• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
  •   DSpace@IZTECH
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler

Thumbnail

View/Open

Makale (856.2Kb)

Access

info:eu-repo/semantics/openAccess

Date

2006

Author

Akkaş, Hatice Deniz
Öveçoğlu, M. Lütfi
Tanoğlu, Metin

Metadata

Show full item record

Citation

Akkaş, H. D., Öveçoğlu, M. L., and Tanoğlu, M. (2006). Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler. Journal of the European Ceramic Society, 26(15), 3441-3449. doi:10.1016/j.jeurceramsoc.2005.08.017

Abstract

Phenyl (PPS) and methyl (PMS) containing polysiloxanes were pyrolyzed at elevated temperatures (900-1500 °C) under argon atmosphere to investigate the phase developments within the polymers. It was found that pyrolysis of the polymers under inert atmosphere up to 1300 °C leads to amorphous silicon oxycarbide (SiOxCy) ceramics. Conversions at higher temperatures results in the transformations into the crystalline β-SiC phases. Ceramic matrix composites (CMCs) were developed based on the active filler controlled pyrolysis (AFCOP) of polysiloxanes with active Ti filler additions. CMC monoliths were prepared with 60-80 wt.% of active Ti particulates blended into polymer precursors. Green bodies of the composites were made by warm pressing under 15 MPa pressure and ceramics were obtained by pyrolysis at elevated temperatures between 900 and 1500 °C under argon atmosphere. The results showed that due to the incorporation of active Ti fillers, formation of crystalline phases such as TiC, TiSi, and TiO occured within the amorphous matrix due to the reactions between the Ti and the polymer decomposition products. The microstructural and mechanical characterization results of the composites are presented within the paper.

Source

Journal of the European Ceramic Society

Volume

26

Issue

15

URI

http://doi.org/10.1016/j.jeurceramsoc.2005.08.017
http://hdl.handle.net/11147/2194

Collections

  • Mechanical Engineering / Makina Mühendisliği [518]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4673]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2