• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
  •   DSpace@IZTECH
  • 9. Araştırma Çıktıları / Research Outputs
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetic Susceptibility-Based Protein Detection Using Magnetic Levitation

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Yaman, Sena
Tekin, H. Cumhur

Metadata

Show full item record

Abstract

Magnetic levitation, which is a magnetic phenomenon of levitating particles suspended in a paramagnetic liquid under a nonuniform magnetic field, is a powerful tool for determining densities and magnetic properties of micro- and nanoparticles. The levitation height of particles in the magnetic field depends on the magnetic susceptibility and density difference between the object and the surrounding liquid. Here, we developed a magnetic susceptibility-based protein detection scheme in a low-cost and miniaturized magnetic levitation setup consisting of two opposing magnets to create a gradient of a magnetic field, a glass capillary channel to retain the sample, and two side mirrors to monitor inside the channel. The method includes the use of polymeric microspheres as mobile assay surfaces and magnetic nanoparticles as labels. The assay was realized by capturing the target protein to the polymer microspheres. Then, magnetic nanoparticles were attached onto the resulting microsphere-protein complex, creating a significant difference in the magnetic properties of polymer microspheres compared to those without protein. The change in the magnetic properties caused a change in the levitation height of the microspheres. The levitation heights and their distribution were then correlated to the amount of target proteins. The method enabled a detection limit of similar to 110 fg/mL biotinylated bovine serum albumin in serum. With the sandwich immunoassay developed for mouse immunoglobulin G, detection limits of 1.5 ng/mL and >10 ng/mL were achieved in buffer and serum, respectively. This approach sensed the minute changes in the volume magnetic susceptibility of the microspheres with a resolution of 4.2 x 10(-8) per 1 mu m levitation height change.

Source

Analytical Chemistry

Volume

92

Issue

18

URI

https://doi.org/10.1021/acs.analchem.0c02479
https://hdl.handle.net/11147/10129

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection [498]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [4680]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [4803]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@IZTECH

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


| Policy | | Guide | Library | idealdspace University | OAI-PMH |

IYTE, İzmir, Turkey
If you find any errors in content, please contact:

Creative Commons License
idealdspace University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@IZTECH is member of:



DSpace Release 6.2