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A B S T R A C T   

In this study, a Modified Frequency and Spatial Domain Decomposition (MFSDD) technique is developed for 
modal parameter identification, using output-only response measurements. According to the presented proce
dure, the most probable power spectral density matrix of the measured response (output PSD) is updated by a 
maximum likelihood estimation based on the observed data. Different from the available Frequency Domain 
Decomposition (FDD) techniques, a prediction error term which is associated with the measurement noise and 
modelling errors is included in the proposed methodology. In this context, a detailed discussion is provided from 
various aspects for the effect of measurement noise and modelling errors on the parameter estimation quality. 
Two numerical and two experimental analysis are conducted in order to demonstrate the effectiveness and 
accuracy of the proposed methodology under some extreme effects. The obtained results indicate that the 
proposed method shows very good performance in modal parameter estimation in case of noisy measurements.   

1. Introduction 

Over the past few decades, various modal identification approaches 
have been developed in the context of vibration based Structural Health 
Monitoring (SHM). Among these, Operational Modal Analysis (OMA) 
methods, which do not refer any information about the source of input 
motion (or excitation), are extensively implemented in SHM commu
nity. Various OMA techniques based on the physical, statistical or 
probabilistic interpretation of the measured response have been pre
viously presented to literature. From this aspect, the available OMA 
applications can be basically classified as time and frequency domain 
methods. 

As one of the most conventional time domain approaches, Natural 
Excitation Technique and Eigen System Realization Algorithm (NExT- 
ERA) proposes a two-stage solution which is composed by the combi
nation of two-different techniques. Initially, the measured vibration 
data is processed and transformed by NExT to an equivalent free vi
bration response data. At the next step, the modal properties are ex
tracted by ERA which constructs a linear state-space dynamical model 
based on the modal characteristics of the measured system [1]. 

Another time domain technique, Stochastic Subspace Identification 
(SSI), presents a statistical framework based on the sate-space re
presentation of a linear dynamic model excited by a Gaussian White 
Noise signal. In the implementation of SSI, first, the state of the system 
is predicted by a Kalman filter application based on the outputs of the 

Hankel matrix, which is a special form of the collected response data 
(SSI-Data) or its covariance (SSI-Cov). After updating the system ma
trices by a linear regression of Kalman state sequences, the prediction 
errors are recovered [2,3]. Even though SSI appears as a more effective 
technique in comparison to NExT-Era, one can pertain some important 
difficulties in the implementation based on the model class selection, 
and/or extraction of possible modes. 

A more sophisticated time-domain method, Bayesian Time Domain 
Approach (BTDA), proposes an alternative procedure making a prob
abilistic interpretation for the measured response. Essentially, BTDA 
assumes that the measured response follows a zero mean Gaussian 
distribution provided that the adequately long measurement duration. 
Thus, the modal parameters can be inferred by the maximization of a 
conditional probability density function (PDF) based on the observed 
time domain response [4]. In case of noisy measurements, BTDA can 
provide rather reliable results compared to SSI methods. Despite its 
effectiveness, however, BTDA may induce some serious problems in 
terms of the computational effort due to the difficulties in the con
struction of PDF in the time domain. 

In comparison to time domain techniques, frequency domain 
methods are computationally less expensive since they mainly focus on 
narrow frequency bands in which the measured response is dominated 
by a few number of modes. Various frequency domain OMA methods 
are available in the literature, such as frequency domain maximum 
likelihood estimation [5,6], Power Spectral Density Transmissibility 
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(PSDT) [7–9], and Bayesian Operation Modal Analysis (BAYOMA)  
[10,11]. 

Among the aforementioned frequency domain techniques, 
BAYOMA, which updates the modal parameters from a probabilistic 
model based on the observed data, comes forward as one of the most 
efficient algorithms. The most important advantage of BAYOMA is 
having capability to determine not only the most probable modal 
parameters but also to provide an uncertainty information for the 
identified values. Therefore, it has been incorporated by various SHM 
issues such as multi-setup measurements [12–14] and finite element 
model updating [15,16]. Despite its effectiveness, BAYOMA methods 
may also increase the computational time and effort since it needs the 
maximization of a multi-variate and highly nonlinear PDF. In addition 
to this, BAYOMA requires a posterior uncertainty quantification pro
cess, which make it an extremely challenging procedure for complex 
problems (i.e. closely spaced modes, multiple setup measurements). 

Frequency Domain Decomposition (FDD) which is another widely 
known identification technique, appears as a good preference for OMA 
applications since it requires less computational effort compared to 
BAYOMA. In the classical implementation of FDD, modal frequencies 
are detected from the singular value (SV) or power spectral density 
(PSD) spectrum of the measured data by peak-picking, and the mode 
shape vector is updated as the singular vector of the output PSD matrix  
[17–19]. Therefore, FDD is not able to provide any information for the 
modal damping ratio in its classical form. To overcome this problem, a 
modified version, Enhanced Frequency Domain Decomposition (EFDD), 
has been presented by Brincker et al [20]. In EFDD, an equivalent time- 
domain response for a single mode is derived in a narrow band using 
the inverse Fast Fourier Transform (iFFT) of the frequency domain data. 
The resulting truncated time-domain data is considered as an approxi
mated free vibration response for the corresponding mode, and then, 
the modal damping ratio is updated from the decay of motion of the 
generated truncated response. However, this modal damping estima
tion may cause biased errors during the generation of approximated 
time-domain response [21]. 

To improve the estimation quality of modal damping ratio, a 
Frequency and Spatial Domain Decomposition (FSDD) method has been 
presented to literature [21–23]. FSDD estimates the modal frequencies 
and damping ratios by minimizing a least squares equation based on the 
residual between the singular values of analytical and data driven 
output PSD matrices. The mode shapes, however, are determined by 
following the same procedure with classical FDD methods. 

The effectiveness of FDD methods can also be adversely affected 
when some fundamental modelling assumptions such as stationary 
input data and small modal damping ratio are violated due to the heavy 
or non-classical damping and the source of excitations (e.g. earthquake 
effects). A novel approach, refined Frequency Domain Decomposition 
(rFDD) technique, has been presented by Pioldi et al. [24] to mitigate 
the errors in the damping estimation of the structures subjected to 
earthquake induced vibrations. The refinement of this methodology lies 
in some further post-processes on output PSD and correlation matrices, 
using Wiener-Khinchin approach or Welch’s modified periodogram. In 
this context, an iterative procedure is employed to make more reliable 
parameter estimations [25]. Various modifications and extended im
plementations of rFDD technique are available in the literature  
[26–30]. 

Classical FDD methods are not able to quantify the identification 
errors deduced by some widely seen effects such as measurement noise 
and modelling errors, and this may also lead to less reliable estimations 
in case of extremely noisy measurements. To address this problem, a 
Modified Frequency and Spatial Domain Decomposition (MFSDD) 
method is presented in this study. Different from the available FDD 
approaches, the presented method works based on the reconfiguration 
of analytical output PSD matrix, using a probabilistic framework similar 
to Bayesian methods. As an important novelty, the method provides a 
prediction error induced by the noise effects due to the measurement 

process and modelling assumptions. Thus, the proposed method re
markably improves the modal parameter estimation quality compared 
to the available FSDD technique. 

According to the proposed methodology, the analytical output PSD 
matrix is separated to uncoupled matrices by applying a singular value 
decomposition so that each one represents an equivalent single mode 
response within a selected narrow frequency band. Then, a PDF is de
fined in which the analytical output PSD matrix is considered as a 
mathematical expectation. Here, the mathematical expectation of 
output PSD is defined as a function of modal parameters (natural fre
quency, modal damping ratio and mode shape vector) and prediction 
error. Finally, the most probable modal parameters as well as the pre
diction errors are determined by a maximum likelihood estimation. 

Two numerical and two experimental analysis are conducted to 
verify the effectiveness of the proposed method. In numerical examples, 
a detailed investigation is presented to find out the source of prediction 
(or identification) errors due to the effects of measurement noise, 
earthquake input and heavy damping. Then, the presented method is 
implemented on two different benchmark studies for experimental 
verification. According to the obtained results, it is observed that the 
proposed method shows better performance in comparison with avail
able FSDD technique, under large noise effects. 

2. Theoretical background of frequency and spatial domain 
decomposition method 

The frequency domain equation of motion of a linear multi-degree 
of freedom (MDOF) system subjected to ambient nodal forces and/or 
base excitations can be written as below. 

+ + =MY CY KY F¨ ( ) ( ) ( ) ( )k k k k (1) 

where Y( k), Y( k), Ÿ( k) represent the Nd × 1 sized displacement, 
velocity and acceleration response vectors (outputs), F( k) = Nd × 1 
sized frequency domain force vector (input), and M, C and K denote the 
Nd × Nd sized mass, damping and stiffness matrix of the considered 
MDOF system, respectively. In addition, Nd = number of degrees of 
freedom (DOF), k = step number for a discrete frequency, and ωk = 
discrete excitation frequency at step k. Here, the relation between the 
unknown inputs (or references), and the PSD of the measured response 
can be defined by [20]: 

=G H G H( ) ( ) ( ) ( )yy k k xx
T

k (2) 

where Gyy( = ×N N)k sized output PSD matrix, G ( )xx k = ×N N
sized input PSD matrix, and N = number of measured DOF (here, all 
output measurements are considered as reference). In addition, H( )k
represents the N × N sized Frequency Response Function (FRF) which 
can be written in the pole-residue form as follows [20]. 
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in which = + in n dn, and Rn = n n denote the nth pole and residue, 
and ¯n, R̄n indicate the conjugates. In addition, φn, σn, ωdn and Γn re
presents the modal shape vector, damping factor, damped modal fre
quency and modal participation vector for the nth mode, respectively. 
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where ωn and ξn represent the nth modal angular frequency and 
damping ratio, and the superscript “*” denotes the conjugate and 
transpose. Thus, the output PSD can be analytically defined by [20]: 
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where, = ¯n n. For a stationary Gaussian process, the excitation vector 
can be represented by independent and identically distributed (i.i.d.) 
random variables. It can be deduced from the here that the resulting 
output PSD becomes a positive definite block diagonal matrix whose 
elements correspond to a constant scalar, Gxx. Applying the Heaviside’s 
partial fraction expansion for the right hand-side of Eq. (5), the output 
PSD matrix can be arranged as below [24]. 
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where An denotes a Hermitian matrix, which can be defined by the 
following equation. 

= +
=

GA R R R
¯

n
m

N
m

n m

m

n m
xx n

T

1

d

(7)  

For lower damping levels (e.g. about 1–2%), Eq. (7) can be ap
proximated by the following expression, in the vicinity of nth mode, 
assuming = + +i in n n dn n n n, [24]. 

GA
2n

n xx n

n
n n (8)  

Substituting Eq. (8) into (6), and after some arrangements, the 
analytical value of output PSD can be defined by the following equa
tion, within a narrow frequency band [21]. 
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where =c G 2n n xx n n, and Nm = number of possible modes within the 
selected narrow band (in case of single mode, Nm = 1). Here, the sin
gular value decomposition of the output PSD is given by: 

=G U S U( ) ( ) ( ) ( )yy k k k k (10) 

where =U u u[ , , ]N1 represents an N × N sized unitary matrix span
ning the singular vectors, and S is an N × N sized diagonal matrix that 
contains the real singular values. In the vicinity of nth modal frequency, 
an equivalent single mode response can be achieved by [21]. 
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Here, the singular values should be sorted in the descending order. 
Thus, the mode shape vector is calculated as a singular vector of 
G ( )yy k . At the next step, a filtered output that corresponds to an 
equivalent single degree of freedom (SDOF) response for the nth mode 
can be represented by G ( )n yy k n. Here, a residual can be defined 
based on the discrepancy between the filtered response and its analy
tical value, c iRe(2 ( ))n k n . Thus, the optimal natural frequencies 
and damping ratios can be calculated by minimizing the following 
objective function. 

cG
i

arg min ( ) Re 2
n yy k n

n

k n,

2

n n (12)  

In comparison to EFDD, FSDD shows better performance in terms of 
the estimation quality of modal frequencies and damping ratios, espe
cially in case of closely spaced modes. The mode shape estimation, 
however, follows the same procedure with classical FDD methods. In 

case of large noise effects, the quality of estimated mode shapes might 
be adversely affected due to the decrease in the frequency resolution in 
SV or PSD spectrum. In addition, some extreme effects such as heavy 
damping and earthquake induced excitations may also increase the 
modelling errors, leading to noisy data. Therefore, a modified metho
dology that addresses the possible solutions for such kind of problems is 
developed here, in order to improve the effectiveness of FSDD. 

3. Proposed modified frequency and spatial domain 
decomposition method 

In this section, the theoretical framework of the proposed modified 
technique is introduced. Although the proposed method is motivated 
from FSDD, it is based on a quite different computational strategy. 
According to this strategy, the analytical output PSD is considered as 
statistically expected value within a resonant frequency band selected for 
the possible mode(s). The method assumes small damping ratios and 
orthogonal mode shapes, and it is capable of identifying the closely 
spaced modes. For this purpose, the output PSD is separated to un
coupled matrices so that each one represents an equivalent single mode 
response within the selected frequency band. At this stage, the un
coupled matrices can be obtained by taking the singular value decom
position of the output PSD, G ( )yy k , as below. 
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where G ( )yy
n

k
( ) = uncoupled output-PSD that represents the nth modal 

response only. In the vicinity of nth modal frequency, a statistically 
expected value for G ( )yy

n
k

( ) can be defined by: 

= +E cG I[ ( )] ( , , )yy
n

k n n n k n n n n N
( )

k n (14) 

where “ =c G¯n n xx n” and “ = i( , , ) Re([ ( )] )n k n n n k n
1 .” =IN N 

× N sized identity matrix, and E [.] = mathematical expectation op
erator. In addition, n represents a modelling error caused by the vio
lation of fundamental modelling assumptions such as small damping 
ratio, stationary input data and orthogonality of mode shapes. 
Assuming that the defined uncoupled PSD matrices are statistically 
independent, the expected value of G ( )yy k can be obtained by, 

= +
=
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N
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n

k m N
1

( )
m

(15) 

where m indicates the measurement noise (channel noise) due to the 
instrumentation and/or data acquisition process. Here, the measure
ment noise and modelling error terms can be modeled as diagonal 
matrices by considering them as i.i.d. random variables [11]. Thus, 
E G[ ( )]yy k can be written as below by using Eqs. (14) and (15). 

= +
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n n k n n n n e N
1
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where e represents the prediction error in the estimation of E G[ ( )].yy k
Here, the prediction error term can also be modeled as a diagonal 
matrix by the combination of modelling errors and measurement noise 

= + =( )e m n
N

n1
m . 

Under the ambient vibration effects, it can be assumed that the Fast 
Fourier Transform (FFT) of measured data follows a zero mean 
Gaussian distribution. Thus, the resulting output PSD follows a complex 
central Wishart distribution conditional to the modal parameters and 
prediction error, which is given by [31]: 

=p
E

tr EG
G

G G( ( )| , )
| [ ( )]|

exp{ ( [ ( )] ( ))}yy k e
k yy k

yy k yy k
1

N N( 1)
2

(17) 

where = c c[{ , , ¯ , }, ...,{ , , ¯ , }]N N N N1 1 1 1 m m m m represents the set of 
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modal parameters to be estimated by the maximization of Eq. (17). Due 
to convenience, the maximum likelihood estimator given in Eq. (17) 
can be rewritten in terms of the negative-logarithm likelihood function 
as follows: 

= =

+ +

L ln p N N N ln

ln E tr E

G

G G G

( , ) [ ( ( )| , )] ( 1)
2

| [ ( )]| ( [ ( )] ( ))

e yy k e

k
yy k

k
yy k yy k

1

(18) 

where N = number of discrete excitation frequencies (number of data) 
within the selected frequency band. Thus, the most probable value 
(MPV) of can be achieved by minimizing Eq. (18). In this minimiza
tion process, however, an equality constraint is required for the mode 
shape vector in order to keep valid the unitary matrix assumption 
during the singular value decomposition. By inclusion of this equality 
constraint, an objective function can be derived for and e, as below. 
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(19) 

where = [ , ..., ]N1 m denote the set of Lagrange multipliers that en
force the unit Euclidian norm for the mode shape vectors. 

The objective function given in Eq. (19) requires the calculation of 
inverse and determinant terms of G ( )yy k recursively, resulting in a 
considerable increase in the computational effort during the mini
mization process [32]. Instead, these terms can be directly calculated in 
a pre-process using the matrix inversion and determinant lemma, as 
shown below [32,33]. 
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Substituting Eq. (20) into Eq. (19), and after some arrangements 
yields: 
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It is possible to obtain the MPV of c{¯ , , }n n e in a closed-form by a 
gradient based minimization of the objective function defined in Eq.  
(21). However, a similar closed-form solution for { , }n n cannot be 
obtained by direct differentiation of the objective function [10]. 
Therefore, it might be more convenient to update { , }n n after evalu
ating the MPV of c{¯ , , }n n e . 

Taking the first order gradient of Eq. (21) with respect to e, the 
most probable prediction error can be obtained by the following 
equation. 

=

+ =

=

=

=

J N N N

tr G I

( , , ) ( )

( ( )[ ]) 0

^

e m e

e k yy k N n
N

n n

e
tr

N N N
G I

1

2
1

( ( )[ ])
( )

e
m

k yy k N n
Nm n n

m
1

(22) 

where “^” represents the MPV. Similarly, minimization of Eq. (21) with 
respect to c̄n gives 
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To obtain the MPV of mode shape vector, the objective function can 
be arranged as below. 
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where C1 indicates the constant terms, which do not depend on n. Near 
the resonant frequency for the nth mode ( )k n , it can be assumed 
that c̄ ¯ ( , , ) 1e n k n n , [10]. By making use of this assumption and 
neglecting the constant terms, Eq. (24) can be arranged as below. 

= +J G( , ) ^ ( ) (1 )n n e
k

n yy k n n n n
1

(25)  

Taking the first order gradient of Eq. (25) with respect to n gives: 

= =J G( , ) ( ) 0n n
k

yy k n n nn (26)  

Solving Eq. (26) for =n n results in the following eigenvalue 
equation. 

=G ( )
k

yy k n n n
(27) 

where n̄ = G[ ( )]n k yy k n. Here, it should be stated that the singular 
vectors and eigenvectors of G ( )k yy k are identical since the output 
PSD matrices are positive definite Hermitian. Thus, the most probable 
mode shape vectors can be directly updated as the singular vectors 
(equivalent of eigenvector) of cumulative output PSD matrices, 

G ( )k yy k . In case of closely spaced modes (Nm  >  1), the singular 
vectors that correspond to the largest Nm singular values can be updated 
as most probable mode shapes. 

After obtaining the MPV of c{¯ , , },n n e a condensed objective 
function for the nth modal frequency and damping ratio can be derived 
by the re-arrangement of Eq. (21). To this end, substituting c{ , , }n n e
into Eq. (21) leads to: 

=

+ +

J

N N CG

( , ) ln ¯ ( , , )

ln [ ¯ ( , , ) ^ ( ) ^ / ]
n n k k n n

k k n n n yy k n
1
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where C2 represents the constant terms, which are irrelevant to n and 

n. Thus, n and n can be estimated by an unconstrained numerical 
optimization of Eq. (28). 

4. Summary of procedure 

This study presents an output only identification procedure, based 
on the maximum likelihood estimation of modal parameters within 
narrow-frequency bands selected for the possible vibration modes. 
Therefore, as a first step, the possible modes and the corresponding 
bandwidths should be selected. For the frequency domain modal 
identification, an automated mode detection and bandwidth selection 
procedure is not available in the literature. Instead, a more intuitional 
approach can be implemented to determine the possible vibration 
modes and corresponding bandwidths [14]. 

Using the peak-picking method, the possible vibration modes can be 
detected on SV or PSD spectrum of the measured data. Here, different 
from the available FDD techniques, the modal parameters (especially 
the mode shape vector) estimated by MFSDD are not sensitive to the 
selected peaks. This procedure is only required to determine roughly 
the locations of possible modes. Selection of the bandwidths, however, 
may require a more sophisticated procedure. 

Previous FDD applications implements a MAC based filtering pro
cess for bandwidth selection, spanning 90% proximity to the mode 
shape at the resonant frequency. However, this procedure requires a 
series of SV decompositions at the excitation frequencies neighbored to 
peak response. On the other hand, Au [32] proposes an optimal 
bandwidth selection in the range of 10–20% of the peak response fre
quency, based on the results obtained by BAYOMA. 

In case of small damping ratio, a relatively narrow spectral bell 
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curve can be expected for the resonant frequency band. Therefore, a 
proper bandwidth should be selected for such a case so that it covers the 
bell curve in the SV spectrum. In case of larger damping ratio and/or 
noisy measurement data, however, a broader spectral bell curve may 
appear in the spectrum plot. In such a case, the proposition by Au [32] 
would be more reasonable. Considering both scenarios, this study 
suggests a bandwidth selection which covers the spectral bell curve and 
remains in the range of 10–20% of the peak response frequency. 

The number of modes should be identified within the selected 
bandwidth can also be estimated from SV or PSD spectrum. If multiple 
peaks are visible within the selected bandwidth, the possibility of clo
sely spaced modes should be brought to mind. In such a case, each 
identified uncoupled-PSD matrix will correspond to a single mode re
sponse equivalent to a closely spaced mode within the selected band. A 
flowchart for the overall procedure of the proposed MFSDD technique is 
presented in Fig. 1. 

5. Numerical and experimental verification 

In this section, two numerical and two field data examples are 
presented in order to find out the performance of the proposed method. 
In this context, the given numerical examples mainly concern the effect 
of pure measurement noise and modelling errors on the modal para
meter estimation quality. Here, the first numerical example investigates 
the pure measurement noise effect on the quality of identified para
meters. In the second numerical example, the modelling error effects 
due to the earthquake input, heavy damping, and closely spaced modes 
are investigated. Finally, two real data examples are presented for ex
perimental verification of the proposed MFSDD technique. 

5.1. Numerical analysis 1: Effect of measurement noise 

A numerical model for a ten-story shear frame structure is generated 

with uniform inter-story stiffness of k = 450 kN/m, and uniform mass 
of m = 250 kg. The first five natural frequencies of the generated model 
are calculated as 1.009, 3.005, 4.934, 6.752 and 8.4201 Hz. This nu
merical application concerns the effect of pure measurement noise, in 
terms of the modal signal to noise ratio (snr), under the light damping 
and low amplitude ambient vibrations. Therefore, the modal damping 
ratio is considered as 1% for all modes. In addition, it is assumed that 
the considered model is subjected to i.i.d. Gaussian forces, resulting a 
1µg Hz2 of one-sided spectral density of modal excitation for all modes. 

Acceleration response at each floor level is acquired with 250 Hz 
sampling frequency and 300 s duration. The acquired acceleration re
sponses are then contaminated by i.i.d. Gaussian white noises generated 
with the one-sided spectral densities of 0.25, 0.5, 2.5, 5, 25, 50 and 250 
µg Hz2 , respectively. Thus, the resulting modal snr values are being set 
to 10000, 5000, 1000, 500, 100, 50 and 10, respectively. For compar
ison purposes, the modal parameters of the presented numerical model 
are identified by using MFSDD, FSDD, and SSI-Cov algorithms. Here, all 
identification procedures are performed by means of an in-house 
MATLAB [34] program coded for the considered techniques. 

The SV spectra obtained from the simulated responses are presented 
in Fig. 2. As it was stated previously, the measurement noise is con
sidered to appear during the data acquisition process. Such kind of 
noise effects may stem from the sensor (accelerometer) sensitivity, 
signal transmission cables or data acquisition device. Subsequently, 
these noise effects can be directly transmitted to collected analogue 
data [32]. Therefore, the measurement noise appears as one of the 
challenging parameters frequently confronted in OMA. From this per
spective, it can be observed from the presented spectra that the larger 
measurement noise creates a significant decrease in the signal qualities 
and makes it more difficult to distinguish the spectral bell curves. 

Table 1 and Table 2 present the relative deviations for identified 
modal frequencies and damping ratios, respectively. Here, the relative 
deviations are defined by: 

= ×

= ×

f 1 100(%)

1 100(%)

f
f

^

^

n
n act

n
n act

,

, (29) 

where fn act, and n act, denote the actual values of nth natural frequency 
and modal damping ratio. At first view, it is seen that the identified 
modal frequencies show minor deviations at increasing noise levels. On 
the other hand, the damping ratios have a divergence up to 230% and 
61% for FSDD and SSI-Cov, respectively. Deviations in MFSDD, how
ever, remain considerably less (about 15%) in comparison to FSDD and 

Fig. 1. Flowchart for the proposed MFSDD technique.  

Fig. 2. SV spectrum for generated responses.  
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SSI-Cov. Thus, it can be clearly deduced that the proposed method 
shows better performance compared to FSDD and SSI-Cov, when the 
pure measurement noise effect is considered only. 

Due to the fact that small damping ratios and white noise excitations 
are considered in this numerical example, minor modelling errors can 
be expected. Therefore, one can be concluded that the identified pre
diction errors highly reflect the pure measurement noise for this par
ticular example. To illustrate this situation, variations in the identified 
prediction errors with respect to the actual measurement noise values 
are presented in Fig. 3. When the actual measurement noise values are 
smaller than 1 µg Hz2 , modelling errors become more dominant com
pared to the prediction errors. For the larger noise values, however, the 
identified prediction errors perfectly match with the actual noise, as a 
result of the fact that the modelling errors are negligibly small com
pared to the measurement noise. From this aspect, it can be deduced 
that the presented method is capable of identifying the measurement 
noise with a high level of accuracy. On the other hand, the modelling 
errors may not be identified correctly even the source of these errors are 
well-defined in the analytical model. The estimation of modelling er
rors, therefore, become a more challenging problem in comparison to 
the measurement noise. 

Fig. 4 presents the variations in the relative errors for identified 
modal shape vectors obtained by MFSDD, FSDD and SSI-Cov, respec
tively. Here, the relative errors for mode shapes are calculated by using 
the following equation. 

= ×e MAC|1 ( , )| 100(%)r n n (30) 

where n = analytical value of the nth modal shape vector, and MAC(x, 
y) represents the modal assurance criterion between the vectors x and 
y. According to results, it is observed that the relative error in the mode 
shapes obtained by MFSDD are significantly small under large mea
surement noise effects (lower snr values). Here, the most dramatic 
difference is observed for the results obtained by FSDD. This difference 
can be considered to be stem from the noisy plots in the spectral-bell 
curve. Due to these plots, it might be more difficult to detect resonant 
frequencies on the SV spectrum. This situation is better illustrated in  
Fig. 5 which presents the variations in MAC values, between u( )k and 
the actual value of first modal shape vector. 

Fig. 5 indicates that the calculated MAC values show a significant 
decrease and fluctuations around the resonant frequency, under large 
noise effects. These fluctuations make it more difficult to perceive the 
peak response for the optimal mode shape estimation. Therefore, a 

sensitive trial and error methodology and/or an extensive signal pro
cessing procedure becomes necessary to determine the optimal value. 
The proposed method, however, does not require such a sensitive peak- 
response selection procedure for the mode shapes. Instead, the optimal 
mode shapes are updated from the cumulative output PSD matrix with a 
better level of accuracy. 

5.2. Numerical analysis 2: Earthquake induced motion and heavy damping 

A further investigation for the source of identification errors is 
presented in this section, using a numerical model of a reinforced 
concrete (RC) shear frame adapted from Villaverde and Koyama [35]. 
Fundamental properties of the model are summarized in Table 3. The 
considered example includes closely spaced modes and heavy modal 
damping ratios. Therefore, large amount of modelling errors can be 
expected, especially at the higher modes. In this context, this numerical 
model was previously investigated by Pioldi et al. [24] to validate their 
rFDD methodology, using a series of earthquake input motions  

Table 1 
Relative deviations for identified modal frequencies, Δf (%).            

Mode Number snr = 1000 snr = 100 snr = 10 

MFSDD FSDD SSI-Cov MFSDD FSDD SSI-Cov MFSDD FSDD SSI-Cov  

1 0.10 0.30 0.40 0.30 0.40 0.50 0.50 0.79 1.29 
2 0.02 0.40 0.17 0.03 −0.13 −0.17 0.07 0.30 0.47 
3 0.01 0.04 0.04 0.10 0.08 0.10 0.14 0.16 0.20 
4 0.04 −0.03 −0.01 0.01 0.01 −0.03 −0.01 0.07 0.33 
5 0.01 −0.01 0.03 0.04 −0.02 0.03 0.08 0.31 0.36 

Table 2 
Relative deviations for identified modal damping ratios, Δξ (%).            

Mode Number snr = 1000 snr = 100 snr = 10 

MFSDD FSDD SSI-Cov MFSDD FSDD SSI-Cov MFSDD FSDD SSI-Cov  

1 0.06 −8.21 2.08 2.16 29.11 18.63 6.88 117.40 −52.16 
2 1.38 9.98 3.61 4.01 93.29 −27.09 10.53 230.31 −44.25 
3 0.02 1.14 3.24 1.78 4.36 11.27 1.21 110.74 37.72 
4 0.18 8.33 2.55 1.44 50.92 24.49 2.39 115.52 39.69 
5 1.21 −15.27 7.49 7.25 49.53 19.82 16.48 185.33 61.64 

Fig. 3. Variations in the identified prediction error with respect to measure
ment noise. 

Ç. Hızal   Engineering Structures 224 (2020) 111007

6



[27,28,30]. For comparison purposes, three different earthquakes, El 
Centro (1940), Northridge (1994) and Tabas (1978), which were pre
viously utilized by Pioldi and Rizzi [28], are considered in this study. 

Modal parameters of the considered RC structure are estimated by 
means of the proposed MFSDD technique considering the all modes of 
vibration. The identified modal parameters are then compared to the 
results reported by Pioldi and Rizzi [28]. Here, Pioldi and Rizzi [28] 
implemented two different algorithms, namely rFDD and SSI-Cov, 
making a comparison in terms of the convergence rate under the effects 
of earthquake motion and heavy modal damping. The effectiveness of 
rFDD method has been well-established in the literature. Therefore, the 
results by rFDD can be considered here as reference values for MFSDD. 

Fig. 6 shows the absolute relative errors calculated for the identified 
natural frequencies and damping ratios as well as the MAC values be
tween the identified mode shapes and their actual values. Here, the 
major difference in the absolute errors are observed in the results by 
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Fig. 4. Variations in the relative error for the identified modal shape vectors.  

Fig. 5. Variations in the MAC values between u( )k and 1.  

Table 3 
Fundamental properties of the numerical model [28].        

Story 
number 

Stiffness (MN/ 
m) 

Mass 
(tons) 

Mode 
number 

fn act, (Hz) n act, (%)  

1 62.47 179 1 0.500 2.50 
2 59.26 170 2 1.326 3.50 
3 56.14 161 3 2.151 5.16 
4 53.02 152 4 2.934 6.83 
5 49.91 143 5 3.653 8.40 
6 46.79 134 6 4.292 9.81 
7 43.70 125 7 4.836 11.01 
8 40.55 116 8 5.272 11.98 
9 37.43 107 9 5.590 12.69 
10 34.31 98 10 5.787 13.13    
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SSI-Cov. The absolute relative errors in frequencies and damping ratios 
obtained by MFSDD follow a similar trend with those by rFDD up to the 
modes 5–6. Identified MAC values, however, show that MFSDD gives 
more accurate results than rFDD and SSI-Cov. Here, a dramatical de
crease is observed in the quality of identified mode shapes at the higher 
modes, for all the considered methods. 

In MFSDD, the effect of heavy modal damping should be considered 
as the most important parameter resulting the large modelling errors, 
since the low damping ratio assumption is highly violated. Specifically, 
the larger the modal damping, the lower the signal quality, and this 
ends up with a noisy measurement data. Additionally, the spectral 
density of modal excitation will tend to show a decrease at higher 
modes due to the spatial distribution of earthquake loads during the 
base excitation. This situation may also cause weakly excited modes at 
higher frequencies, and again a noisy data may appear at the higher 
modes. On the other hand, when the mode shape orthogonality con
dition is not satisfied, again large errors might be observed due to the 
close modes (for the considered example, phase angles between the 
mode shapes vary in the range of 40-45°). 

Fig. 6. Variations in the absolute relative errors for the considered earthquakes.  

Fig. 7. Variations in prediction errors identified by MFSDD for the considered 
earthquakes. 
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It should be noted that there is no additional measurement noise 
(channel noise) defined for the simulated response. From this aspect, it 
will be more accurate to classify the noisy plots appear in SV spectrum 
as the effects induced by the modelling errors rather than the mea
surement noise. In the other words, it can be deduced that the identified 
prediction errors directly reflect the noise effects induced by the mod
elling errors for this particular example. In this context, variations in 
the estimated modelling errors, obtained by MFSDD, are presented in  
Fig. 7. Here, the identified modelling errors gradually increase till to the 
modes 5–6. Then, estimated prediction errors follow a more erratic 
trend due to the significant decrease in the signal quality, as compatible 
with the results presented in Fig. 6. At higher modes, the accuracy of 
prediction error is also adversely affected by the large amount of actual 
modelling errors. 

5.3. Experimental analysis 1: One Rincon Tower 

In this section, modal properties of a 62-story residential building, 
One Rincon Tower, are investigated by using MFSDD. The structural 
system of the investigated building consists of a dual core wall and 
outriggers. A 72-channel acceleration response monitoring system has 
been previously installed in the context of a project by the California 
Strong Motion Instrumentation Program (CSMIP) of the California 
Geological Survey and the National Strong Motion Project (NSMP) 
under the Advanced National Seismic Systems managed by the United 
States Geological Survey (USGS) [36]. The ambient vibration data used 
in this study has been provided by the Center of Engineering Strong 
Motion Data (CESMD) [37]. The schematic view of the building and 
sensor locations are indicated in Fig. 8. 

Fig. 8. Elevation view of One Rincon Tower and sensor locations [37].  
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Ambient acceleration responses of the investigated structure have 
been measured in North-South (NS) and East-West (EW) directions by 
the research team of USGS. For comparison purposes, the results pre
viously reported by Çelebi et al. [36] are considered as reference values. 
Çelebi et al. [36] performed a modal identification procedure based on 
two dimensional (2D) data acquired in NS, EW, and torsional directions 
by using SSI-Cov. Therefore, first, a 2D analysis is performed in this 
study as being compatible with the procedure implemented by Çelebi 
et al. [36]. 

The SV spectra obtained for NS, EW1 and EW2 data are presented in  
Fig. 9. According to the presented spectra, totally fifteen, well-sepa
rated peaks can be detected as possible modes. These possible modes 
and selected frequency bands are also indicated in the plotted 
spectrum. 

Table 4 presents the modal frequencies and damping ratios identi
fied by MFSDD and FSDD, using 2D data. In general sense, both 
methods give similar results for the modal frequencies, and match with 
the results reported by Çelebi et al. [36]. Some major deviations, 
however, are observed for the identified damping ratios. According to 
the existing literature, it is well-known that the identifying the modal 
damping ratios perfectly is a challenging issue in the operational modal 
analysis [32]. Therefore, the identified modal damping ratios may also 
show significant variations as depending on the implemented 
identification technique. In this context, it can be considered that the 
observed deviations are in a reasonable range for the investigated 
structure. 

The modes shapes estimated by MFSDD and FSDD show a good 
match with each other, as indicated in Fig. 10. Here, the mode shapes 
by FSDD are obtained by a trial and error procedure to achieve the best 
result. For higher modes, this trial–error procedure becomes necessary 
due the large fluctuations in the quality of mode shapes at the selected 
discrete excitation frequencies. In addition, the presented mode shapes 
also match well with the reference results, except for EW1 and EW2. At 
the second and fifth modes for EW1, and fifth mode for EW2, the results 
by Çelebi et al. [36] have some distortions, which are not compatible 
with the mode shapes obtained by MFSDD and FSDD. 

A three-dimensional (3D) MFSDD analysis is also performed, con
sidering the all measurement data in the identification process. In 
comparison to 2D analysis, this procedure is more difficult since some 
closely spaced modes appear, as seen on the SV spectra presented in  
Fig. 11. The presented spectra only display the largest three SVs to 
represent the possible modes in EW, NS and torsional directions. Here, 
two closely spaced modal peaks are visible around the frequencies of 
0.27 and 0.31 Hz, respectively. These modes can also be investigated 
separately, assigning different and very narrow bandwidths for each 
one. This selection, however, may not be able to identify the possible 
mode at 0.30 Hz since it is highly dominated by the mode around the 
0.27 Hz. On the other hand, selecting a bandwidth spanning the both 
peaks, gives very reasonable results by MFSDD as similar with 2D 
analysis. 

Identification results including 3D mode shapes, modal frequencies 
and damping ratios, are also presented in Fig. 12. Here, it is observed 

Fig. 9. Maximum singular value spectra obtained for NS, EW1 and EW2 data.  

Table 4 
Identified modal frequencies and damping ratios for the first fifteen modes.         

Mode Number f (Hz.) ξ (%) 

MFSDD FSDD Çelebi et al. [36] MFSDD FSDD Çelebi et al. [36]  

1 (EW1-EW2) 0.28–0.28 0.27–0.27 0.27–0.27 1.67–2.39 0.67–0.68 0.90–0.30 
2 (NS) 0.31 0.31 0.30 1.07 0.15 0.90 
3 (Torsional) 0.71 0.31 0.70 0.76 0.17 0.40 
4 (EW1-EW2) 1.14–1.14 1.14–1.14 1.14–1.14 0.55–0.59 0.66–0.49 4.4–2.1 
5 (NS) 1.30 1.29 1.30 0.60 0.13 0.50 
6 (Torsional) 2.04 0.14 2.04 0.53 0.27 0.48 
7 (EW1-EW2) 2.63–2.63 2.64–2.64 2.59–2.59 1.04–1.00 0.20–0.19 0.30–0.30 
8 (NS) 2.86 2.87 2.83 0.73 0.53 0.90–1.30 
9 (Torsional) 3.74 0.26 3.72 0.86 1.63 1.30 
10 (EW1-EW2) 4.12–4.12 4.12–4.12 4.12–4.12 1.09–1.11 1.16–1.17 0.90–0.13 
11 (NS) 4.34 4.35 4.34 1.84 1.79 1.70 
12 (Torsional) 5.21 0.33 5.17 1.26 2.68 2.60 
13 (EW1-EW2) 6.09–6.09 6.06–6.06 6.04–5.39 1.09–1.12 1.36–4.53 5.90–0.70 
14 (NS) 6.29 5.93 6.10 0.94 0.84 1.70 
15 (Torsional) 6.77 6.81 6.74 1.87 3.09 2.60 
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Fig. 10. Identified mode shapes by using EW1, EW2 and NS data.  

Fig. 11. Singular value spectra and selected bandwidths for 3D analysis.  
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that the estimated parameters have a good agreement with 2D analysis 
results, for all identified modes. Note that the closely spaced modes at 
0.27 and 0.30 Hz appear in the perpendicular directions (NS and EW), 
which results in perfectly orthogonal mode shapes. Thus, it is apparent 
that MFSDD can make very good estimates for the closely spaced modes 
when the modelling assumptions are satisfied. 

5.4. Experimental analysis 2: Benchmark study 

In this section, a modal parameter analysis is performed for a 
benchmark study which has been widely investigated in the literature. 
The structure, whose schematic representation is given in Fig. 13, was 
formerly known as Z24 highway bridge that connects the two towns of 
Utzenstorf and Koppigen in Switzerland. The bridge has been 

Fig. 12. Identified 3D mode shapes.  

Fig. 13. Schematic representation of Z24 bridge [38].  
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demolished after a comprehensive research undertaken by KU LUEVEN 
Structural Mechanics Division. As a part of their research, the Z24 
Bridge was measured by totally nine measurement setups with three 
constant measurement points. In this study, the second reference 
measurements are considered among totally eighteen measurement 
sets, each representing a different damage scenario. 

Fig. 14 displays the SV spectra obtained from all setups for the 
second reference measurements. Possible vibration modes, and selected 
bandwidths are also indicated in the presented figure. Totally six pos
sible and well-separated modes are visible on the displayed spectra. 
Considerably large quality of signal levels and easily perceptible modal 
peaks appear till to the fourth mode. Then, noisy plots are visible, 
which make it more difficult to identify the possible modes. 

In the performed identification procedure, first, the local modal 
parameters are estimated for each measurement setup. Then, a global 
value is evaluated for modal frequencies and damping ratios by taking 
the ensemble average. For the mode shapes, however, this averaging 

procedure cannot be implemented as each local mode shape corre
sponds to the different part of the bridge. Instead, global mode shape 
vectors are estimated by assembly of the local mode shapes using 
Global Least Squares approach [39]. 

The assembled mode shapes as well as the estimated natural fre
quencies, and modal damping ratios are presented in Fig. 15. Modal 
properties of Z24 bridge was previously investigated by Hızal et al.  
[14], using Bayesian Mode Shape Assembly (BMSA) technique, based 
on the second order statistics of the identified local modal parameters. 
Here, MAC values between the identified mode shapes and the results 
reported by Hızal et al. [14] are calculated as 0.998, 0.995, 1.000, 
0.999, 0.991, 0.993. In addition, Fig. 16 shows a graphical comparison 
between the identified modal frequencies and damping ratios, and the 
results reported by [14] and [40]. According to the presented graph, 
very slight deviations are observed between the estimated and re
ference modal parameter values. 

Fig. 14. Singular value spectra and selected bandwidths.  

Fig. 15. Identified mode shapes, natural frequencies and modal damping ratios.  
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6. Conclusions 

A maximum likelihood matrix estimation based MFSDD technique is 
presented in this study. Different from the available FDD techniques, a 
prediction error term is defined in the estimation of output PSD, asso
ciating with measurement noise and modelling errors. After the ma
nipulation of proposed maximum likelihood estimator, the optimal 
modal shape vectors as well as the prediction errors are obtained as 
closed-form solutions. Then, modal frequencies and damping ratios are 
updated by minimizing a condensed likelihood function. The presented 
method is validated by using two numerical and two field data ex
amples. The fundamental results are summarized below.  

• Under the large measurement noise effect, the proposed MFSDD 
technique gives much better results with respect to FSDD, especially 
for mode shapes. As the measurement noise is not related with 
modelling assumptions, it produces a biased error in the estimation 
of output PSD. MFSDD is rather successful to identify those mea
surement errors provided that the modelling assumptions are sa
tisfied well.  

• Identifying the modelling errors becomes much more challenging 
issue, compared to the measurement noise. Although the identifi
cation results by MFSDD show good convergence with actual values 
for the lower modes in the second numerical example, the estima
tion quality significantly drops due to the effect of increasing 
modelling errors at the higher modes. Here, highly damped, closely 
spaced and weakly excited modes may produce large modelling 
errors which cannot be identified effectively.  

• According to the results obtained from field data examples, it can be 
concluded that MFSDD can provide reliable estimations for real data 
applications, including closely spaced modes and/or noisy mea
surements. Similar to available FDD methods, MFSDD also gives 
more accurate results when the closely space modes are perfectly 
orthogonal to each other. In case of these modes are not perfectly 
orthogonal, the modelling errors may inevitably increase, leading to 
poor modal estimates. 
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