• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of rainfall runoff-induced sediment load from bare land surfaces by generalized regression neural network and empirical model

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Tayfur, Gokmen
Aksoy, Hafzullah
Eris, Ebru

Metadata

Show full item record

Abstract

Based on three rainfall run-off-induced sediment transport data for bare surface experimental plots, the generalized regression neural network (GRNN) and empirical models were developed to predict sediment load. Rainfall intensity, slope, rainfall duration, soil particle median diameter, clay content of the soil, rill density and soil particle mass density constituted the input variables of the models while sediment load was the target output. The GRNN model was trained and tested. The GRNN model was found successful in predicting sediment load. Sensitivity analysis by the GRNN model revealed that slope and rainfall duration were the most sensitive parameters. In addition to the GRNN model, two empirical models were proposed: (1) in the first empirical model, all the input variables were related to the sediment load, and (2) in the second empirical model, only rainfall intensity, slope and rainfall duration were related to the sediment load. The empirical models were calibrated and validated. At the calibration stage, the coefficients and the exponents of the empirical models were obtained using the genetic algorithm optimization method. The validated empirical models were also applied to two more experimental data sets: (1) one data set was from a field experiment, and (2) one set was from a laboratory experiment. The results indicated the success of the empirical models in predicting sediment load from bare land surfaces.

Source

Water And Environment Journal

Volume

34

Issue

1

URI

https://doi.org/10.1111/wej.12442
https://hdl.handle.net/11147/10194

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4673]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2