• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of microdrill breakage using rough sets

Thumbnail

View/Open

Makale Dosyası (217.7Kb)

Access

info:eu-repo/semantics/openAccess

Date

2011

Author

Sevil, Hakkı Erhan
Özdemir, Serhan

Metadata

Show full item record

Citation

Sevil, H. E., and Özdemir, S. (2011). Prediction of microdrill breakage using rough sets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 25(1), 15-23. doi:10.1017/S0890060410000144

Abstract

This study attempts to correlate the nonlinear invariants’ with the changing conditions of a drilling process through a series of condition monitoring experiments on small diameter (1 mm) drill bits. Run-to-failure tests are performed on these drill bits, and vibration data are consecutively gathered at equal time intervals. Nonlinear invariants, such as the Kolmogorov entropy and correlation dimension, and statistical parameters are calculated based on the corresponding conditions of the drill bits. By intervariations of these values between two successive measurements, a drop–rise table is created. Any variation that is within a certain threshold (+-20% of the measurements in this case) is assumed to be constant. Any fluctuation above or below is assumed to be either a rise or a drop. The reduct and conflict tables then help eliminate incongruous and redundant data by the use of rough sets (RSs). Inconsistent data, which by definition is the boundary re-gion, are classified through certainty and coverage factors. By handling inconsistencies and redundancies, 11 rules are ex-tracted from 39 experiments, representing the underlying rules. Then 22 new experiments are used to check the validity of the rule space. The RS decision frame performs best at predicting no failure cases. It is believed that RSs are superior in dealing with real-life data over fuzzy set logic in that actual measured data are never as consistent as here and may dominate the monitoring of the manufacturing processes as it becomes more widespread.

Source

Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM

Volume

25

Issue

1

URI

https://doi.org/10.1017/S0890060410000144
http://hdl.handle.net/11147/2768

Collections

  • Mechanical Engineering / Makina Mühendisliği [482]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4244]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4088]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2