• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visualization and analysis of miRNAs implicated in Amyotrophic Lateral Sclerosis within gene regulatory pathways

Thumbnail

View/Open

Makale (Article) (647.2Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2018

Author

Hamzeiy, Hamid
Suluyayla, Rabia
Brinkrolf, Christoph
Janowski, Sebastian Jan
Hofestädt, Ralf
Allmer, Jens

Metadata

Show full item record

Abstract

MicroRNAs (miRNAs), approximately 22 nucleotides long, post-transcriptionally active gene expression regulators, play active roles in modulating cellular processes. Gene regulation and miRNA regulation are intertwined and the main aim of this study is to facilitate the analysis of miRNAs within gene regulatory pathways. VANESA enables the reconstruction of biological pathways and supports visualization and simulation. To support integrative miRNA and gene pathway analyses, a custom database of experimentally proven miRNAs, integrating data from miRBase, TarBase and miRTarBase, was added to DAWIS-M.D., which is the main data source for VANESA. Analysis of human KEGG pathways within DAWIS-M.D. showed that 661 miRNAs (~1/3 recorded human miRNAs) lead to 65,474 interactions. hsa-miR-335-5p targets most genes in our system (2,544); while the most targeted gene (with 71 miRNAs) is NUFIP2 (Nuclear Fragile X Mental Retardation Protein Interacting Protein 2). Amyotrophic Lateral Sclerosis (ALS), a complex neurodegenerative disease, was chosen as a proof of concept model. Using our system, it was possible to reduce the initially several hundred genes and miRNAs associated with ALS to eight genes, 19 miRNAs and 31 interactions. This highlights the effectiveness of the implemented system to distill important information from otherwise hard to access, highly convoluted and vast regulatory networks.

Source

Studies in Health Technology and nformatics

Volume

253

URI

https://hdl.handle.net/11147/7894

Collections

  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik [364]
  • PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection [498]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4673]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2