Show simple item record

dc.contributor.authorOdacı, İsmet Kutlay
dc.contributor.authorGüden, Mustafa
dc.contributor.authorKılıçaslan, Cenk
dc.contributor.authorTaşdemirci, Alper
dc.date.accessioned2017-10-23T07:24:36Z
dc.date.available2017-10-23T07:24:36Z
dc.date.issued2017-05
dc.identifier.citationOdacı, İ. K., Güden, M., Kılıçaslan, C., Taşdemirci, A. (2017). The varying densification strain in a multi-layer aluminum corrugate structure: Direct impact testing and layer-wise numerical modelling. International Journal of Impact Engineering, 103, 64-75. doi:10.1016/j.ijimpeng.2016.10.014en_US
dc.identifier.issn0734-743X
dc.identifier.urihttp://doi.org/10.1016/j.ijimpeng.2016.10.014
dc.identifier.urihttp://hdl.handle.net/11147/6403
dc.description.abstractAn aluminum (1050 H14) multi-layer corrugated structure composed of brazed 16 trapezoidal zig-zig fin layers was direct impact tested above the critical velocities for shock formation using a modified Split Hopkinson Pressure Bar. The experimentally measured stress-time histories of the cylindrical test samples in the direct impact tests were verified with the simulations implemented in the explicit finite element code of LS–DYNA. The quasi-static experimental and simulation deformation of the corrugated samples proceeded with the discrete, non-contiguous bands of crushed fin layers, while the dynamic crushing started from the proximal impact end and proceeded with a sequential and in-planar manner, showing shock type deformation characteristic. The experimental and numerical crushing stresses and the numerically determined densification strains of the fin layers increased with increasing impact velocity above the critical velocities. When the numerically determined densification strain at a specific velocity above the critical velocities was incorporated, the rigid-perfectly-plastic-locking idealized model resulted in peak stresses similar to the experimental and simulation mean crushing stresses. However, the model underestimated the experimental and simulation peak stresses below 200 m s−1. It was proposed, while the micro inertial effects were responsible for the increase of the crushing stresses at and below subcritical velocities, the shock deformation became dominant above the critical velocities.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.ijimpeng.2016.10.014en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAluminumen_US
dc.subjectCorrugateden_US
dc.subjectDensification strainen_US
dc.subjectDirect impacten_US
dc.subjectImpact testingen_US
dc.titleThe varying densification strain in a multi-layer aluminum corrugate structure: Direct impact testing and layer-wise numerical modellingen_US
dc.typearticleen_US
dc.contributor.authorIDTR114738en_US
dc.contributor.authorIDTR114512en_US
dc.contributor.iztechauthorOdacı, İsmet Kutlay
dc.contributor.iztechauthorGüden, Mustafa
dc.contributor.iztechauthorKılıçaslan, Cenk
dc.contributor.iztechauthorTaşdemirci, Alper
dc.relation.journalInternational Journal of Impact Engineeringen_US
dc.contributor.departmentİYTE, Mühendislik Fakültesi, Makina Mühendisliği Bölümüen_US
dc.identifier.volume103en_US
dc.identifier.startpage64en_US
dc.identifier.endpage75en_US
dc.identifier.wosWOS:000395844400006
dc.identifier.scopusSCOPUS:2-s2.0-85009446591
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record