• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Food Engineering / Gıda Mühendisliği
  • Öğe Göster
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Food Engineering / Gıda Mühendisliği
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

The discrimination of raw and UHT milk samples contaminated with penicillin G and ampicillin using image processing neural network and biocrystallization methods

Thumbnail

Göster/Aç

Makale (2.271Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2013-11

Yazar

Ünlütürk, Sevcan
Pelvan, Merve
Ünlütürk, Mehmet S.

Üst veri

Tüm öğe kaydını göster

Künye

Ünlütürk, S., Pelvan, M., and Ünlütürk, M.S. (2013). The discrimination of raw and UHT milk samples contaminated with penicillin G and ampicillin using image processing neural network and biocrystallization methods. Journal of Food Composition and Analysis, 32(1), 12-19. doi:10.1016/j.jfca.2013.06.007

Özet

This paper utilized a neural network for texture image analysis to differentiate between milk, either raw or ultra high temperature (UHT) with antibiotic residues (e.g., penicillin G and ampicillin) and milk without antibiotic residues. The biocrystallization method was applied to obtain biocrystallogram images for milk samples spiked with penicillin G and ampicillin at different concentration levels. The biocrystallogram images were used as an input for a designed neural network called the image processing neural network (ImgProcNN). The visual differences in these images that were based on textural properties, including the distribution of crystals on the circular grass underlay, the thin or thick structure of the crystal needles, and the angles between the branches and the side needles, were used to discriminate the antibiotic-free milk samples from samples with antibiotic residues. The visual description and definition of these images have major disadvantages. In this study, the ImgProcNN was developed to overcome the shortcomings of these visual descriptions and definitions. Overall, the neural network achieved an average recognition performance between 86% and 100%. This high level of recognition suggests that the neural network used in this paper has potential as a method for discriminating raw and UHT milk samples contaminated with different antibiotics.

Kaynak

Journal of Food Composition and Analysis

Cilt

32

Sayı

1

Bağlantı

https://doi.org/10.1016/j.jfca.2013.06.007
http://hdl.handle.net/11147/5146

Koleksiyonlar

  • Food Engineering / Gıda Mühendisliği [274]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4673]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@IZTECH

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


| Politika | | Rehber | Kütüphane | İYTE | OAI-PMH |

İYTE, İzmir, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İYTE Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2