Show simple item record

dc.contributor.authorFiliz, Ali
dc.contributor.authorNeslitürk, Ali İhsan
dc.contributor.authorEkici, Mehmet
dc.date.accessioned2017-02-23T08:16:11Z
dc.date.available2017-02-23T08:16:11Z
dc.date.issued2012
dc.identifier.citationFiliz, A., Neslitürk, A. İ., and Ekici, M. (2012). A fully discrete ε-uniform method for convection-diffusion problem on equidistant meshes. Applied Mathematical Sciences, 6(17-20), 827-842.en_US
dc.identifier.issn1312-885X
dc.identifier.urihttp://hdl.handle.net/11147/4888
dc.description.abstractFor a singularly-perturbed two-point boundary value problem, we propose an ε-uniform finite difference method on an equidistant mesh which requires no exact solution of a differential equation. We start with a full-fitted operator method reflecting the singular perturbation nature of the problem through a local boundary value problem. However, to solve the local boundary value problem, we employ an upwind method on a Shishkin mesh in local domain, instead of solving it exactly. We further study the convergence properties of the numerical method proposed and prove it nodally converges to the true solution for any ε.en_US
dc.language.isoengen_US
dc.publisherHikarien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectε-Uniformen_US
dc.subjectFitted operator methoden_US
dc.subjectShishkin meshen_US
dc.subjectSingular perturbationen_US
dc.titleA fully discrete ε-uniform method for convection-diffusion problem on equidistant meshesen_US
dc.typearticleen_US
dc.contributor.iztechauthorNeslitürk, Ali İhsan
dc.relation.journalApplied Mathematical Sciencesen_US
dc.contributor.departmentİYTE, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume6en_US
dc.identifier.issue17-20en_US
dc.identifier.startpage827en_US
dc.identifier.endpage842en_US
dc.identifier.scopusSCOPUS:2-s2.0-84858011914
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record