• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Civil Engineering / İnşaat Mühendisliği
  • View Item
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Civil Engineering / İnşaat Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The use of neural networks for the prediction of cone penetration resistance of silty sands

Thumbnail

View/Open

Makale (780.2Kb)

Access

info:eu-repo/semantics/openAccess

Date

2017-12

Author

Erzin, Yusuf
Ecemiş, Nurhan

Metadata

Show full item record

Citation

Erzin, Y., and Ecemiş, N. (2017). The use of neural networks for the prediction of cone penetration resistance of silty sands. Neural Computing and Applications, 28, 727-736. doi:10.1007/s00521-016-2371-z

Abstract

In this study, an artificial neural network (ANN) model was developed to predict the cone penetration resistance of silty sands. To achieve this, the data sets reported by Ecemis and Karaman, including the results of three high-quality field tests, namely piezocone penetration test, pore pressure dissipation tests, and direct push permeability tests performed at 20 different locations on the northern coast of the Izmir Gulf in Turkey, have been used in the development of the ANN model. The ANN model consisted of three input parameters (relative density, fines content, and horizontal coefficient of consolidation) and a single output parameter (normalized cone penetration resistance). The results obtained from the ANN model were compared with those obtained from the field tests. It is found that the ANN model is efficient in determining the cone penetration resistance of silty sands and yields cone penetration resistance values that are very close to those obtained from the field tests. Additionally, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to examine the performance of the ANN model developed. The performance level attained in the ANN model shows that the ANN model developed in this study can be employed for predicting cone penetration of silty sands quite efficiently.

Source

Neural Computing and Applications

Volume

28

URI

http://doi.org/10.1007/s00521-016-2371-z
http://hdl.handle.net/11147/6761

Collections

  • Civil Engineering / İnşaat Mühendisliği [290]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4673]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2