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Abstract: Hyperspectral imaging systems provide dense spectral information on the scene under investigation by collecting
data from a high number of contiguous bands of the electromagnetic spectrum. The low spatial resolutions of these sensors
frequently give rise to the mixing problem in remote sensing applications. Several unmixing approaches are developed in order
to handle the challenging mixing problem on perspective images. On the other hand, omnidirectional imaging systems provide a
360-degree field of view in a single image at the expense of lower spatial resolution. In this study, we propose a novel imaging
system which integrates hyperspectral cameras with mirrors so on to yield catadioptric omnidirectional imaging systems to
benefit from the advantages of both modes. Catadioptric images, incorporating a camera with a reflecting device, introduce
radial warping depending on the structure of the mirror used in the system. This warping causes a non-uniformity in the spatial
resolution which further complicates the unmixing problem. In this context, a novel spatial-contextual unmixing algorithm
specifically for the large field of view of the hyperspectral imaging system is developed. The proposed algorithm is evaluated on
various real-world and simulated cases. The experimental results show that the proposed approach outperforms compared

methods.

1 Introduction

Hyperspectral data analysis attracts the interest of researchers
working in the fields of computer vision and remote sensing,
because it provides dense spectral information about the material to
be monitored. Remote sensing applications aim to monitor large
observation fields in a rapid way with a non-destructive manner.
The existing studies on remote sensing and hyperspectral imaging
applications, utilise the platforms which are mostly mounted on
airborne or unmanned air vehicles (UAVSs) in order to monitor large
areas. However, airborne platforms have operational difficulties
such as inappropriate weather conditions, flight permissions, no fly
zones and costly aircraft hire. In addition, UAVs have limitations
on the load of the imaging system containing heavy imaging
hardware such as sensor and processing unit. In this study, we aim
to increase field of view (FOV) of traditional hyperspectral
imaging systems which use lenses having narrow FOV. Therefore,
we contribute to existing hyperspectral and multispectral imaging
systems with providing a large FOV. Fish-eye lenses, stitching
several images captured by a narrow FOV camera and catadioptric
systems are examples for large FOV imaging systems. Catadioptric
cameras are the optical systems in which refraction (lenses) and
reflection (mirrors) are combined. While these systems produce a
deformation in the structure of the image due to the convex mirror
used in the system, they are able to present 360 degree FOV in the
horizontal plane. The term omnidirectional is used to denote that
the light rays from all directions are collected. In our work, we aim
to benefit from hyperspectral imaging and omnidirectional imaging
technologies to obtain a catadioptric omnidirectional hyperspectral
camera, and to handle the issues arising due to combining these
technologies. There are very few reported studies which use high
spectral information for omnidirectional imaging. These studies are
summarised in Section 2. The low spatial resolution of the sensors
frequently bring about the mixing problem in hyperspectral
imaging applications. Several unmixing approaches are developed
in order to handle the challenging mixing problem on perspective
images. To our knowledge ours is the first study that investigates
the applicability of unmixing algorithms for omnidirectional
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hyperspectral images. We propose capturing a single
omnidirectional image without requiring a prior stitching step.

The performance of the image processing algorithms, the
robustness of the results and the detailed information provided by
the sensors are highly dependent on the increased spectral and
spatial resolution of the data. The conventional hyperspectral
imagers renounce the high spatial resolution in favour of the high
spectral resolution. Today's remote sensing technology on satellite
and airborne applications is limited with the constraints: data
storage capacity, the transmittance broadband between the imager
and ground station, the weight limit to be carried on [1]. These
constraints cause to have a lower spatial resolution which remains
incapable of imaging the object to be analysed. In this case, the
pixels captured in such scenario may not purely contain a single
material. The pixel signature is mixed of the spectral signatures of
the objects which are in the scene that are spatially covered by the
pixel. At that point, a sub-pixel level analysis is needed, and this
wide research area is termed as spectral unmixing. Additionally,
the pure spectral signatures of the materials which exist in the
scene, are called as endmembers.

The catadioptric hyperspectral image analysis requires different
unmixing approaches compared to the traditional hyperspectral
image analysis. In this study, some improvements specific to the
catadioptric images on unmixing algorithms are proposed.
Although we present a case which uses a catadioptric imaging
system, our proposed method is applicable to all systems where a
spatial non-uniformity occurs. This could be from any three-
dimensional (3D) scene for which the near field object resolution is
higher than that of the far field as in the case of perspective
cameras. As will be given in Section 2, several recent publications
indicate an interest in omnidirectional hyperspectral systems and
these systems are of interest in their own right. In principle the
proposed system can be applied to all hyperspectral cameras but
the mirror that is attached to the camera should be an effective
reflector for the spectral band sensed by the camera. In our case,
we had a stainless steel reflector that has a steady spectral response
in the VNIR region.

The proposed methods in this study are based on the spatial
resolution of the pixels. Therefore, the literature works on
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Fig. 1 Proposed omnidirectional hyperspectral imaging system consists of
a convex (hyperboloidal) mirror and a hyperspectral camera looking at the
mirror

catadioptric image formation are analysed in depth. These studies
enable us to compute the spatial resolution factor of each pixel in
the scene, and consequently, to generate a map that illustrates the
change on the spatial resolution values.

The first proposed improvement is for integrating the spatial
resolution difference into the geometrical and spatial-contextual
unmixing methods. We also theoretically examined the
contribution of implementing the spatial resolution map into
unmixing algorithms. Another improvement is proposed for
geometrical unmixing approaches. We propose to rate the pixels in
the convex structure according to their spatial resolution factors.
The last novel improvement proposed in this study is a local
spectral mixing analysis approach. In the proposed method, we
divide the scene according to the catadioptric image formation.

The study is organised as follows: Section 2 introduces the
basic concepts, advantages, constraints and application areas of
both technology: hyperspectral imaging and omnidirectional
imaging. Section 3.1 gives a simple introduction to catadioptric
imaging principles. We also investigate the spectral characteristic
of the mirror used in the omnidirectional imaging. Section 3.2
provides the details of spatial resolution in a catadioptric system.
Section 3.3 provides information about the unmixing problem, and
state-of-the-art algorithms. Section 4 includes the novel approaches
specially investigated for the proposed omnidirectional
hyperspectral imaging system. The evaluation of the proposed
methods is given in Section 5. The comparison of the methods with
the state-of-the-art algorithms are also shared in that section.

The source code and the catadioptric hyperspectral data set
acquired in this study is shared on https://github.com/bdidem/
Catadioptric-Hyperspectral-Imaging-An-Unmixing-Approach.git,
as our contribution to the community.

2 Related work

A 3D hyperspectral data cube is obtained by measuring the spectral
signature of each pixel. While the first two dimensions represent
the spatial domain of the scene, the third dimension represents the
data gathered from each spectral band. Hyperspectral imagery is
preferred in a wide array of remote sensing applications.
Improvements in sensor technologies enable to lower costs and
weight, and make the use of sensor more practical. The proposed
omnidirectional hyperspectral imaging system is illustrated in
Fig. 1. The system is composed of a hyperspectral camera and a
hyperboloidal ~mirror, which makes it a catadioptric
omnidirectional camera. The scheme demonstrates a representation
of an omnidirectional hyperspectral data cube. It also shows a
signature gathered from a pixel in the data cube. A sample omni-
hyperspectral image acquisition setup is shown in the figure.
Finally, an unwrapped visualisation of the omnidirectional image is
given in the scheme.

As catadioptric systems can be composed of many planar
mirrors [2], they can also benefit from single curved mirrors, where
paraboloidal and hyperboloidal mirrors are the most popular ones.
In this study we focus on catadioptric systems with a single mirror.
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The study in [3] briefly explains single-viewpoint property of
catadioptric systems. The light rays coming from the scene and
targeting the focal point (single viewpoint) of the hyperboloidal
mirror are reflected on the mirror surface so that they pass through
the pinhole (camera centre). On the other hand, paraboloidal
mirrors reflect the rays orthogonally and that's why they require the
use of a telecentric lens to collect the parallel rays.

The application areas such as surveillance and simultaneous
localisation and mapping highly need a system that is easy to use,
and captures wide FOV in a single image. Thus, it enables fast
analysis of the scene without need the installment of several
cameras with different angles. Aeromeccanica [4] presents an
unmanned aerial vehicle equipped with an omnidirectional camera
with two optics having >200 degree FOV. Additionally, an infrared
(IR) camera is also mounted on the drone.

Technest has been awarded by US Navy Small Business
Innovative Research program with the project [5] ‘Real-Time
Omni-Directional Hyperspectral Imager’. The defined system uses
compact mega pixel IR and MWIR capable sensors and supposed
to capture a 360 degree FOV by using a rotating system that
captures 180 degree FOV at a time. Similarly, a rotating spectral
imaging system is used to capture large FOV in the studies [6-8].
Hirai et al. [6] combines three technologies: HDR, spectral and
omnidirectional imaging. They use an automatically rotating
mechanism. An RGB camera is supported by filters in order to
acquire six band multispectral data between 400 and 700 nm. They
perform a correction algorithm on spectral images to reduce the
illumination related noises. Karaca et al. [8] develops a multiband
stereo matching algorithm on a panoramic stereo hyperspectral
imaging system. Additionally, they perform a depth estimation on
panoramic hyperspectral data set. However, in this study, we
propose to develop an omnidirectional hyperspectral system that
captures 360 degree FOV in a single image without using a rotating
mechanism.

Danilidis ef al. [9] has filed a patent regarding a multispectral
and omnidirectional imaging system that contains a series of view
and reflecting mirrors for splitting the electromagnetic spectrum
into two or more bands, and corresponding cameras placed relative
to the reflecting mirrors. Although the system is innovative for its
time, its multispectral representation capacity is well behind
today's technology.

In terms of hyperspectral omnidirectional imaging, there are
few previous studies. The closest work to ours, presented in [10],
uses 3 X 3 spectral coated catadioptric mirror grid. A plenoptic
function records the radiance from the scene from every location,
at every angle, for every wavelength and at every time. They
perform a sparse representation on depth estimation problem by
using the system. However, the spectral density of their proposed
system depends on the number of coated mirrors, which is nine.
Our work, on the other hand, is entirely hyperspectral and we
investigate unmixing approaches in catadioptric domain for the
first time.

Omnidirectional images introduce a radial warping due to the
structure of the mirror used in the system. As some of the studies
[11-14] develop algorithms without modifying the elliptic structure
of the scene, others [15-18] prefer to transform the image to the
panoramic view, and they work on linear representation. For the
applications where the spatial non-uniformity does not affect the
performance of the algorithm, we aim to avoid the costly process
of generating panoramic view. Thus, we benefit the spectral
content of the pixel without need of spatial linearity. Hyperspectral
imaging with its high spectral density adds value to remote sensing
applications due to its spectral density rather than the provided
spatial information.

On the other hand, [19, 20] are examples for large FOV
hyperspectral imaging systems with fish-eye lenses. In [19], the
spectral analysis of ecological light pollution is performed by using
full-spherical fish-eye lens imaging. Similarly, in [20], they
perform a visible range hyperspectral monitoring of auroras by
using a fish-eye camera.
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Fig. 2 Image formation in a catadioptric camera with a hyperboloidal
mirror

3 Background
3.1 Catadioptric image formation

In the proposed system the spatial resolution decreases from
periphery of the omnidirectional image to its centre. In this study,
we have demonstrated this effect both theoretically and practically.
Baker and Nayar [21] presented the single-viewpoint geometry of
the catadioptric image formation in their fundamental work. They
deeply analyse the different mirror shapes which are used in the
catadioptric system. They include a preliminary analysis of the
defocus blur caused by the use of a curved mirror. An expression
for the spatial resolution factor of a catadioptric sensor is derived in
the study. The factor is based on a condition which assumes that
while the mirror is positioned in the effective viewpoint v, the
camera must be positioned in the effective pinhole p. In Fig. 2, the
mirror geometry is illustrated in detail based on the studies in [21,
22]. The mirror parameters are a, b and ¢ where ¢ is the distance
between pinhole and viewpoint in other terms the camera and the
mirror, and ¢ is given by ¢ = 2y/a’ + b”. As described in [21], the
resolution of the catadioptric sensor is dA/dv where dA is the pixel
area on the image and dv is the infinitesimal solid angle viewing
the world. The variables used in the following equations are
demonstrated in Fig. 2. The resolution of the conventional camera
was derived in [21] as

dA _ w 1

do ~ cos'y

Then, the area of the mirror (dS) imaged by the infinitesimal area
(dA) is

_dw-(c—z)z_dA-(c—z)z-cosy/

ds =
oS (pcos” i u’cos ¢

@

The solid angle dv can be defined as
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where (r,z) is the point on the mirror being imaged. Hence the
equation of the resolution of catadioptric sensor can be re-written
as

dAa _ Wt +72) _ (" + 2)cos’ dA @)
dv  (c-2)-cosy (c—z2° |do
But, since
2 (c— Z)z
=—" 5
cos ¥ (c—z)2+r2 @)
we have
dA F+7 dA
(6)

@ (C—z)2+r2 do

The resolution of the catadioptric camera is the multiplication of
the resolution of the conventional camera with the factor res which
is given by

res = _r+z )
(C _ Z)Z + r2

Note that the factor in (7) is the square of the distance from the
point (r, z) to the effective viewpoint v divided by the square of the
distance from the point (r,z) to the pinhole p. Hence the spatial
resolution is highest around the periphery.

3.2 Spatial resolution factor

The spatial resolution factor is derived in (7). However, in the
implementation phase, the expression needs to be represented in
terms of image point coordinates. The relation between mirror
parameters, image point coordinates and 3D outgoing ray are
explicitly set up by Onoe et al. in [22]. The study generates
panoramic and perspective images from omnidirectional video
streams.

In this subsection, we aim to briefly explain the relation
between catadioptric image point coordinates and mirror
parameters. As illustrated in Fig. 2, a ray coming from the world
point P(X,Y,Z) toward the focal point v of the hyperboloidal
mirror is reflected by the mirror and passes through the other focal
point (camera centre) p, and the ray intersects an image plane at a
point p(x,y). This hyperboloidal projection yields the equations in
[22] as

-1 u
ey ®)

7. = tan

(B + (c/2))siny, — 2b(c/2)
(b = (c/2)")cos 7,

Ym = tan ©

where (x, y) are the image point, and u is the focal length of camera
lens (the distance between the point p and the image plane).

On the other hand, Baker and Nayar [21] present the relation
between the mirror angle (y,,,) and the mirror points

@n( =7y == tan(r) = —= (10)

By using the equations between (8) and (10), » and z can be re-
written as

Cc
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Therefore, we can obtain the parameters (r,z) in the spatial
resolution factor equation (see (7)) by using the image coordinates
(x,y).

We simulated the image generated according to the coordinate
system of an omnidirectional image. The mirror parameters are
selected the same with NeoVision hyperbolic mirror
(a =28.095,b = 23.4125). Fig. 3a illustrates the change on the
resolution of the simulated omnidirectional image in greyscale
format where dark colours imply the lower spatial resolution
values. This illustration helps us to make an inference about the
decrease of the spatial resolution through the mirror centre. The
range of the resolution values are plotted in Fig. 3b. The distance d
shown in Fig. 4a is equal for the upper and bottom part of the
checkerboard. In this demonstration, while preserving the distance
to mirror on each point of the object, we still observe distortion and
change on the resolution (Figs. 4 and ¢). For an image with size of
(164 x 164), the resolution factors vary to values between 0.16 and
0.05.

3.3 Hyperspectral unmixing

In remote sensing applications, the neighbouring objects can be
captured in a single pixel. Hyperspectral imaging makes it possible
to discriminate and identify the materials existing in the pixel, and
their corresponding mixing ratios. The pure spectral signature of a
material is called as endmember. The unmixing approach is an
umbrella term that encompasses the estimation of endmember
spectra, estimation of the number of endmembers and the
estimation of their abundances. The abundance of endmember
determines the proportion of the endmember in a pixel. The general
definition of a linearly mixed data is

Xij = ; €ikCrj + 1ij (12)

where i, j and k correspond to band, pixel and endmember indices,
respectively. Additionally, x is the intensity value, e is the
spectrum, c¢ is the mixing proportion and # is the random error. The
mixing proportions should sum to one.

Most of the unmixing approaches in the literature assume that
the hyperspectral data is spread in a convex structure, and they use
this assumption as a base for endmember extraction. However, this
assumption requires the number of the pure materials to be known
a priori. Therefore, the first step in unmixing algorithms is to
estimate the number of endmembers. Hyperspectral signal
identification by minimum error (HySime) developed by Bioucas-
Dias and Nascimento [23] is one of the well-known algorithms in
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the literature for estimating the number of endmembers. We
implemented HySime for this purpose in our proposed algorithm.
The method is an unsupervised eigen-decomposition based
approach. It selects the signal subspace in the least squared error
sense.

In spectral unmixing analysis, the following step is the
extraction of the endmembers' spectral signatures. In the last step,
the abundance fractions are computed. Several least squared error
based algorithms are proposed in the literature for this purpose
[24-27]. These algorithms vary according to their constraints on
abundance values (e.g. non-negativity and sum-to-one constraints).
In this study, we use a fast non-negativity constrained least squares
algorithm [28], and then we normalised the abundances so that
sum-to-one constraint is satisfied.

Bioucas Dias et al. [29] present a comprehensive review on
hyperspectral unmixing. The study provides to clearly understand
the term and techniques of unmixing area. On the other hand, as
deep learning has recently attracted much attention in many
domains, convolutional neural network architecture is used on
pixel-based and cube-based unmixing analysis by Zhang et al. [30].

3.3.1 Geometrical unmixing approaches: In the literature,
geometrical studies are mostly preferred due to their high
performance and low computational complexity. Well known
algorithms pixel purity index (PPI) [31], N-FINDR [32] and vertex
component analysis (VCA) [33] assume the existence of pure
pixels for each endmember.

N-FINDR [32] is based on the fact that in spectral dimension
the volume defined by a simplex formed by the purest pixels is
larger than any other volume defined by any other combination of
pixels. Therefore, all pixels are evaluated in the algorithm. This
algorithm finds the set of pixels defining the largest volume by
inflating a simplex inside the data. The number of iterations is
equal to number of pixels times number of endmembers (N X p).

The PPI [31] algorithm projects every spectral vector onto
skewers, defined as a large set of random vectors. The points
corresponding to extrema, for each skewer direction, are stored. A
cumulative account records the number of times each pixel is
found to be an extreme. The pixels with the highest scores are the
purest ones. The algorithm iterates as the number of skewers
(num_skewers).

The VCA [33] algorithm is based on the assumption that the
endmembers are the vertices of a simplex. The data is carried in
this simplex of minimum volume. The algorithm iteratively
projects data onto a direction orthogonal to the subspace spanned
by the endmembers already determined. The new endmember
signature corresponds to the extreme point of the projection. The
algorithm iterates until all endmembers are exhausted (p).

The pseudo codes of the algorithms discussed above are given
in Appendix section.

3.3.2 Spatial-contextual unmixing approaches: Another
approach in unmixing literature is the incorporation of spatial
information into the spectral unmixing. As it is discussed in [29],
the geometrical-, statistical- and sparsity-based approaches work
on spectral domain, and ignore the valuable information in spatial
domain. Researchers are motivated to classify hyperspectral
images by exploiting the correlation between both spatial and
spectral neighbours. The idea in this approach is to utilise the
spatial information in addition to the spectral unmixing algorithms
at the expense of additional computational cost.

In the proposed catadioptric hyperspectral imaging system, we
aim to utilise the difference in spatial resolution between the centre
and outer parts of the mirror and furthermore to account for the
distortion in the mirror. As the spatial resolution decreases toward
the image centre, the possibility of detecting pure pixels in the
regions toward the image periphery increases. Therefore, the
spatial-spectral unmixing approaches are employed in this section.
Xu et al. [34] and Yan et al. [35] fuse spatial and spectral
information in a sub-pixel level. Region-based spatial
preprocessing (RBSPP) [36], spatial preprocessing (SPP) for
endmember extraction [37] and automated morphological
endmember extraction (AMEE) [38] are well known spatial—
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contextual unmixing algorithms. The studies [34, 35] perform a
sub-pixel spectral mixture analysis. AMEE and SPP are pixel-
based unmixing approaches, and RBSPP and SSPP are region-
based approaches. In the proposed system, the endmembers are
extracted from the individual regions which are partitioned
according to their spatial resolutions. Therefore, region-based
unmixing approaches are more related with the proposed study.
Martin and Plaza [39] proposed an improved version of RBSSP in
SSPP. Hence, the proposed algorithm is only compared with
RBSPP and SSPP based on the experimental results presented in
their study.

RBSPP [36] uses spatial information as a guide to exploit
spectral information more effectively by adequately exploiting
spatial context in adaptive fashion. This approach first adaptively
searches for the most spectrally pure regions. Then the method
performs unsupervised clustering using the ISODATA [40]
algorithm, and finally applies the orthogonal subspace projection
algorithm to the mean spectra of the resulting regions in order to
find a set of spatially representative regions with associated spectra
which are both spectrally pure and orthogonal between them.

SSPP [39] considers spatial and spectral information
simultaneously and fuses both sources of information at the
preprocessing level. First, a spatial homogeneity index is computed
by using the difference between the original and spatially filtered
image. Second, a principal components transformation is
performed. A spectral purity index is defined according to the
distances of the pixels to the maxima and minima of the projection.
SSPP algorithm depends on two thresholds. Threshold p € [0, 100]
controls the pixels selected based on spatial homogeneity.
Threshold g € [0,100] controls the pixels selected based on
spectral purity. In parallel to the first two steps, an unsupervised
spectral clustering algorithm (ISODATA [40]) is performed. The
rest of the algorithm is region-based. The regions with high
spectral purity and high spatial homogeneity are selected. The
endmember selection process is only performed on these selected
regions. Therefore, the processing time of the endmember
estimation process significantly decreases.

4 Methodology

Spectral signature mixing is a commonly faced problem caused by
low spatial resolution in hyperspectral imagery. It becomes a more
challenging problem in omnidirectional images. Objects are
represented with fewer numbers of pixels towards the mirror centre
due to the mirror shape. This reduction in the spatial resolution
causes mixed pixels to be located around the mirror centre. In this
study, we propose the application of approaches which take into
consideration the locations of the pixels on the mirror. A general
flowchart of the algorithm is given in Fig. 5. The algorithm starts
with estimating the pure pixels and their abundance values. Since
distinguishing the unique materials in a scene is nontrivial,
obtaining a groundtruth for the endmember estimation is
problematic. Instead, the data is reversely generated by using the
estimated pure pixels and abundances. The difference between the
original and the regenerated data indicates the validity of the
proposed algorithm. The wvalidity of all unmixing steps are
examined together.
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4.1 Proposed improvement on geometrical unmixing
approach (omni-approach)

The method that we propose is similar to the conventional spatial—
spectral preprocessing unmixing approaches. However, unlike
these methods, it does not require spatial connectivity. It aims to
overcome the inequality of spatial resolution that occurs in the
omnidirectional hyperspectral image. Since the spatial resolution
factor is directly related with the mixing of the scene, we rate the
pixels according to their spatial resolution factors. In the proposed
preprocessing step, the spatial resolution map is generated by using
the camera and mirror parameters (explained in Section 3.2). In
this respect, the preprocessing step proposed in this study is
independent from the scene content. Then, the map is integrated
with the endmember estimation algorithm to be applied. The
complexity of the proposed approach is O(n) where n is
row X column of the omnidirectional image. Therefore, the effect
on the endmember estimation algorithm is negligible in terms of
processing time. This provides a great advantage compared to the
other spatial-spectral unmixing methods.

The methods that are evaluated in this study are geometry based
approaches and they aim to extract the endmember signatures by
maximising the volume. Under the assumption that the
endmembers must be located at the extrema, we propose to
multiply the data by the spatial resolution map just before detecting
the maxima of the volume. Thus, the point having high spatial
resolution is translated to outer of the simplex. The possibility of
detecting a point having higher spatial resolution as an extreme
point is increased in this way. Conversely, the pixel with lower
resolution is forced to translate to inner position in the data cloud.
The maxima of the algorithms are evaluated in the Line #6 of PPI,
Line #10 in N-FINDR (Appendix section), and Line #19 in VCA
[33].

4.2 Proposed local endmember extraction approach on
omnidirectional images

The materials present in the scene may have diversity on their
spectral characteristics, even though they are pure pixels
conceptually. Different environmental and illumination conditions
such as shadow of an object and heterogeneous content of the
material cause a variety on the pure spectral signatures of the
material. A single representer for each class for the complex
unmixing problem may not be found. For these reasons, some
researchers prefer to conduct their unmixing studies on local
endmember estimation approach [41, 42]. This approach
investigates the spectral unmixing algorithms in a small size
window independently from the rest of the scene. Somers et al.
[41] introduced a similar algorithm. They select subsets from the
hyperspectral data cube. The extracted endmembers from the
subsets are stored in a global endmembers set, and then clustered in
order to obtain the global representers of the pure materials. This
algorithm is also used in [42], which aims to monitor seasonal
variations of vegetation cover. They estimate the abundances of the
endmembers with a different viewpoint. The data cube is evaluated
using the global endmembers set, then the abundances of the
endmembers belonging to the same cluster are accumulated for
each pixel. As a conclusion, they indicate that the local unmixing
idea benefits to discriminate two similar vegetation species.

In our study, we propose that spectral analysis of partitioned
circles which are generated according to their spatial resolution
factors, is more appropriate for omnidirectional hyperspectral
images. The materials with different spatial resolutions may have a
diversity on their spectral signatures. Local unmixing approach
prevents to miss these cases. The scheme of the proposed algorithm
is depicted in Fig. 6. The image is divided into three circles with
equal number of pixels. The estimation of the number of
endmembers and estimation of spectral signatures of endmembers
(EEA) are studied independently on each circle. The first column
depicts the estimated pure pixel locations with red dots on the
image, their corresponding spectra are plotted in the following
column. After endmember estimation, a bundle of endmembers is
accumulated. The studies presented in [41, 42] take advantage of
high number of endmembers by using multiple endmember
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Fig. 6 Scheme of the proposed local endmember extraction algorithm

spectral mixture analysis (MESMA) [43]. The algorithm is based
on using a library which contains field and laboratory
measurements. An enhanced performance of MESMA is presented
at [44]. A wide range of instances according to the application is
collected. In spectral mixture analysis, it achieves to discriminate
similar spectra [43]. In the proposed algorithm, we do not use such
a library. Instead, we use the internal information of the
hyperspectral data as it is proposed in [41]. A library is created by
collecting the results of endmember estimation of each circular
sub-region. The collected endmembers set is clustered by k-means
[45], and an optimal abundance map is computed by using
MESMA. The last column consists of the clustered endmembers
and the error maps where white colour indicates higher error. The
definition of error map is presented in Section 5.3. Note that, the
proposed method is combined with the improvement explained in
Section 4.1. The pixels in the circular sub-regions are multiplied
with their corresponding spatial resolution factor.

As a conclusion of this section, the first method is proposed for
geometrical unmixing approaches. Most of the geometrical
approaches in the literature assume that the hyperspectral data is
spread in a convex structure. As each pixel in a catadioptric image
has different spatial resolution factor, the mixing ratio of the pixels
depend on their spatial resolution. The pixel with higher spatial
resolution is more likely to contain a pure spectral signature, in
other words less mixed signature. We propose to rate the pixels in
the convex structure according to their spatial resolution factors.
The second method proposed in this study is a local spectral
mixing analysis approach. The local unmixing algorithms spatially
divide the hyperspectral scene rather than inspecting the whole
scene at once. This point of view in unmixing problem produces
more robust and accurate results.

5 Experimental results

In this section, the well-known geometrical unmixing approaches
and the proposed improvements on geometrical and spatial—
contextual unmixing approaches are evaluated. The validity of pure
pixels extracted by the proposed method are ensured by
regenerating data. The abundance map of the data is computed by
the extracted pure pixels. The data is regenerated by multiplying
the estimated pure pixels and the abundance map (see (12)). The
difference between regenerated and original data indicates the
regeneration error (see (13)). The accuracies of the algorithms are
compared to each other using regeneration error.

5.1 Data definition

The proposed study is a pioneer on integrating hyperspectral
imaging devices and catadioptric mirrors. According to our limited
knowledge, there is not any public data set to evaluate the proposed
method. Therefore, we have performed some acquisitions. In the
experiments, 17 images are evaluated. While the first 11 of them
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are real world acquisitions, the last six images are synthetically
generated catadioptric hyperspectral images.

5.1.1 Real world acquisitions: The proposed method is tested on
scenes that have been acquired by Headwall A-Series Visible +
NIR linescan camera with spectral range of 400 — 1100 and 1.5 nm
spectral resolution. The spectral range of the catadioptric system is
the same with the range of the camera which views the mirror.
Additionally, we used the hyperbolic mirror of NeoVision. We
performed outdoor acquisitions in all experiments of our study. We
have acquired three real world data sets which contain totally 11
images. The images in a data set include same objects in a variety
of positions and illumination conditions. All datasets contain
building, sky and forest in some scenes. Additionally, white
reflector (teflon) and black reflector is used for reflectance
conversion.

* Data set #1: In the first acquisition, several objects made of clay
and mosaic are captured in addition to the materials discussed
above. Experiments #1 and #2 belong to Data set #1.

e Data set #2: The scene is composed of the materials with
distinctive spectral characteristics in VNIR region. Bone,
vegetation and soil residues can exist together in archaeological
remote sensing and food inspection problems. Experiments #3,
#4 and #7 to #11 belong to Data set #2.

* Data set #3: The scene contains printed papers with six different
colours on different geometrical shapes. The shapes are painted
by using red, green, blue, magenta, cyan and yellow colours.
The first print covers six colour stripes which lie from outer
regions to the centre of the image. Two of the prints are painted
by red, green and blue, and the squares' size are 1 cm® and 2 cm’.
The last paper is designed contrary to the premise of the
proposed algorithm. The proposed study is divided into three
parts from outer to the centre of the image. Each part contains
different two coloured squares. The colours which exist in the
inner part, do not exist in the outer part. Experiments #5 and #6
belong to Data set #3.

The sample RGB representations of the data sets and the materials
that exist in the scene are given in Fig. 7.

5.1.2 Synthetic data: We have simulated a four-wall indoor
scene. Each wall is composed of a signature gathered from the
Indian Pines data set [46]. The generation of synthetic data is
similar to that in [47]. The walls have a pattern of squares with two
pixel width where the consecutive squares have different spectral
characteristics. Totally 11 different spectral signatures are used in a
simulated image. Fig. 8a demonstrates the RGB representation of
the synthetic data. After assigning the pure spectral signatures to
the regions, an averaging low-pass filter is applied in order to
spectrally mix the data. Fig. 80 is the mixing map of the scene, the
map demonstrates the mixing ratios of each pixel. The highly
mixed pixels get higher values in the map. The ratio is computed
by multiplying the abundances of a pixel. The synthetic data is
categorised into four parts:

* No noise, pure spectral signature (Experiment #12)

» Noisy, pure spectral signature (Experiments #13 and #14)
* Noisy, spectrally mixed (Experiments #15 and #16)

» No noise, spectrally mixed (Experiment #17)

5.2 Limitations

The hyperspectral sensor requires a stable light source in order to
obtain an accurate measurement for indoor acquisitions. For
omnidirectional imaging, multiple illuminators must be integrated
for the diffuse illumination of the environment to be captured. We
performed only outdoor acquisitions because of the insufficient
illumination equipment.
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Fig. 8 Visualisations of the spectral mixing proportions
(a) Synthetic omnidirectional hyperspectral data, () A sample mixing map

5.3 Comparison of unmixing algorithms and preprocessing
approaches

In this subsection, we compare the effect of the spatial-contextual
preprocessing approaches on the geometrical unmixing algorithms
in terms of regeneration error. The methods are compared on the
error of regenerated data which is created by using the extracted
end members. The error values are multiplied by 100 for display
purposes. The regeneration error is computed by root mean squared
etror as in

N SN2 . \2
error = \/Zi='(s(l’ ]2[ X)) (13)

where § is original hyperspectral data, X is measured hyperspectral
data and N is total number of pixels.

In Table 1, the first super-column (containing three columns)
shows the results of the geometrical unmixing algorithms without
any spatial-spectral preprocessing. The following three super-
columns contain the results of the spatial-spectral preprocessing
approaches (RBSPP, SSPP and omni-approach) applied before the
regarding geometrical unmixing approaches. The experiments
whose results are shared in Table 1, the data ID between 1 and 11
are the real world acquisitions, and the rest correspond to the
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simulated omnidirectional hyperspectral data. The signal to noise
ratio (SNR) of the data are given in Table 2. The last row of
Table 1 indicates the overall accumulated error values of the
experiments. These overall results provide us to make a
comprehensive comparison of the geometrical and spatial-
contextual unmixing approaches. The proposed method is also
compared with two other spatial-contextual methods: AMEE and
SPP. However they were not included in Table 1, since their
regeneration errors are higher than that of RBSPP and SSPP. The
lowest overall error is obtained when N-FINDR algorithm is
applied with omni-approach. Additionally, omni-approach achieves
to decrease the overall error of VCA. SSPP algorithm depends on
two thresholds: p and pB. The results of SSPP demonstrated in
Table 1 are obtained by using the default p and g values provided
in Matlab implementation, where p = 50, f = 30. The effect of the
thresholds on SSPP approach is investigated in Fig. 9. All
combinations of the p and f parameters for the values 30, 50 and
70 are evaluated as it is suggested in the related study [39]. The
lowest error of SSPP + NFINDR is obtained when p = 50, g = 70.
The lowest error of SSPP + PPI is obtained when p = 70, g = 70.
The lowest error of SSPP + VCA is obtained when p = 70, = 50.
On the other hand, the endmember estimation accuracy of SSPP
approach highly depends on the estimated number of endmembers.
The SNR modification discussed in Section 3.3 negatively affects
the spatial segmentation step. SSPP uses the output of an external
method: ISODATA method of ENVI software. The performance of
SSPP approach also depends on the clustering performance of
ISODATA. In this case, SSPP remains incapable of decreasing the
regeneration error of the geometrical unmixing algorithms.

5.4 Evaluation of the proposed improvement on geometrical
approaches

In this subsection, we aim to observe the effect of the proposed
improvement explained in Section 4.1 on the existing geometrical
unmixing algorithms. Figs. 10 and 11 represent the case which
satisfies the situation that the proposed improvement is based on.
The first column in the table shows the RGB representations of the
scenes. The upper row contains the error maps created by VCA and
OmniVCA algorithms. Bright tones indicate higher error, dark
tones indicate lower error. The second row shows the estimated
pure pixel locations on the RGB images of the data. The last row
indicates the regeneration errors of the N-FINDR, PPI and VCA
algorithms with and without omnidirectional approach.

5.5 Evaluation of the proposed local endmember extraction
approach

In this subsection, we evaluate the endmember estimation
performance of the algorithm proposed in Section 4.2. Fig. 12
demonstrates the comparison of the number of endmembers
estimated from individual circles versus whole image. Circle 1 is
the outer, and the circle 3 is the inner one. In the experiments
between #12 and #17, 11 different spectral signatures are used. The
number of endmembers are estimated highly correlated with the
groundtruth in the Exp. #12, #13 and #17. In the Exp. #14, #15 and
#16, the noise is increased, and the data is manually mixed.
Consequently, estimation accuracy is decreased in these
experiments. In most of the experiments, the estimated number of
endmembers are similar to each other between circles. However, in
Exp. #3, #4 and #5, the estimated number of endmembers are
explicitly increased in inner circles. The extracted endmember
locations are demonstrated in Figs. 13—15. As it can be analysed in
the RGB representations, there is no significant material diversity
difference between inner and outer circles. The reliability of
Hysime is highly dependent on SNR estimation accuracy. In the
provided Matlab code by the authors, the SNR is assigned a value
of 50 as default. However, it fails in some cases and the algorithm
grossly over-estimates the number of endmembers as in Fig. 16.
The high number of estimated endmembers provides regenerating
the data with lower error. In other respects, the difference between
the numbers of endmembers of circles is not reasonable. Therefore,
we modified the implementation of the SNR prediction as
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Table 1 Regeneration error based comparison of geometrical unmixing algorithms with and without preprocessing approaches
(OE: overall error)
Exp.# Geometrical approaches Spatial-spectral approaches
No preprocessing RBSPP SSPP Omni-approach

NFINDR PPI VCA  NFINDR PPl VCA NFINDR PPl VCA NFINDR PPl VCA
1 1.97 3.85 1.81 9.16 275 2.70 1.94 4.40 2.40 1.72 5.74 1.86
2 2.26 7.27 2.92 1.79 379 1.72 2.43 7.01 4.94 212 8.12 2.92
3 1.35 4.76 2.49 2.89 26.3 1.33 1.46 2.67 2.00 213 2.39 1.75
4 1.05 2.57 1.04 1.03 1.61 1.06 1.05 2.16 0.94 1.05 2.87 0.97
5 2.68 9.43 2.71 5.90 27.3 5.94 5.19 19.35 3.14 2.51 12.38 2.78
6 247 9.33 242 2.73 6.21 2.69 11.90 10.23 2.51 2.56 9.43 2.63
7 3.85 5.21 1.62 1.50 6.22 1.51 5.13 4.46 1.91 1.90 5.21 1.76
8 1.52 4.19 1.46 3.08 20.2 2.97 1.49 4.15 1.43 1.50 3.92 1.61
9 1.71 3.54 1.60 3.01 19.5 3.01 1.60 4.00 1.46 1.43 3.76 1.55
10 1.36 3.25 1.57 1.25 1.23 1.15 1.37 2.35 1.33 1.42 2.41 1.57
1 1.50 6.84 2.69 2.06 49.1 1.84 1.57 6.06 2.38 1.39 6.37 2.69
12 0.03 21.76 0.00 3.99 3353  3.99 0.03 23.31 0.00 0.03 21.76  0.00
13 0.09 8.17 1.67 1.14 25.08 1.16 0.10 8.52 0.70 0.07 7.21 1.69
14 0.87 9.53 0.57 2.20 1.99 213 0.86 10.12 0.57 0.68 9.08 0.57
15 0.15 7.77 1.69 3.36 29.93 3.36 0.15 7.86 1.19 0.14 7.02 1.68
16 0.99 8.89 0.68 3.51 3125 3.50 1.00 10.44  0.68 0.80 9.05 0.68
17 0.09 18.87 0.08 3.68 32.76 3.68 0.12 25.82 0.1 0.09 18.87 0.07
OE 23.94 135.22 27.02 52.27 352.87 43.74 37.39 152.88 27.70 21.53 135.58 26.78

Table 2 SNR values and the data sets belonging to the experiments (low SNR value indicates high noise, SIM: simulated data)

Exp.# 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17

data set# 1 1 2 2 3 3 2 2 2 2 2 sim. sim. sim. sim. sim. sim.

SNR 31 30 34 26 29 26 28 32 32 26 34 no noise 50 30 50 30 no noise
300

[EsTs]
[En"n)

2
SNR = 10log, % = 10log,, (14)
i)

where s and n are vectors standing for signal and additive noise,
respectively.

As a reminder, the errors are measured per pixel. In other
words, the total error of the data is normalised by the total number
of pixels. Therefore, the error is independent of the circle size. The
proposed improvements are compared in Table 3. The first column
shows the regeneration error without using a spatial information.
The following column contains the results which obtained by using
only the OmniVCA approach. Fig. 17 and Table 3 show that the
simulated images produce lower errors due to their comparatively
higher SNR values. The last column presents the results of the
algorithm where the OmniVCA and local EEA algorithms are used
together. The significant contribution is obtained in the local EEA
and multiple endmember selection approach. The overall error in
this column decreases by 45% compared to the VCA approach
with no spatial information.

The experimental results shared in Table 3 correspond to the
results of the evaluation of three circles. The performance of the
local EEA approach is evaluated for two, three, nine and 18
circular divisions and sub-regions. Therefore, we measure the
relation between the subset size and performance of the algorithm.
The schemes of the divisions are demonstrated in Fig. 18. The
chart in Fig. 17 compares the subset sizes on reconstruction error.
The authors of [41] proposed to set the subset size as 10% of the
image size. However, in this study, we obtain lowest error by using
three circles, in other words, 33% of the image size. The image is
partitioned into tori having equal number of pixels. In this case, the
inner circle has largest radius, and the outer circle has smallest
radius. In most of the scenes, the inner circles capture the highly
saturated area, e.g. sky and aluminum camera holder. HySime
mostly fails in estimation of number of endmembers in these
scenes. Therefore, we continue the studies by keeping equal the
number of pixels rather than minor radii. As the region size
decreases, the algorithm for estimation of number of endmembers
(HySime) underperforms. The output of the HySime algorithm

500

=8=NFINDR =#=FPPI VCA

.-‘.\""—""“\.—.

RMSE(*10?)
bt (3% [S¥]
il (=] i d
{—] o (=]

SN N S 8]

p=30 p=30 p=30 p=50 p=50 p=50 p=70 p=70 p=70
B=30 B=50 B=70 [=30 B=50 B=T70 B=30 B=50 B=70

Fig. 9 Effect of SSPP thresholds on regeneration error

directly effects the extracted endmember spectra and the
regeneration performance.

In this section, the relation between scene content and position
of the divider line is also investigated for the vertical divisions. In
this experiment, the schema with nine sub-regions is investigated.
In each scheme type, the vertical divider line is rotated 60 degrees
clockwise five times. Fig. 19 presents the reconstruction error plot
for the demonstrated rotation schemes. The errors of most of the
experiments are similar for different vertical division except Exp.
#2 and Exp. #11. There is a considerable difference between VD2
and VD3 of Exp. #2, and VD3 and VD5 of Exp. #11. Therefore,
the error maps of these experiments are examined in Figs. 20 and
21. The rotation of the divider line changes the content of sub-
regions. Therefore, the estimated SNR, number of materials and
spectral signatures exist in the sub-region are effected by the
rotation. Furthermore, these factors affect all steps of the linear
unmixing, and consequently, the reconstruction error is changed.
This investigation shows that the location of the divider in vertical
division may be crucial for some scenes.

To conclude this section, the proposed improvement on
geometrical unmixing approaches (omni-approach) specific to the
omnidirectional hyperspectral imaging system, succeeded in
increasing the estimation accuracy of the state-of-the-art VCA
method on most of the experiments. However, scenes which
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contain different materials on the inner and the outer parts of the
mirror limit the potential of the method.

The proposed local EEA method is also developed according to
the structure of the omnidirectional hyperspectral imaging system.
These two improvements are applied concurrently on hyperspectral
data. We conclude that the spectral analysis of omnidirectional data
achieves fewer errors on spatially divided parts rather than
implementing on whole image. The endmembers and their
abundances are properly estimated by using circular divisions.

6 Conclusion

The hyperspectral cameras used in remote sensing applications
often need large FOV. Recent applications capture large FOV
hyperspectral data by using airborne, satellite and UAV systems. In
this study, we aimed to increase the FOV of traditional
hyperspectral imaging systems. The limitations of existing systems,
weather conditions, flight permissions, no fly zones, costly aircraft
hire, and carrying capacity of UAVs, are alleviated in low cost and
easy-to-use manner. We proposed using line scan cameras on
catadioptric systems. To our knowledge, this is the first time that a
single hyperspectral camera and a single catadioptric mirror is used
together to capture an omnidirectional hyperspectral image.

We analysed the proposed system in the context of spectral
unmixing which is one of the most challenging problems of
hyperspectral imaging. We identified the critical issues on spectral
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Table 3 Regeneration error based performance evaluation
of the proposed improvements (OE: overall error)

Exp.# VCA no VCA omni- VCA omni-
preprocessing approach  approach & local
EEA
1 1.81 1.86 1.20
2 2.92 2.92 1.94
3 2.49 1.75 1.05
4 1.04 0.97 0.57
5 2.71 2.78 1.47
6 2.42 2.63 1.62
7 1.62 1.76 0.41
8 1.46 1.61 0.87
9 1.60 1.55 0.82
10 1.57 1.57 0.68
11 2.69 2.69 1.39
12 0.00 0.00 0.00
13 1.67 1.69 0.09
14 0.57 0.57 0.56
15 1.69 1.68 0.49
16 0.68 0.68 0.69
17 0.08 0.07 0.00
OE 27.02 26.78 14.00

.
b c

Fig. 20 Effect on RMSE of the vertical division's angular position on Exp.
#2

(a) RGB representation of Exp. #2, (b) Error map of VD2. RMSE: 1.78, (¢) Error map
of VD3. RMSE: 2.11

unmixing that must be taken into consideration specifically for the
proposed system.

As the region closer to the centre of the mirror has lower spatial
resolution, we introduced a weighting scheme to favour pure pixels
in the outer part of the mirror. Additionally, the local unmixing
approach related to hyperspectral image analysis was adapted
specifically to the proposed imaging system, and we developed a
new spatially local unmixing approach. The novel approach
decreases the regeneration error of the conventional geometrical
and spatial-contextual unmixing algorithms on estimating the
endmembers and their abundances.

As future work, we suggest an intelligent endmember selection
process in the MESMA, e.g. incorporating spectral similarity of the
spatially neighbouring pixels, developing an effective clustering
method by using the variances. Additionally, regional division step
of local unmixing approach can be performed adaptively based on
uniform spectral properties of regions instead of equal sized ones.
Furthermore, non-linear unmixing analysis can be investigated for
catadioptric image formation.

The proposed system covers many application areas belonging
to the omnidirectional and hyperspectral imaging. The study may
produce a practical solution for the problems which requires wide
FOV including gas emission detection, road traffic monitoring,
biomedical imaging and surveillance.

The reader is kindly redirected to [33] for the pseudo code of
VCA approach.
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a b c

Fig. 21 Effect on RMSE of the vertical division's angular position on Exp.

#11

(a) RGB representation of Exp. #11, (b) Error map of VD3. RMSE: 1.38, (¢) Error
map of VD5. RMSE: 1.69
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See Figs. 22 and 23 (overleaf) for the pseudo codes of the
geometrical unmixing algorithms.
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Input p, R= [ry,79,...,rN], num_skewers { num_skewers is the
number of skewer vectors to project data onto. }
Output M { L x p estimated matrix }

1z

LA W

% =

10:
11:

skewers := randn(L,num_skewers);{ normally distributed L X
num_skewers samples }

: votes := zeros(N,1);
: for i := 1 to num_skewers do

vol_aux := skewers. ;Rq; { R is the zero-mean of R}
vol_aux := abs(vol_aux);

[max_vol,idx] := max(vol_aux); { idx is the indice of the data
extreme }

[votes]; .. = [votes]; . + 1;

. end for
: [val_aux,indice] := sort(votes); {sortes votes in descending

order}
indice := [indice]; : p;
M:= [RO]:,'indice;

Fig.
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22 Algorithm 1: PPI algorithm

Input p, R= [r1,72,...,7N]
Output M { L x p estimated matrix }

1

2

A

10:
11:
12:
13:
14:
15:

16

: Ry = UZRO;{ U, obtained by SVD, and R is the zero-mean
of R}
: indice := randi(N,p);{ indice is the randomly selected p points
from N samples}
: Roua 1= [R;D]:,indice;
max_vol := det(Rguz);
: fori:=1toN do
r:=[Rpl. i
forj:=1topdo
[Raual:, j=r { temporarily updates the j th endmember}
vol_aux := det(Rguz);
if vol_aux > max_vol then
max_vol := vol_aux;
indice; :=1;
end if
end for
end for
: M= UP[RP]:,indice;

Fig

. 23 Algorithm 2: N-FINDR
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