• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiple regression analysis of performance parameters of a binary cycle geothermal power plant

Access

info:eu-repo/semantics/closedAccess

Date

2015

Author

Karadas, Murat
Celik, H. Murat
Serpen, Umran
Toksoy, Macit

Metadata

Show full item record

Abstract

Regression analysis of a 7.35 MWe existing binary geothermal power plant is conducted using actual plant data to assess the plant performance. The thermo physical properties of geothermal fluid and ambient conditions, which are brine (geothermal water) temperature and flow rate, steam and NCGs (non-condensable gases) flow rates and ambient air temperature, directly affect power generation from a geothermal power plant. Generally, amount of power generated is calculated by deterministic formulations of thermodynamics. However, the data would be probabilistic because inputs may be measured by uncalibrated devices or some parameters may be neglected during the calculation. In these cases, the performance of power plant may be estimated by using regression analysis and then changing of plant performance may be monitored overtime. All measured parameters on DORA-1 Geothermal Power Plant from 2006 to 2012 and 49,411 hourly time series data are used in this study. A review of the available literature indicates this paper is the first study to focus on the prediction of power generation of a geothermal power plant by using multiple linear regression analysis. In this study, annual multiple linear regression models are developed to estimate the performance of a geothermal power plant. These models are tested by using classical assumptions of linear regressions and positive serial autocorrelation is found in all models. Autocorrelations are eliminated by using Orcutt-Cochran method. Although the performance model trends, from 2006 to 2008, are found to be close, the performance status of the plant is generally variable from year to year. According to annual regression models, since 2009, the plant performance started to decline with 270 kW(e) electricity generation capacity. The total degradation of the plant performance reached 760 kW(e) capacity by 2012. (C) 2014 Elsevier Ltd. All rights reserved.

Source

Geothermics

Volume

54

URI

https://doi.org/10.1016/j.geothermics.2014.11.003
https://hdl.handle.net/11147/10297

Collections

  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2