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The present paper is devoted to the one-dimensional relativistic supersymmetric quan-
tum mechanics (RSUSYQM). A short formulation of RSUSYQM is given. We show that
RSUSYQM is a g-deformed non-relativistic SUSYQM. Two simple examples are given.

1 Introduction

The version of the relativistic quantum mechanics (RQM) which is a key con-
cept of our consideration is based on the notion of non-commutative differential
geometry. Referring the reader to review papers [1-5] for the comprehensive pre-
sentation of the subject and further references we shall outline here the essential
aspects of the approach?).

Let us consider a very simple version of the one variable noncommutative dif-
ferential calculus in which differential does not commute with the coordinate

i R
— 1
[dz, z] 7 Cd:v (1)

where m is a mass of a particle. In the non-relativistic limit (1) goes over into
usual relation [z,dz] = 0. In what follows we shall use the unit system in which
h=c=m=1

The momentum operator has the form [4, 5]

A 1

b--1(a+0) @
where 9 and & are the right and left interior derivatives. The relativistic free
Schrédinger equation has the “non-relativistic” form

A2

(ho—e) (@) = |7 —e|v(@)=0, ®)

where e = E — 1 is the relativistic kinetic energy.
It is important that in our particular case of the non-commutative differential
calculus the interior derivatives § and § are equal to the finite-difference operators

—

pyin) = LEFEVE) Y@ e ) "

2 2

'y The present paper is the fragment of the lecture delivered at PRAHA-SPIN-2001. It is a
natural continuation of the lecture [6] given at “SYMMETRY AND SPIN” — PRAHA '98
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correspondingly and fD (formula (2)) takes the form
. d
P= ~2sinhz— (5)
The solution of the free Schrodinger equation (3), the relativistic plane wave is
(zlp) = (E—p)7"% = & (6)

where x is the rapidity x = In(E +1). Plane waves (6) are the direct general-
izations (the Gelfand-Graev kernels) of the standard plane waves for the case of
the relativistic kinematics. We refer the reader to [1-5] where in particular it had
been shown that the approach schematically described above represents an actual
alternative to the standard RQM. For example the Poincare group generators are
easily realized in terms of the non-commutative derivatives. The natural connec-
tion of RQM with g-deformations (8] is discussed in the articles (2, 3]. For the
noncommutative differential calculus and finite-difference calculus see [7, 9].

2 RSUSYQM

The RSUSYQM is developed in analogy with the non-relativistic SUSYQM
(10]-[13]. The factorization method for the Schrédinger equation plays important
role for the non-relativistic SUSYQM [2, 3. So we construct here the factorization
method modified for the relativistic finite-difference Schrédinger equation

(h—e) ¥ (a) = (ho + V(z) — ) () = 0 (7)

Let us introduce a couple of ladder operators (2, 3]

)
A% = +iv2 - o (z) - ¥ sinh %EE LTl (8)
or
A% = —ivV2 - a(2) - e [sinhps (2) coshii F cosh ps (z) sinh i4d (9)
2 2dr 2 2dx
where g g
1 P
py (T) = sinh 3 2P (z) pg (x) = cosh oy (z) (10)
£(2) = p(2) - ps () (1)
and p () is the logarithm of the ground state wave function of eq. {3)
Yo (z) = e~ P (12)

In the nonrelativistic limit the operators A% turn into the usual ladder operators
(cf. [2, 3]). In our case we must take into account the modified Leibnitz rules
for the non-commutative differential calculus, which complicate the calculations.
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In addition to the finite-difference character of the operators (8, 9) there are two
factors o () and e*¢(*) whose analogs don’t appear in the non-relativistic case.
The factor o (z) is connected with a natural lattice variable and is also expressed
in terms of p () (see [2, 71 ). Factors e*€(¥) are connected with deformations [2-5, 8].

A deformation
q(z) = e*® (13)
must be introduced to cancel e**(*). In the non-relativistic case € (z) — 1 and there

is no deformation : ¢ (x) -» 1. Let us consider the ¢ (z)-mutator

[A7 A%,y = A7 -q(z)- AT - A" g Hz) - A” =

ed i sinh Z (z) o () e¥d 4 e~ %4 sinh Z (z) () e tdE

- . (14)
= a('zI —e? = sinh (Z (z) + 2ps () ofz)e~td —
—e~ %3 sinh (Z (z) - 2ps (z)) a(z) ey i=
where
Z(z) = 2 (z) +a(z) (15)

Let us recall that the commutator of the non-relativistic ladder operators a* does
not contain the differentiation operators

2 xz
R 1s)

By analogy with (16) we shall require that there are no non-commutative derivatives
(4) in the r.h.s. of (14). The simplest way to achieve this is to put?)

Z(z)=0 (17)

The last equation gives the relation connecting p (z) and a (z) (or ¢ (z)):
a@)=-2%(@)  q(z)=e %@ (18)
We have

[A7, AT] () = —2a () sinh §4 [a(z)sinh2p; (z)] —

R de(x
z .
Now let us write down the basic relations of relativistic RSUSYQM, i.e., the rela-

tivistic quantum mechanical system whose Hamiltonian is constructed of anticom-
muting charges Q:

(19)

I/‘\[: % . {QaQT}q(I) = % . (Q'q(l‘)'l'Q7+QT Q(I)Q) (20)

%) In the recent paper [14] the detailed analysis of all admissible solutions for a(z) and Z(z) is
given.
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{Q.Q}={Q"Q'} =0 (21)

A
As in the non relativistic, case the supersymmetry property of Hamiltonian H
A A 1
HQ|l=|HQ|=0 (22)

A
is provided by nilpotency of the charge operators (21). The Hamiltonian H contains
coordinates that are quantized by ¢ (x)-mutators and anticommutators. They are
mixed by deformed supersymmetry transformations. The explicit realization of Q
and Q' is
N /\T N

Q=iv2-At. y, Q'l=-iv2-4"- ¥ (23)

In the simplest case the bosonic degrees of freedom represented by the ladder op-

erators A* are described by the momentum operator (2) and the position operator
z with the commutation relation

A 1 id
St — 24
[z,p} =1 1 <6 6> zcosh2d (24)

At A
whereas 1 and ¢ are Fermi degrees of freedom with the corresponding anticom-

mutation relations:
At A A A At At
{w,w}zl, {w,w}z{w,w}=o (25)

LAV (x). (26)

This yields (21) and
A 1 |at A
H=H - 5 (U

We introduce the operator

3z {A7, AT} ~(A_-q(x)-A++A+‘q‘1(r)-A”):

q(z) =

= Ho + a(z)ag (z) — a(z) - cosh § £ (a(z) - cosh2p4 (2)) — (27)

2
- —tiz+ 30 (@),

where the operator

1 d?

Ho=l{a($)-pr=%——_;__

2 dx? (28)

plays the role of free hamiltonian with the finite-difference momentum operator

s>

f\Iz 2 (z) - (29)
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modified by the interaction
H, =A% .qg7'(z) . A~ =H - AV (2)

(30)
H_ =A".q(x) - At = H+ AV (2)
. d
AV (z) = —a(z) sinh%a; [ (z) sinh 2p4 (2)] (31)
In the (2 x 2)-representation
at 0 0 A 01
1/):0'_.:<1 0)1 1/):0+_<0 0) (32)
At A
’(/) yw = —03 (33)
we find from (26)
H=H+1 AV(z) 05 =
(34)
_{H- 0\ _[ A -qz) AT 0
o 0 H, ™~ 0 At g 1 (z)- A~
3 Examples
3.1 Relativistic oscillator (g-oscillator)
In this case, we have [2, 3]:
2
mwz
= {35
o) = T (35)
The deformation parameter is a constant and we come to the g-oscillator with
g(z) =const=¢q = T it (36)
and !
= ) 37
a(z) cos 5% (37)

The finite-difference ladder operators have the form

N R 1i ; wr 1i 38
AT = 4+iV2 e (sthdI:than 5 costhI>. (38)

SUSY Hamiltonian (34) becomes

Ié}_ e"TATAT 0 _ h+eg 0 .
- 0 eTATA- | 0 h—eg

2 2 2
"%ddi'*'wzx + 0
— x 2 2.2
0 1d 4zt W
2 dz? 2 2
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where

and

(41)
= 122 +V (ZL‘)
A 2 1d d
__ sinh+ & ;& 42
cos #F st 2d3:——) 1dx (42)
The relativistic oscillator potential is
w e 2wWx : 2w
V(z) = cosh;l- . [sm T.-—smh Z] ~ w22 (43)
[0052% + sth%]_ 2
The spectrum is
e;:?(ez_':ﬂ“’—e‘%) 0
N
0 e+=2(e%ﬂ“—e%)
(44)
L (h+3)wtsy 0
0 (n+3)w-%

Thus, we have two g-oscillators with zero point of energy shifted by +ey. In other
words, the energies of g-supersymmetric partners are connected by

e =q 2-ef (45)

3.2 Radial part of three-dimensional relativistic Schrédinger equation

This equation

)
= (coshx — 1) s1 (7, X)

Hsi (r,x) = {2 sinh2i 4 4 1041 e"f?} st(r,x) = (46)

can be considered as one-dimensional with the potential 2—%3—:%61'3"?. Solutions of

this equation, i.e., the free relativistic radial waves have the form

si(ryx) =1/ @ . (—i)[+1 . % . P;El;é) (cosh x) (47)

In the nonrelativistic limit, these functions turn into free solutions of the Schrédinger

equation
(i x) = st (pr) = 4/ ZE - iy (pr) (48)
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In this case the relativistic finite-difference ladder operators have the form

. [ : d [+1

Hence, .
Hy=H =Xt et& .\~  H_=Hy =\ - A+ (50)

In contrast with the nonrelativistic case, the rising and lowering operators A%,
which shift the value of the angular momentum

Atsipy (rx) = si(r,x) A7 s (r,x) = s141 (13 x) (51)

and the ladder operators (49) factorizing the Hamiltonian are different:

At = o [coshx— ‘:.—:i—‘l—z-e"f?} —at
(52)
A= _Fniﬁ . [coshx— %-eiﬁ%] —a”
Let us consider the identity
[—H[_H +Hl]-H[—{H1+1 —H[]'H[EO (53)
Using the relation
A"eldr —eldr AT = —% [Hiy1 — Hi (54)
we have . . .
[~ Hepo + HY) - Hy - iv2 - [\-e'# —e'FAT] H =0 (55)
After acting on s; (r, x) and taking into account (46) and the relation
A= —— [ (coshy —1) +iv2. e'F -/\'], (56)
sinhy L
we come to the formula
Hip1 - A7si(r,x) =A™ - Hisi (r,x) (57)

which allows us to consider relativistic [ and [+1 states as deformed supersymmetric
partner states. If s, (r, x) is the eigenstate of H;, then (A7 s; (v, X)) is the eigenstate
of H;41 with the same eigenvalue

Hisi(r,x) = (coshx — 1) - s (7, x) —

(58)

— Hipi - (A7si(r,x)) = (coshx — 1) - (A7s; (r, x))

The non-relativistic (non-deformed ) analog of (57) is the relation
Hiz1-a7si(pr) =a” - His (pr) (59)
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