values. It converged fast and did not get trapped in a 
local minimum. This implies that when the necessary input 
data are available, the GRNN can be confidently used to 
make predictions, even for ungauged basins.

As far as the empirical models are concerned, the 
first model (Eq. (6) expresses the sediment load as a 
function of the same input variables used in the GRNN 
model while the second model (Eq. (7) expresses the 
sediment load as a function of only the slope, rainfall 
intensity and rainfall duration. The coefficients and the 
exponent of the empirical models were optimized by 
the GA using the same 163 data items employed in the 
training of the GRNN. The calibrated empirical models 
were then validated with the rest of the data (70 items 
used for the testing of the GRNN). The empirical equa-
tions were further validated against different laboratory 
and field data from the literature. The results indicate 
that Eq. (6) can be employed to predict loads from bare 
rilled surfaces. It has a general applicability and there-
fore it can be used for ungauged sites. Eq. (7), on the 
other hand, has a limited range of applicability such 
that it cannot yield reliable results when the bare sur-
faces contain rills and high content of clay. The results 
indicate that the rill density and rainfall duration play 
as important roles as the slope. Therefore, these param-
eters should not be ignored in the rainfall run-off-induced 
sediment transport studies.

When the applicability of the empirical models (Eq. (6) 
particularly) is concerned, the availability of the input 
variables becomes an issue. The input variables seem 
quite specific. However, fast development in mapping with 
incorporation of space technology such as remote sens-
ing and satellites is considered helpful to derive a fine-
tuned topography to get the slope and the rilling structure 

(Shaker et al., 2010; Desprats et al., 2013; Fiorucci et al., 
2015). In this regard, support by the Geographical 
Information Systems (Yuksel et al., 2008; Animka et al., 
2013; Ganasri and Ramesh, 2016; Gelagay and Minale, 
2016) is unavoidably necessary. Other inputs in the empiri-
cal model are meteorology related which are generally 
available at some near points. The proposed models (the 
GRNN and the empirical models) can be used to predict 
sediment load from ungauged sites provided that the 
input variables are made available by the use of up-to-
date technologies.

Conclusions

The following conclusions are drawn from this study:

(1)	 The GRNN can be a useful tool for the prediction of 
sediment load from bare and rilled land surfaces. The 
input vector of the GRNN model is composed of rainfall 
intensity, slope, rainfall duration, particle median di-
ameter, clay content of the soil, rill density and soil 
mass density.

(2)	The sensitivity analysis reveals that the rainfall duration 
and the slope are important variables of the sediment 
transport process.

(3)	An empirical model accepting the same input vector as 
the GRNN model is found successful with a general 
applicability.

(4)	An empirical model that relates sediment load with rain-
fall intensity, slope and rainfall duration might be used 
for the gross approximation of the sediment load from 
bare no-rill surfaces, where information on particle size, 
density and clay content is not available. If one were to 
be provided with data of only slope, rainfall intensity and 
rainfall duration, a gross estimation of the total sedi-
ment load from bare land surfaces can be made in (kg/
m2) by employing Eq. (7).

(5)	The GRNN model can provide satisfactory estimates of 
the total sediment load from bare slopes, like the empiri-
cal models. However, due to the fact that the neural net-
works are not good extrapolators, the application of the 
GRNN model to another data set would require retrain-
ing and retesting.

(6)	As opposed to the GRNN, the empirical model is not fully 
a black box. It reveals, at least conceptually, the physics 
of the process by relating the clay content, rill density, 
slope, rainfall intensity, rainfall duration, particle density 
and particle size to the total sediment load.

To submit a comment on this article please go to http://
mc.manuscriptcentral.com/wej. For further information please see the 
Author Guidelines at wileyonlinelibrary.com
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