• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing the Efficiency Roll Off and Applied Potential-Induced Color Shifts in CdSe@ZnS/ZnS-Based Light-Emitting Diodes

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Ozguler, Sahika
Diker, Halide
Unluturk, Secil Sevim
Ozcelik, Serdar
Varlikli, Canan

Metadata

Show full item record

Abstract

Green light-emitting CdSe@ZnS/ZnS (QD) nano-particles were synthesized; the photophysical and morphological properties of their films, which were prepared by spin coating from six different concentrations, corresponding to absorbance values of 0.6, 1.1, 1.6, 2.1, 2.8, and 4.0, were determined. Increasing the absorbance value from 0.6 to 4.0 did not change the photophysical properties of QD films to a large extent, whereas it resulted in an increment in QD film thickness from 20 to 110 nm. The films were utilized as an emissive layer in QD light-emitting diodes with poly(9-vinylcarbazole) (PVK), PVK:2-(4-biphenyllyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), and PVK:1,3-bis[(4-tert-butylphenyl)-1,3,4-oxadiazolyl]-phenylene (OXD-7) hole-transport layers (HTLs). The presence of PBD or OXD-7 in PVK reduced the efficiency values but played a positive role in the color purity and efficiency roll off. The maximum color temperature and electroluminescence wavelength shifts obtained with applied potential were 109, 50, and 50 K and 11, 5, and 5 nm for pure-PVK, PVK:PBD, and PVK:OXD-7-based devices, respectively. Hole mobility, capacitance (at 10(3) Hz), and charge-transfer efficiency values were 9.0 x 10(-7), 6.8 x 10(-7), and 4.2 x 10(-7) cm(2) V s(-1), 1.7, 1, and 1 nF, and 6.90%, 15.50%, and 16.10% for pure-PVK, PVK:PBD, and PVK:OXD-7-based devices, respectively. Enhanced color purity and lowered efficiency roll off obtained with PVK:PBD and PVK:OXD-7 HTLs were attributed to decreased capacitance, increased charge-transfer efficiency, and reduced Joule heating.

Source

Journal of Physical Chemistry C

Volume

124

Issue

27

URI

https://doi.org/10.1021/acs.jpcc.0c02769
https://hdl.handle.net/11147/10176

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4734]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2