Show simple item record

dc.contributor.authorCakoni, F.
dc.contributor.authorYaman, O. Ivanyshyn
dc.contributor.authorKress, R.
dc.contributor.authorLe Louer, F.
dc.date.accessioned2020-07-25T22:09:16Z
dc.date.available2020-07-25T22:09:16Z
dc.date.issued2018
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttps://doi.org/10.1002/mma.4664
dc.identifier.urihttps://hdl.handle.net/11147/9259
dc.descriptionYaman, Olha Ivanyshyn/0000-0002-1727-9461en_US
dc.descriptionWOS: 000424107300002en_US
dc.description.abstractWe propose a new integral equation formulation to characterize and compute transmission eigenvalues in electromagnetic scattering. As opposed to the approach that was recently developed by Cakoni, Haddar and Meng (2015) which relies on a two-by-two system of boundary integral equations, our analysis is based on only one integral equation in terms of the electric-to-magnetic boundary trace operator that results in a simplification of the theory and in a considerable reduction of computational costs. We establish Fredholm properties of the integral operators and their analytic dependence on the wave number. Further, we use the numerical algorithm for analytic nonlinear eigenvalue problems that was recently proposed by Beyn (2012) for the numerical computation of the transmission eigenvalues via this new integral equation.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/mma.4664en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectboundary integral equationsen_US
dc.subjectinhomogeneous mediaen_US
dc.subjectinverse scatteringen_US
dc.subjecttransmission eigenvaluesen_US
dc.titleA boundary integral equation for the transmission eigenvalue problem for Maxwell equationen_US
dc.typearticleen_US
dc.relation.journalMathematical Methods In The Applied Sciencesen_US
dc.contributor.departmentIzmir Institute of Technologyen_US
dc.identifier.volume41en_US
dc.identifier.issue4en_US
dc.identifier.startpage1316en_US
dc.identifier.endpage1330en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.cont.department-temp[Cakoni, F.] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA; [Yaman, O. Ivanyshyn] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkey; [Kress, R.] Univ Gottingen, Inst Numer & Angew Math, Gottingen, Germany; [Le Louer, F.] Univ Technol Compiegne, Sorbonne Univ, Lab Appl Math Compiegne, F-60203 Compiegne, Franceen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record