• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 1. Fen Fakültesi / Faculty of Science
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
  • View Item
  •   DSpace Home
  • 1. Fen Fakültesi / Faculty of Science
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

5-Fluorouracil signaling through a calcium-calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells

Thumbnail
View/Open
Makale (2.095Mb)
Date
2013-09
Author
Can, G.
Akpınar, B.
Baran, Yusuf
Zhivotovsky, B.
Olsson, M.
Metadata
Show full item record
Abstract
5-Fluorouracil (5-FU) is an anti-metabolite that is in clinical use for treatment of several cancers. In cells, it is converted into three distinct fluoro-based nucleotide analogs, which interfere with DNA synthesis and repair, leading to genome impairment and, eventually, apoptotic cell death. Current knowledge states that in certain cell types, 5-FU-induced stress is signaling through a p53-dependent induction of tumor necrosis factor-receptor oligomerization required for death-inducing signaling complex formation and caspase-8 activation. Here we establish a role of calcium (Ca 2+) as a messenger for p53 activation in response to 5-FU. Using a combination of pharmacological and genetic approaches, we show that treatment of colon carcinoma cells stimulates entry of extracellular Ca 2+ through long lasting-type plasma membrane channels, which further directs posttranslational phosphorylation of at least three p53 serine residues (S15, S33 and S37) by means of calmodulin (CaM) activity. Obstructing this pathway by the Ca 2+ -chelator BAPTA (1,2-bis(o-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid) or by inhibitors of CaM efficiently reduces 5-FU-induced caspase activities and subsequent cell death. Moreover, ectopic expression of p53 S15A in HCT116 p53 -/- cells confirmed the importance of a Ca 2+ -CaM-p53 axis in 5-FU-induced extrinsic apoptosis. The fact that a widely used therapeutic drug, such as 5-FU, is operating via this pathway could provide new therapeutic intervention points, or specify new combinatorial treatment regimes. © 2013 Macmillan Publishers Limited.
URI
http://doi.org/10.1038/onc.2012.467
http://hdl.handle.net/11147/5275
Collections
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik [290]
  • OpenAIRE Collection / OpenAIRE Koleksiyonu [15]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [3276]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [2953]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: