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The present paper is devoted to the one-dimensionM relativistic supersymmetr ic  quan- 
tum mechanics (RSUSYQM). A short formulation of RSUSYQM is given. We show that  
RSUSYQM is a q-deformed non-relativistic SUSYQM. Two simple examples are given. 

1 I n t r o d u c t i o n  

The  version of the  re la t iv i s t ic  q u a n t u m  mechanics  (RQM)  which  is a key  con- 
cept  of our  cons ide ra t ion  is based  on the  no t ion  of n o n - c o m m u t a t i v e  di f ferent ia l  
geometry .  Referr ing  the  reader  to review pape r s  [1-5] for the  c ompre he ns ive  pre- 
s en ta t ion  of the  sub jec t  and fur ther  references we shal l  ou t l ine  here  t he  essent ia l  
aspec ts  of the  app roach l ) .  

Let  us consider  a very  s imple vers ion of the  one var iab le  n o n c o m m u t a t i v e  dif- 
ferent ia l  calculus in which differential does not commute with the coordinate 

i ~ d x  (1) [dx, x] = ~.~c 

where  m is a mass  of a par t ic le .  In  the  non- re la t iv i s t i c  l imi t  (1) goes over  into 
usual  re la t ion  Ix, dx] = 0. In  wha t  follows we shal l  use the  un i t  s y s t e m  in which 
h = c = m = l .  

The  m o m e n t u m  o p e r a t o r  has the  form [4, 5] 

= - ~  + (2)  

where  0 and  0 are the  r ight  and  left in te r io r  der ivat ives .  T h e  r e l a t i v i s t i c  free 
- - +  ~ . -  

SchrSdinger  equa t ion  has the  "non-re la t iv is t ic"  form 

where e = E - 1 is the  re la t iv i s t ic  k inet ic  energy. 
I t  is i m p o r t a n t  t h a t  in our pa r t i cu l a r  case of the  n o n - c o m m u t a t i v e  di f ferent ia l  

calculus  the  in ter ior  der iva t ives  0 and  9 are equal  to  the  f in i te-dif ference o p e r a t o r s  

0 r  = r  + ~)  - r  r  - r  - ~) , o r  = ~ (4) 

1) The present paper is the fragment of the lecture delivered at PRAHA-SPIN-2001. It is a 
natural continuation of the lecture [6] given at "SYMMETRY AND SPIN" - -  PRAHA '98 
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A 

correspondingly and p (formula (2)) takes the form 

A i d 
p = - 2  sinh - - -  (5) 

2 doe 

The solution of the free Schr6dinger equation (3), the relativistic plane wave is 

<oelp> = (E - p )  -~=  = ~ (6) 

where X is the rapidity X = In (E + 1). Plane waves (6) are the direct general- 
izations (the Gelfand-Graev kernels) of the s tandard plane waves for the case of 
tim relativistic kinematics. We refer the reader to [1-5] where in part icular  it had 
been shown that  the approach schematically described above represents an actual  
alternative to the s tandard RQM. For example the Poincare group generators  are 
easily realized in terms of the non-commutat ive derivatives. The natural  connec- 
tion of RQM with q-deformations [8] is discussed in the articles [2, 3]. For the 
noncommutat ive differential calculus and finite-difference calculus see [7, 9]. 

2 RSUSYQM 

The RSUSYQM is developed in analogy with the non-relativistic SUSYQM 
[10]-[13]. The factorization method for the Schr6dinger equation plays impor tan t  
role for the non-relativistic SUSYQM [2, 3:. So we construct here the factorization 
method modified for the relativistic finite-difference Schr6dinger equation 

(h - e) r r  = (ho + r e )  - e) ~ r  = 0 

Let us introduce a couple of ladder operators [2, 3] 

O1" 

A • = =i=iv~ �9 a (x) . e :~p(=) sinh . e q=p(~) 

(7) 

(8) 

i d i d] 
A ~ = - i V ~ . a ( x ) . e  +~(=) s inhp~(x )  c o s h ~ o e  T c o s h p ] ( x ) s i n h - ~ d -  7 (9) 

where 
id__p i d 

p[ (x) = sinh-~ d x (x) p~ (x) = cosh-~--d-~xp(x ) (10) 

(x) = p (x) - p~ (x) ( i i )  

and p (x) is the logarithm of the ground state wave function of eq. (3) 

V~0 (oe) = e -p(x) (12) 

In the nonrelativistic limit the operators A + turn into tile usual ladder operators  
(cf.. [2, 3]). In our case we must take into account the modified Leibnitz rules 
for the non-comnmtative differential calculus, which complicate the calculations. 
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In addit ion to the finite-difference character  of the opera tors  (8, 9) there  are two 
factors c~ (x) and e +~(~) whose analogs don ' t  appear  in the non-'relativistic case. 
The  factor c~ (x) is connected with a na tura l  latt ice variable and is also expressed 
in terms of p (x) (see [2, 7] ). Factors e +~(~) are connected with deformat ions  [2-5, 8]. 
A deformat ion 

q (x) : e ~(~) (13) 

must })e in t roduced to cancel e +'q~). In the non-relat ivist ic case ( ( x )  ~ 1 and there  
is no deformat ion : q (x) --, 1. Let  us consider the q (x ) -muta to r  

[A-,A+]q(=) = A - .  q ( x ) .  A + - A + .  q - '  (x). A -  = 

{ d " i 

e ~  s inhZ(x)a(x)e f~  +e ~ sinhZ(x)ce(x)e---- 

- e ~  sinh (Z (x) + 2p~ (x)) ~(x)e- �89 

where 

i d i d 

- e - ~  sinh (Z (x) - 2p~ (x)) a (x) e ~  

f 

(14) 

z (x) = 2~ (x) + a (x) (15) 

Let  us recall tha t  tile commuta to r  of the non-relat ivist ic ladder  opera to rs  a =L does 
not contain the differentiation opera tors  

d2P (x) (16) 
[ " - ' ~ + ]  -- dz~ 

By analogy with (16) we shall require tha t  there  are no non-commuta t ive  derivatives 
(4) in the r.h.s, of (14). The  simplest way to achieve this is to pu t  2) 

z (~) = 0 (~7) 

The  last equat ion gives the relation connecting p (x) and a (x) (or q (x)): 

a (x) = - 2 ~  (x) q (x) = e -2~(=) (18) 

We have 

[A-,  A+]q(=) = - 2 3  (x) sinh � 8 9  [g (x) s inh2p~ (x)] ---* 

(19) 

d ~ 2  

Now let us write down the basic relations of relativistic RSUSYQM,  i.e., the  rela- 
tivistic quantum mechanical  system whose Hamil tonian is cons t ruc ted  of anticom- 
muting charges Q: 

1( .QTQ, ) 
H =  ~ . { Q ,  Ot}q(~) = 2 "  O.q(x) -1 4- .q(x) .Q (20) 

2) In the recent paper [14] the detailed analysis of all admissible solutions for c~(x) and Z(x) is 
given. 
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{Q,Q} = { Q t , Q t }  = 0 (21) 

A 
As in the non relativistic, case the supersymmetry  property of Hamil tonian H 

A 
is provided by nilpotency of the charge operators (21). The Hamil tonian H contains 
coordinates that  are quantized by q (x)-mutators  and ant icommutators .  They  are 
mixed by deformed supersymmetry  transformations.  The explicit realization of Q 
and QI is 

. ~ t ,  A 
Q = i v Y .  A +. Qt = - i v Y .  A - .  r (23) 

In the simplest case the bosonic degrees of freedom represented by the ladder op- 
erators A + are described by the momentum operator  (2) and the position operator  
x with the commutat ion relation 

x, = i - ~ - = i cosh ~ d--x 

A t  n 
whereas ~b and ~b are Fermi degrees of freedom with the corresponding anticom- 
mutat ion relations: 

= 1 ,  , = = 0  

This yields (21) and 

I ) = H - 7 .  , .Av(x).  

We introduce the operator 

H =  gl . {A , ,A+}q(z )  = 3 1 " ( A - ' q ( x )  "N+ + A + ' q - l ( x ) ' A - )  = 

(2.5) 

(26) 

d (a  (x) .  cosh (x)) --+ = H0 + a (x) c~ (x) - a (x) .  cosh ~a7 2p~ (27) 

where the operator 

__+ 1 d ~ + �89 (# (x)) , 

A 2 

H o =  ~ a ( x ) .  =--YI --, 1 
2 2 dx 2 

(2s) 

plays the role of free hamiltonian with the finite-difference momen tum operator  

A A 
1-I = 2a  (x).  P (29) 
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modified by the interact ion 

H + = A  + . q - I ( x ) . A - = H - A V ( x )  

H _ = A - . q ( x ) . A  + = H + A V ( x )  

i d  
AV (x) = - a  (x) sinh ~ ~xx [a (x) sinh 2p i  (x)] 

In the (2 x 2)-representat ion 

At ( 0 

O = a - =  1 

we find from (26) 

(30) 

(31) 

o) (o 
0 ' r  0 0 

A 

H =  H + �89 " A V  ( x ) ' a 3  = 

= 0 H+ = 0 A + . q-1 (x) �9 A -  

(34) 

3 E x a m p l e s  

3.1 Re la t iv i s t i c  osc i l la tor  (q-osci l la tor)  

In this case, we have [2, 3]: 
m a ) x  2 

p ( x ) =  2h ,(35) 

The  deformat ion parameter  is a constant  and we come to the q-oscillator with 

q (x)  = c o n s t  = q = e - ~  (36) 

and 
1 

(x) = (37) cox 
c o s  2-~" 

The  finite-difference laddcr opera tors  have the form 

i d W X . c o s h ~ x  ' A + = +iv/-2 . e +~ �9 sinh 2dxx : F i t a n - ~ -  (38) 

SUSY Hamil tonian (34) becomes 

^ e 4 A  A + 0 
H =  0 e ~ A + A  - 

---4 
0 h - e0 

I 1 d 2 ~2x2 ~ / 
-* - ~ + T + ~  0 

1 d 2 2 ~ 2  
0 ~d---z + T 

(39) 
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where 

and 

h = { A - , A + } v  

r fad 
eo = 2 sinh - --* - 

4 2 

)= } i d -- cosh ~ -- = 2 1 �9 cosh 5 ~ 

= e~ + v ( x )  

^ 2 i d 
P . . . .  sinh - -  

~ 2 dx cos -T  

The  relat ivist ic  oscil lator potent ia l  is 

d 

-* Z~x x 

The  spec t rum is 

(40) 

(41)  

(42) 

cosh ~ -  [ s i n 2 ~  - sinh 2~] w2x2 
V ( x )  = [ c o s 2 ~  + s i n h 2 ~ ]  -+ - - 7  (43 )  

e ~ = 2 [ , e  , ~ - e  ~ 0 

0 e + = 2 ( e ~  - e ~ )  --+ 
(44) 

( (~+1)~+~ 0 ) 
--+ 0 ( n +  1) u a -  ~ 

Thus,  we have two q-oscillators with zero point  of energy shif ted by +e0.  In o ther  
words, the energies of q - supersymmet r i c  par tners  are connec ted  by  

- q - 2  e ~ + l  = �9 e+ (45) 

3 .2  

This  equat ion  

R a d i a l  p a r t  o f  t h r e e - d i m e n s i o n a l  r e l a t i v i s t i c  S c h r 6 d i n g e r  e q u a t i o n  

l l l L t ! 9 _ . ~  } Hlsz ( r , x )  = 2 s i n h 2 ~ +  2r<.+i)~ a~ s z ( r , x )  = (46) 

= (cosh X -  l)s, ( r , x )  

can be considered as one-dimensional  with the potent ia l  2~(~+i)c ~. Solut ions of 
this equat ion,  i.e., the free relat ivist ic radial  waves have the form 

s , ( r , x ) = V / T s i n h X . ( - i ) l + l  F ( i r + l + l ) .  
2 " r (ir) P-O+�89 �89 (cosh X) (47) 

In the nonrelat ivis t ic  limit, these functions tu rn  into flee solut ions of  the Schr6dinger  
equat ion 

/ - - - - -  

S t  (r, 2:) --+ st (pr) = ~ / - ~ .  &+�89 (pr)  (48) 
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In this case the relativistic finite-difference ladder operators have the form 

A+ • i [ i r : { : ( l + l )  ] [ d  / + 1 ]  = : e i ~  - 4 a  + =..T • 

Hence, 

(49) 

H + = H t = A + . e  i ~ . A -  H_ = H z + l = A - . e  i ~ ' A +  (50) 

In contrast with the nonrelativistic case, the rising and lowering operators A +, 
which shift the value of the angular momentum 

A+st+l (r, X) = s, (r, X) A-sz (r, X) = sl+l (r, X) (51) 

and the ladder operators (49) factorizing the Hamiltonian are different: 

A + i �9 c o s h x -  it-1 ' e i  ~ a +  
- -  s i n h  X 

(59) 
A- = -,{nhX ' coshx - it-1 " e i  ---+ a -  

Let us consider the identity 

[-Hz+l +/-/z] �9 Hi - [H,+I - Hz]. H, _= 0 (53) 

Using the relation 

X_ei ~ _ e i~A_ = i v~  ' [Hz+l - Hz] (54) 

we have 

After acting on s, (r, X) and taking into account (46) and the relation 

= J--~'. [-(cosh X -I) + iv/2' e i~. l-] (56) A- 
s i n h  X ' J 

we comc to the formula 

HI+I �9 A-sl  (r, X) = A- �9 Hlsl (r, X) (57) 

which allows us to consider relativistic l and l+  1 states as deformed supersymmetric 
partner states. If st (r, X) is the eigenstate of Hi, then (A-sz (r, X)) is the eigenstate 
of Hz+l with tile same eigenvalue 

Hzsl (r, x)  = ( c o s h x -  1).sz (r, x)  -+ 

-4 Hz+l '  (A-sz (r, X)) = (coshx - 1). (A-sz (r, X)) 

The non-relativistic (non-deformed) analog of (57) is the relation 

HI+t" a - s l  (pr) = a -  . Htsl  (pr) 

(5s) 

(59) 
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