• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CONSTRUCTAL STRUCTURES FOR SELF-COOLING: MICROVASCULAR WAVY AND STRAIGHT CHANNELS

Access

info:eu-repo/semantics/openAccess

Date

2015

Author

Cetkin, Erdal

Metadata

Show full item record

Abstract

This paper shows that a conductive domain which is subjected to heating from its bottom can be cooled with embedded microvascular cooling channels in it. The volume of the domain and the coolant are fixed. The actively cooled domain is mimicked from the human skin (which regulates temperature with microvascular blood vessels). The effect of the shape of cooling channels (sinusoidal or straight) and their locations in the direction perpendicular to the bottom surface on the peak and average temperatures are studied. In addition, the effect of pressure difference in between the inlet and outlet is varied. The pressure drop in the sinusoidal channel configurations is greater than the straight channel configurations for a fixed cooling channel volume. The peak and average temperatures are the smallest with straight cooling channels located at y = 0.7 mm. Furthermore, how the cooling channel configuration should change when the heat is generated throughout the volume is studied. The peak and average temperatures are smaller with straight channels than the sinusoidal ones when the pressure drop is less than 420 Pa, and they become smaller with sinusoidal channel configurations when the pressure drop is greater than 420 Pa. In addition, the peak and average temperatures are the smallest with sinusoidal channels for a fixed flow rate. Furthermore, the peak temperatures for multiple cooling channels is documented, and the multiple channel configurations promise to the smallest peak temperature for a fixed pressure drop value. This paper uncovers that there is no optimal cooling channel design for any condition, but there is one for specific objectives and conditions.

Source

Journal of Thermal Engineering

Volume

1

Issue

5

URI

https://doi.org/10.18186/jte.10873
https://hdl.handle.net/11147/10303

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4680]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2