• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A machine learning approach for microRNA precursor prediction in retro-transcribing virus genomes

Thumbnail

View/Open

Makale (Article) (922.6Kb)

Access

info:eu-repo/semantics/openAccess

Date

2016-12

Author

Saçar Demirci, Müşerref Duygu
Toprak, Mustafa
Allmer, Jens

Metadata

Show full item record

Abstract

Identification of microRNA (miRNA) precursors has seen increased efforts in recent years. The difficulty in experimental detection of pre-miRNAs increased the usage of computational approaches. Most of these approaches rely on machine learning especially classification. In order to achieve successful classification, many parameters need to be considered such as data quality, choice of classifier settings, and feature selection. For the latter one, we developed a distributed genetic algorithm on HTCondor to perform feature selection. Moreover, we employed two widely used classification algorithms libSVM and random forest with different settings to analyze the influence on the overall classification performance. In this study we analyzed 5 human retro virus genomes; Human endogenous retrovirus K113, Hepatitis B virus (strain ayw), Human T lymphotropic virus 1, Human T lymphotropic virus 2, Human immunodeficiency virus 2, and Human immunodeficiency virus 1. We then predicted pre-miRNAs by using the information from known virus and human pre-miRNAs. Our results indicate that these viruses produce novel unknown miRNA precursors which warrant further experimental validation.

Source

Journal of Integrative Bioinformatics

Volume

13

Issue

5

URI

https://doi.org/10.2390/biecoll-jib-2016-303
https://hdl.handle.net/11147/9340

Collections

  • Computer Engineering / Bilgisayar Mühendisliği [249]
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik [367]
  • PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection [498]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4802]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2