Show simple item record

dc.contributor.authorUfuktepe, Unal
dc.contributor.authorYantir, Ahmet
dc.date.accessioned2021-02-12T18:52:40Z
dc.date.available2021-02-12T18:52:40Z
dc.date.issued2006
dc.identifier.isbn3-540-34379-2
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/11147/10740
dc.description6th International Conference on Computational Science (ICCS 2006)en_US
dc.descriptionYantir, Ahmet/0000-0002-4855-1691en_US
dc.description.abstractIn this paper we study the Lebesgue Delta-measure on time scales. We refer to [3, 4] for the main notions and facts from the general measure and Lebesgue Delta integral theory. The objective of this paper is to show how the main concepts of Mathematica can be applied to fundamentals of Lebesgue Delta- and Lebesgue Delta- measure on an arbitrary time scale and also on a discrete time scale whose rule is given by the reader. As the time scale theory is investigated in two parts, by means of alpha and rho operators, we named the measures on time scales by the set function DMeasure and NMeasure respectively for arbitrary time scales.en_US
dc.description.sponsorshipIntel Corp, IBM, SGI, Microsoft Res, EPSRC, Springer, ACET Ctr, Univ Reading, SIAM, IMACS, UK e Sci Programmeen_US
dc.language.isoengen_US
dc.publisherSPRINGER-VERLAG BERLINen_US
dc.relation.ispartofseriesLECTURE NOTES IN COMPUTER SCIENCE
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleMeasure on time scales with mathematicaen_US
dc.typeconferenceObjecten_US
dc.typeconferenceObjecten_US
dc.relation.journalComputational Science - Iccs 2006, Pt 1, Proceedingsen_US
dc.contributor.departmentIzmir Isntitute of Technologyen_US
dc.identifier.volume3991en_US
dc.identifier.startpage916en_US
dc.identifier.endpage919en_US
dc.identifier.wosWOS:000238389200133
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record