Show simple item record

dc.contributor.authorTanoğlu, Gamze
dc.contributor.authorPashaev, Oktay
dc.date.accessioned2019-10-03T07:17:25Z
dc.date.available2019-10-03T07:17:25Z
dc.date.issued2004en_US
dc.identifier.issn0094-243X
dc.identifier.urihttps://hdl.handle.net/11147/7294
dc.description.abstractThe Hirota Method, with modified background is applied to construct exact analytical solutions of nonlinear reaction-diffusion equations of two types. The first equation has only nonlinear reaction part, while the second one has in addition the nonlinear transport term. For both cases, the reaction part has the form of the third order polynomial with three distinct roots. We found analytic one-soliton solutions and the relationships between three simple roots and the wave speed of the soliton. For the first case, if one of the roots is the mean value of other two roots, the soliton is static.We show that the restriction on three distinct roots to obtain moving soliton is removed in the second case by, adding nonlinear transport term to the first equation.en_US
dc.description.sponsorshipIzmir Institute of Technology grant 2002-IYTE-24 and 2002-IYTE-25en_US
dc.language.isoengen_US
dc.publisherAIP Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHirota Methoden_US
dc.subjectPhase transitionen_US
dc.titleThe Hirota Method for reaction-diffusion equations with three distinct rootsen_US
dc.typeconferenceObjecten_US
dc.contributor.authorID0000-0003-4870-6048en_US
dc.contributor.authorID0000-0002-6249-1277en_US
dc.contributor.iztechauthorTanoğlu, Gamze
dc.contributor.iztechauthorPashaev, Oktay
dc.relation.journalAIP Conference Proceedingsen_US
dc.contributor.departmentIzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume729
dc.identifier.startpage374
dc.identifier.endpage380
dc.identifier.wosWOS:000224721800042
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record