• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Civil Engineering / İnşaat Mühendisliği
  • Öğe Göster
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Civil Engineering / İnşaat Mühendisliği
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Flood hydrograph prediction using machine learning methods

Thumbnail

Göster/Aç

Makale (Article) (1.935Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2018-07

Yazar

Tayfur, Gökmen
Singh, Vijay P.
Moramarco, Tommaso
Barbetta, Silvia

Üst veri

Tüm öğe kaydını göster

Künye

Tayfur, G., Singh, V. P., Moramarco, T., and Barbetta, S. (2018). Flood hydrograph prediction using machine learning methods. Water, 10(8). doi:10.3390/w10080968

Özet

Machine learning (soft) methods have a wide range of applications in many disciplines, including hydrology. The first application of these methods in hydrology started in the 1990s and have since been extensively employed. Flood hydrograph prediction is important in hydrology and is generally done using linear or nonlinear Muskingum (NLM) methods or the numerical solutions of St. Venant (SV) flow equations or their simplified forms. However, soft computing methods are also utilized. This study discusses the application of the artificial neural network (ANN), the genetic algorithm (GA), the ant colony optimization (ACO), and the particle swarm optimization (PSO) methods for flood hydrograph predictions. Flow field data recorded on an equipped reach of Tiber River, central Italy, are used for training the ANN and to find the optimal values of the parameters of the rating curve method (RCM) by the GA, ACO, and PSO methods. Real hydrographs are satisfactorily predicted by the methods with an error in peak discharge and time to peak not exceeding, on average, 4% and 1%, respectively. In addition, the parameters of the Nonlinear Muskingum Model (NMM) are optimized by the same methods for flood routing in an artificial channel. Flood hydrographs generated by the NMM are compared against those obtained by the numerical solutions of the St. Venant equations. Results reveal that the machine learning models (ANN, GA, ACO, and PSO) are powerful tools and can be gainfully employed for flood hydrograph prediction. They use less and easily measurable data and have no significant parameter estimation problem.

Kaynak

Water

Cilt

10

Sayı

8

Bağlantı

http://doi.org/10.3390/w10080968
http://hdl.handle.net/11147/7117

Koleksiyonlar

  • Civil Engineering / İnşaat Mühendisliği [269]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4244]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4089]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@IZTECH

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


| Politika | | Rehber | Kütüphane | İYTE | OAI-PMH |

İYTE, İzmir, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İYTE Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2