Native and light induced defect states in wide band gap hydrogenated amorphous silicon-carbon (a-Si1-xCx : H) alloy thin films
Abstract
In this study, wide band gap a-Si1-x C-x:H alloy thin films prepared with and without hydrogen diluation of (SiH4, CH4) were characterized using optical absorption, dark conductivity, steady-state photoconductivity, sub-bandgap absorption obtained with both photothermal deflection spectroscopy (PDS) and dual beam photoconductivity (DBP), and electron spin resonance (ESR) techniques. Experimental results of steady-state photoconductivity and sub-bandgap absorption for different generation rates were analyzed using a detailed numerical model based on Simmons-Taylor statistics. The densities, energy location and nature of the native and light induced defect states in diluted and undiluted a-Si1-xCx:H alloy thin films were derived from the best fits to the experimental data. The extracted parameters for defect states were compared with those of a-Si:H films both in the annealed and light degraded states.