dc.contributor.author Filiz, Ali dc.contributor.author Neslitürk, Ali İhsan dc.contributor.author Ekici, Mehmet dc.date.accessioned 2017-02-23T08:16:11Z dc.date.available 2017-02-23T08:16:11Z dc.date.issued 2012 dc.identifier.citation Filiz, A., Neslitürk, A. İ., and Ekici, M. (2012). A fully discrete ε-uniform method for convection-diffusion problem on equidistant meshes. Applied Mathematical Sciences, 6(17-20), 827-842. en_US dc.identifier.issn 1312-885X dc.identifier.uri http://hdl.handle.net/11147/4888 dc.description.abstract For a singularly-perturbed two-point boundary value problem, we propose an ε-uniform finite difference method on an equidistant mesh which requires no exact solution of a differential equation. We start with a full-fitted operator method reflecting the singular perturbation nature of the problem through a local boundary value problem. However, to solve the local boundary value problem, we employ an upwind method on a Shishkin mesh in local domain, instead of solving it exactly. We further study the convergence properties of the numerical method proposed and prove it nodally converges to the true solution for any ε. en_US dc.language.iso eng en_US dc.publisher Hikari en_US dc.rights info:eu-repo/semantics/openAccess en_US dc.subject ε-Uniform en_US dc.subject Fitted operator method en_US dc.subject Shishkin mesh en_US dc.subject Singular perturbation en_US dc.title A fully discrete ε-uniform method for convection-diffusion problem on equidistant meshes en_US dc.type article en_US dc.contributor.iztechauthor Neslitürk, Ali İhsan dc.relation.journal Applied Mathematical Sciences en_US dc.contributor.department İYTE, Fen Fakültesi, Matematik Bölümü en_US dc.identifier.volume 6 en_US dc.identifier.issue 17-20 en_US dc.identifier.startpage 827 en_US dc.identifier.endpage 842 en_US dc.identifier.scopus SCOPUS:2-s2.0-84858011914 dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
﻿