Show simple item record

dc.contributor.authorTemur, Faruk
dc.contributor.authorSert, Ezgi
dc.date.accessioned2020-07-18T08:34:06Z
dc.date.available2020-07-18T08:34:06Z
dc.date.issued2019
dc.identifier.issn0022-1236
dc.identifier.issn1096-0783
dc.identifier.urihttps://doi.org/10.1016/j.jfa.2019.108287
dc.identifier.urihttps://hdl.handle.net/11147/8896
dc.descriptionWOS: 000493581900004en_US
dc.description.abstractWe give estimates on discrete fractional integral operators along binary quadratic forms. These operators have been studied for 30 years starting with the investigations of Arkhipov and Oskolkov, but efforts have concentrated on cases where the phase polynomial is translation invariant or quasi-translation invariant. This work presents the first results for operators with neither translation invariant nor quasi-translation invariant phase polynomials. (C) 2019 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.isversionof10.1016/j.jfa.2019.108287en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDiscrete fractional integral operatorsen_US
dc.subjectDiscrete singular Radon transformsen_US
dc.subjectBinary quadratic formsen_US
dc.titleDiscrete fractional integral operators with binary quadratic forms as phase polynomialsen_US
dc.typearticleen_US
dc.relation.journalJournal Of Functional Analysisen_US
dc.contributor.departmentIzmir Institute of Technologyen_US
dc.identifier.volume277en_US
dc.identifier.issue12en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.cont.department-temp[Temur, Faruk; Sert, Ezgi] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkeyen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record