Show simple item record

dc.contributor.authorYalcinkaya, T.
dc.contributor.authorOzdemir, I
dc.contributor.authorFirat, A. O.
dc.date.accessioned2020-07-25T22:16:52Z
dc.date.available2020-07-25T22:16:52Z
dc.date.issued2019
dc.identifier.issn0167-8442
dc.identifier.issn1872-7638
dc.identifier.urihttps://doi.org/10.1016/j.tafmec.2019.102306
dc.identifier.urihttps://hdl.handle.net/11147/9528
dc.descriptionYalcinkaya, Tuncay/0000-0002-7982-1105en_US
dc.descriptionWOS: 000489191500057en_US
dc.description.abstractEven though intergranular fracture is generally regarded as a macroscopically brittle mechanism, there are various cases where the fracture occurs at the grain boundaries with considerable plastic deformation at the macroscopic scale. There exists several microstructural reasons for grain boundaries to host crack initiation. They can interact with impurities and defects, can provide preferential location for precipitation, can behave as a source of dislocations and can impede the movement of dislocations as well. The understanding of the crack initiation and propagation at the grain boundaries requires the analysis of the grain boundary orientation and the orientation mismatch between the neighboring grains and the related the stress concentration, which is only possible through the combination of micro-mechanical plasticity and fracture mechanics. For this reason the current work studies the evolution of plasticity in three dimensional Voronoi based microstructures through a strain gradient crystal plasticity framework (see e.g. Yalcinkaya et al., 2011; Yalcinkaya et al., 2012; Yalcinkaya, 2016) and incorporates a potential based cohesive zone model (see Park et al., 2009; Cerrone et al., 2014) at the grain boundaries for the crack initiation and propagation. The numerical examples considers the effect of the orientation distribution, the grain boundary conditions, the specimen size and the fracture energy parameter on the intergranular fracture behavior of micron-sized specimens. The study presents important conclusions for the modeling of fracture at this length scale.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.tafmec.2019.102306en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStrain gradient plasticityen_US
dc.subjectCohesive zone modelingen_US
dc.subjectFractureen_US
dc.subjectInter-granular cracken_US
dc.subjectPolycrystalline plasticityen_US
dc.titleInter-granular cracking through strain gradient crystal plasticity and cohesive zone modeling approachesen_US
dc.typearticleen_US
dc.relation.journalTheoretical And Applied Fracture Mechanicsen_US
dc.contributor.departmentIzmir Institute of Technologyen_US
dc.identifier.volume103en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.cont.department-temp[Yalcinkaya, T.; Firat, A. O.] Middle East Tech Univ, Dept Aerosp Engn, TR-06800 Ankara, Turkey; [Ozdemir, I] Izmir Inst Technol, Dept Civil Engn, TR-35430 Izmir, Turkeyen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record