• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biocompatibility of silicon nitride produced via partial sintering & tape casting

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Cecen, B.
Topates, G.
Kara, A.
Akbulut, S.O.
Havitcioglu, H.
Kozaci, L.D.

Metadata

Show full item record

Abstract

The biocompatibility of silicon nitride ceramics was proven by several studies however this study is apart from the literature in the manner of production routes that are tape casting and partial sintering. We report the tape casting route was chosen and a porous structure was obtained by partial sintering technique. Tape casting brought a smooth surface to the samples. Density and pore size distribution analysis showed that the scaffolds have low density because of the porous structure. XRD and SEM analyses were carried out to reveal the phase and microstructural characteristics of porous ceramic samples. Static contact angle measurement was done for the characterization of the wettability of the scaffolds. It revealed that the surface of the scaffolds was highly hydrophilic which is a desirable characteristic for the protein and cell adhesion. The mechanical characteristics of the scaffolds were analyzed by compression tests. Human osteosarcoma cells were used for in vitro studies. Cell-proliferation and cytotoxicity were analyzed by WST-1 and LDH, respectively. The osteoblastic behavior of the cells on the surface of the scaffolds was identified by alkaline phosphatase activity. BCA analysis was used for total protein content. The BCA and ALP results showed an increasing trend which is directly correlated with cell proliferation. Cells on the surface of the silicon nitride scaffolds were visualized by SEM and fluorescence microscopy where the images supported the in vitro analysis. Therefore, porous silicon nitride scaffolds fabricated via tape casting and partial sintering were biocompatible and they are possible candidates as bone substitute elements. © 2020 Elsevier Ltd and Techna Group S.r.l.

Source

Ceramics International

Volume

47

Issue

3

URI

https://doi.org/10.1016/j.ceramint.2020.09.257
https://hdl.handle.net/11147/9854

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4673]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2