Show simple item record

dc.contributor.authorSevincli, H.
dc.contributor.authorRoche, S.
dc.contributor.authorCuniberti, G.
dc.contributor.authorBrandbyge, M.
dc.contributor.authorGutierrez, R.
dc.contributor.authorSandonas, L. Medrano
dc.date.accessioned2020-07-25T22:12:44Z
dc.date.available2020-07-25T22:12:44Z
dc.date.issued2019
dc.identifier.issn0953-8984
dc.identifier.issn1361-648X
dc.identifier.urihttps://doi.org/10.1088/1361-648X/ab119a
dc.identifier.urihttps://hdl.handle.net/11147/9505
dc.descriptionCUNIBERTI, Gianaurelio/0000-0002-6574-7848; Roche, Stephan/0000-0003-0323-4665; Sandonas, Leonardo Medrano/0000-0002-7673-3142; Brandbyge, Mads/0000-0002-0126-9824; Sevincli, Haldun/0000-0002-1896-2588; Gutierrez, Rafael/0000-0001-8121-8041en_US
dc.descriptionWOS: 000466267400002en_US
dc.descriptionPubMed: 31026228en_US
dc.description.abstractWith the advances in fabrication of materials with feature sizes at the order of nanometers, it has been possible to alter their thermal transport properties dramatically. Miniaturization of device size increases the power density in general, hence faster electronics require better thermal transport, whereas better thermoelectric applications require the opposite. Such diverse needs bring new challenges for material design. Shrinkage of length scales has also changed the experimental and theoretical methods to study thermal transport. Unsurprisingly, novel approaches have emerged to control phonon flow. Besides, ever increasing computational power is another driving force for developing new computational methods. In this review, we discuss three methods developed for computing vibrational thermal transport properties of nano-structured systems, namely Green function, quasi-classical Langevin, and Kubo-Green methods. The Green function methods are explained using both nonequilibrium expressions and the Landauer-type formula. The partitioning scheme, decimation techniques and surface Green functions are reviewed, and a simple model for reservoir Green functions is shown. The expressions for the Kubo-Greenwood method are derived, and Lanczos tridiagonalization, continued fraction and Chebyshev polynomial expansion methods are discussed. Additionally, the quasi-classical Langevin approach, which is useful for incorporating phonon-phonon and other scatterings is summarized.en_US
dc.language.isoengen_US
dc.publisherIop Publishing Ltden_US
dc.relation.isversionof10.1088/1361-648X/ab119aen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectquantum thermal transporten_US
dc.subjectGreen function methoden_US
dc.subjectKubo-Greenwood methoden_US
dc.subjectquasi-classical Langevin methoden_US
dc.titleGreen function, quasi-classical Langevin and Kubo-Greenwood methods in quantum thermal transporten_US
dc.typereviewen_US
dc.relation.journalJournal Of Physics-Condensed Matteren_US
dc.contributor.departmentIzmir Institute of Technologyen_US
dc.identifier.volume31en_US
dc.identifier.issue27en_US
dc.relation.publicationcategoryDiğeren_US
dc.cont.department-temp[Sevincli, H.] Izmir Inst Technol, Dept Mat Sci & Engn, TR-35430 Izmir, Turkey; [Roche, S.] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain; [Roche, S.] BIST, Campus UAB, Barcelona 08193, Spain; [Roche, S.] ICREA, Barcelona 08070, Spain; [Cuniberti, G.; Gutierrez, R.; Sandonas, L. Medrano] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany; [Cuniberti, G.; Gutierrez, R.; Sandonas, L. Medrano] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany; [Cuniberti, G.] Tech Univ Dresden, Dresden Ctr Computat Mat Sci, D-01062 Dresden, Germany; [Cuniberti, G.] Tech Univ Dresden, Ctr Advancing Elect Dresden, D-01062 Dresden, Germany; [Brandbyge, M.] Tech Univ Denmark, CNG, Dept Micro & Nanotechnol DTU Nanotech, DK-2800 Lyngby, Denmark; [Sandonas, L. Medrano] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germanyen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record