• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Particle deposition simulation using the CFD code FLUENT

Access

info:eu-repo/semantics/closedAccess

Date

2000

Author

Yılmaz, Selahattin
Cliffe, K. R.

Metadata

Show full item record

Abstract

Particles of Soda Lime Silica Glass were used to simulate fly ash in the modelling of particle deposition from a high-temperature flue gas on to a superheater tube. The computational fluid dynamic code FLUENT was used and experimental deposition data were obtained from a rig comprising a small scale furnace containing an air-cooled probe. The effects of particle size, gas velocity and temperature on deposition were investigated. The effects of inertia, eddy impaction, thermophoresis and gravity on the particle trajectories were considered. The number of particles captured by the probe and the furnace surfaces were predicted and agreement with experimental results was found to be a function of particle size with the best agreement achieved for 16- and 26-mu m particles. Deposition was controlled by the kinetic energy of the particles and the adhesive forces of the surface. It is postulated that, for small particles, there was insufficient energy to bond them to the surface whereas for larger particles their kinetic energy was too targe. Thermophoresis did not play a significant part in the deposition process because, although the temperature gradient was large, 400 degrees C mm(-1) in the thermal boundary layer, the small particles (6 and 8 mu m) were unable to reach the thermal boundary layer (9 mm) which was much smaller than the hydrodynamic boundary layer (49.5 mm).

Source

Journal of The Institute of Energy

Volume

73

Issue

494

URI

https://hdl.handle.net/11147/10784

Collections

  • Chemical Engineering / Kimya Mühendisliği [462]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4802]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2