Show simple item record

dc.contributor.authorŞahan G.
dc.date.accessioned2020-07-18T03:35:12Z
dc.date.available2020-07-18T03:35:12Z
dc.date.issued2020
dc.identifier.issn09473580
dc.identifier.urihttps://doi.org/10.1016/j.ejcon.2020.02.006
dc.identifier.urihttps://hdl.handle.net/11147/7823
dc.description.abstractIn this work, we give results for asymptotic stability of nonlinear time varying systems using Lyapunov-like Functions with indefinite derivative. We put a nonlinear upper bound for the derivation of the Lyapunov Function and relate the asymptotic stability conditions with the coefficients of the terms of this bound. We also present a useful expression for a commonly used integral and this connects the stability problem and Lyapunov Method with the convergency of a series generated by coefficients of upper bound. This generalizes many works in the literature. Numerical examples demonstrate the efficiency of the given approach. © 2020 European Control Associationen_US
dc.language.isoengen_US
dc.publisherElsevier Ltden_US
dc.relation.isversionof10.1016/j.ejcon.2020.02.006en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAsymptotic stabilityen_US
dc.subjectBellman-Gronwall inequalityen_US
dc.subjectIndefinite Lyapunov functionen_US
dc.subjectLyapunov methoden_US
dc.subjectNonlinear systemsen_US
dc.subjectPerturbation of linear time varying systemsen_US
dc.titleStability analysis by a nonlinear upper bound on the derivative of Lyapunov functionen_US
dc.typearticleen_US
dc.contributor.institutionauthor
dc.relation.journalEuropean Journal of Controlen_US
dc.contributor.departmentIzmir Institute of Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.cont.department-tempŞahan, G., Department of Mathematics, Izmir Institute of Technology, Urla, Izmir, Turkeyen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record