• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography

Thumbnail

View/Open

Makale (Article) (925.3Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Özkaya, Emre
Topal, Fatih Esad
Bulut, Tuğrul
Gürsoy, Merve
Özuysal, Mustafa
Karakaya, Zeynep

Metadata

Show full item record

Abstract

Purpose The aim of this study is to determine the diagnostic performance of artificial intelligence with the use of convolutional neural networks (CNN) for detecting scaphoid fractures on anteroposterior wrist radiographs. The performance of the deep learning algorithm was also compared with that of the emergency department (ED) physician and two orthopaedic specialists (less experienced and experienced in the hand surgery). Methods A total 390 patients with AP wrist radiographs were included in the study. The presence/absence of the fracture on radiographs was confirmed via CT. The diagnostic performance of the CNN, ED physician and two orthopaedic specialists (less experienced and experienced) as measured by AUC, sensitivity, specificity, F-Score and Youden index, to detect scaphoid fractures was evaluated and compared between the groups. Results The CNN had 76% sensitivity and 92% specificity, 0.840 AUC, 0.680 Youden index and 0.826Fscore values in identifying scaphoid fractures. The experienced orthopaedic specialist had the best diagnostic performance according to AUC. While CNN's performance was similar to a less experienced orthopaedic specialist, it was better than the ED physician. Conclusion The deep learning algorithm has the potential to be used for diagnosing scaphoid fractures on radiographs. Artificial intelligence can be useful for scaphoid fracture diagnosis particularly in the absence of an experienced orthopedist or hand surgeon.

Source

European Journal of Trauma And Emergency Surgery

URI

https://doi.org/10.1007/s00068-020-01468-0
https://hdl.handle.net/11147/10148

Collections

  • Computer Engineering / Bilgisayar Mühendisliği [249]
  • PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection [498]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4689]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4802]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2