Show simple item record

dc.contributor.advisorArtem, Hatice Seçil
dc.contributor.authorDinç, Özcan
dc.date.accessioned2019-11-13T12:40:48Z
dc.date.available2019-11-13T12:40:48Z
dc.date.issued2019-07en_US
dc.identifier.citationDinç, Ö. (2019). Optimization of surface roughness on a milling process using stochastic methods. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkeyen_US
dc.identifier.urihttps://hdl.handle.net/11147/7355
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2019en_US
dc.descriptionIncludes bibliographical references (leaves: 51-53)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.description.abstractNowadays, milling process is one of the most widely used metal processing methods in many fields from space and aircraft to automotive industry. The surface roughness values of the workpiece in milling process vary depending on the thermal, chemical and abrasive loads that occur during cutting. Spindle speed, depth of cut and feed rate are the cutting parameters affecting the surface roughness. Hence, these parameters at the time of machining constitute an important issue. Accordingly, in this thesis optimization of surface roughness has been performed using the stochastic search methods. First, using experimental data obtained in the milling process, it was aimed to establish a regression model to determine average surface roughness equation as an objective function. The cutting parameters and average surface roughness value were considered as input and output in regression analysis, respectively. In this study, seven different mathematical models have been established and examined to carry out regression analysis. The reliability and stability of the mathematical models were investigated. The most appropriate mathematical model has been constructed and then used as an objective function for optimization. Nelder-Mead, Random-Search, Simulated Annealing, and Differential Evolution were the stochastic search algorithms to perform the optimization in the present study. In conclusion, it was found that the minimum average surface roughness value depends on spindle speed, depth of cut and feed parameters.en_US
dc.description.abstractGünümüzde metal işleme yöntemlerinden biri olan frezeleme işlemi uzay ve uçak sanayinden otomotiv sanayisine kadar bir çok alanda yaygın olarak kullanılmaktadır. İş parçasının yüzey pürüzlülük değerleri kesme anında oluşan termal, kimyasal ve aşındırıcı yüklere bağlı olarak değişmektedir. İş mili hızı, kesme derinliği ve ilerleme, yüzey pürüzlülüğünü etkileyen kesme parametreleridir. Bu nedenle, işleme anındaki bu parametreler önemli bir konudur. Buna göre, bu tezde yüzey pürüzlülüğü optimizasyonu stokastik arama yöntemleri kullanılarak yapılmıştır. İlk olarak, frezeleme işleminde elde edilen deneysel verileri kullanarak, ortalama yüzey pürüzlülüğü denklemini amaç fonksiyonu olarak belirlemek için bir regresyon modelin oluşturulması amaçlanmıştır. Kesme parametreleri ve ortalama yüzey pürüzlülüğü değeri, optimizasyon analizinde sırasıyla girdi ve çıktı olarak kabul edildi. Bu çalışmada, regresyon analizi yapmak için yedi farklı matematiksel model kurulmuş ve incelenmiştir. Matematiksel modellerin güvenilirliği ve kararlılığı araştırılmıştır. En uygun matematiksel model inşa edilmiş ve sonra optimizasyon için amaç fonksiyonu olarak kullanılmıştır. Nelder-Mead, Random- Search, Simulated Annealing ve Differential Evolution bu çalışmada optimizasyonu gerçekleştirmek için kullanılan stokastik arama algoritmalarıdır. Sonuç olarak, minimum ortalama yüzey pürüzlülük değerinin iş mili hızına, kesme derinliğine ve ilerleme parametrelerine bağlı olduğu bulunmuştur.en_US
dc.format.extentix, 53 leavesen_US
dc.language.isoengen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMilling processen_US
dc.subjectSurface roughnessen_US
dc.subjectCutting parametersen_US
dc.titleOptimization of surface roughness on a milling process using stochastic methodsen_US
dc.title.alternativeStokastik yöntemler kullanarak frezeleme işleminde yüzey pürüzlülüğü optimizasyonuen_US
dc.typemasterThesisen_US
dc.contributor.departmentIzmir Institute of Technology. Mechanical Engineeringen_US
dc.relation.publicationcategoryTezen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record