Synthesis, photophysical and electrochemical properties of novel carbazole-triazine based high triplet energy, solution-processable materials

Saliha Onera,b, Murat Aydemirc, Fatih Yesila, Cigdem Sahind, Canan Varliklie,

a Solar Energy Institute, Ege University, Bornova, 35100 Izmir, Turkey
b Bernard Dyo Boya Fab. San. Tic. A.Ş., AOSB Çiğli, 35620 Izmir, Turkey
c Department of Basic Sciences, Erzurum Technical University, 25070 Erzurum, Turkey
d Department of Chemistry, ArtııScience Faculty, Pamukkale University, Denizli, Turkey
e Department of Photonics, İzmir Institute of Technology, 35430 Urla-Izmir, Turkey

ARTICLE INFO

Keywords:
Bipolar materials
Charge transfer
Carbazole
Triazine

A B S T R A C T

A series of molecules; tBuCz1SiTrz, tBuCz2SiTrz and tBuCz3SiTrz, which contain carbazole unit as hole-transporting group (donor-D) and triazine unit as electron transporting group (acceptor-A) were synthesized and characterized as high-triplet energy (> 2.9 eV), solution-processable bipolar emitting materials. The conjugation between the D-A groups was interrupted by using bulky tetraphenylsilane groups as spacer aiming to obtain large bandgap and high-triplet energy. The photophysical behaviors of the molecules were investigated by UV-Vis absorption, photoluminescence, phosphorescence, photoluminescence quantum yield and lifetime measurements. Solvent polarity effects were investigated on the intramolecular charge transfer (ICT) behaviour and large solvatochromic effect was observed with the increasing solvent polarity. Electrochemical properties were determined by cyclic voltammetry. All molecules showed oxidation bands arise from the carbazole groups. Reduction bands were originated from the triazine groups and the intramolecular charge transfer between D-A groups. Photophysical, electrochemical and computational characterizations addressed that tBuCz2SiTrz has the weakest ICT character, highest photoluminescence quantum yield (PLQY) and charge balance.

1. Introduction

In terms of organic optoelectronic research, obtaining efficient and stable blue color is still a challenge. Up to date many different blue emitting and host materials including carbazole derivatives have been reported [1–3]. High triplet energy (ET) values and high oxidative potentials make carbazole derivatives attractive as hole transport materials as well [4–8]. Recently, bipolar emitting materials those of which provide both hole and electron transporting groups in the same molecule and ensure balanced charge transfer for effective radiative recombination started to take intensive attention [6,9–12]. Several electron accepting groups such as phosphine oxide [13], diarylborane [14], benzimidazole [6] and triazine [15–18] have been attached to carbazole through continuous or interrupted π conjugation. These bipolar materials have been presented as both bipolar hosts available to be used with blue, red or yellow-green-emitting materials and emitters by themselves. Within the electron accepting groups, triazine attracted much attention. However in most of the triazine containing bipolar material reports, high electron affinity of it could not be balanced and increasing the number of electron donor carbazoles around the triazine core resulted in bathochromic shifts mainly because of the extended π conjugation [16,19–21]. Interrupted π conjugation allows intramolecular charge transfer (ICT) mechanism [22,23] and may provide balanced charge transfer by preventing those shifts.

Herein, series of bipolar materials are reported by increasing the number of electron donating (D) carbazole units around the electron accepting (A) triazine. Tetraphenylsilane is used for the interruption of π conjugation and to ensure a high ET with the δ -Si structure and to increase the steric hindrance [24,25]. Variation of charge transfer mechanisms depending on the number of D units is reported.

2. Experimental section

2.1. Materials and instruments

All the reagents and solvents used were purchased from Aldrich and used without further purification. The solvents used for the purification steps were technical grade and distilled before using. THF was dried over Na/benzophenone and freshly used for the reactions. Toluene was
dried over Na wire. 1H NMR and 13C NMR spectra were recorded on a Bruker spectrometer (1H at 400 MHz, 13C at 100 MHz) using tetramethylsilane (TMS) as an internal standard. Mass spectra were obtained using Bruker Daltonics – AutoFlex III smartbeam MALDI TOF/TOF MS. UV-Vis absorption spectra were recorded by using Analytik Jena S 600 UV-Vis spectrophotometer. Photoluminescence (PL), lifetime and photoluminescence quantum yield (PLQY) studies were performed by using Edinburgh Instruments FLS920P spectrophotometer. Absolute PLQY values of the solution and films were determined with the integrating sphere attachment. Molecular geometries of molecules were optimized by using Hyperchem Package Version 8.0 computational software. Semi empirical calculations were performed using AM1 method [26,27].

2.2. Synthesis of 3,6-di-tert-butyl-9H-carbazole (1)

Carbazole (5.01 g, 30 mmol) and AlCl$_3$ (3.99 g, 30 mmol) were weighed into a 250-mL 3-necked round-bottom flask. Dichloromethane (DCM, 100 mL) was added to the flask and the solution was cooled to 0 °C with an ice-water bath. tert-butyl chloride (t-ButCl, 66 mmol, 7.3 mL) was dissolved in CH$_2$Cl$_2$ (20 mL) and added to the flask dropwise at 0 °C. The resultant solution was left to stir at room temperature (RT) overnight. 100 g of cold water was added to the reaction mixture and the organic phase was extracted. The water phase was washed with 1,4-dioxane (25 mL) and the resultant solution was stirred at 100 °C for over-night. EtOAc was added to the mixture and unsoluble material was filtered through short silica column. The crude product was purified by column chromatography using hexane/CH$_2$Cl$_2$ (10/1) solvent system.

Yield: 48%. 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.22 (2H, d, J = 8.4 Hz, Ar), 7.47–7.42 (2H, d, J = 8.8 Hz, Ar), 7.25–7.22 (2H, d, J = 8.8 Hz, Ar), 1.44 (18H, s). 13C NMR (CDCl$_3$, 100 MHz): δ (ppm) 138.07, 136.47, 133.27, 132.93, 131.47, 123.58, 116.24,109.38, 34.74, 32.01, 29.70. MALDI-TOF MS, Found: [M$^+$]+ 845.2498; 'molecular formula C$_{59}$H$_{52}$N$_4$Si' requires [M$^+$]+ 845.1586.

2.2.1. Synthesis of 3,6-di-tert-butyl-9H-carbazole (1)

2.2.2. Synthesis of bis(4-bromophenyl)(diphenyl)silane (2)

2-Chloro-4,6-diphenyl-1,3,5-triazine (0.27 mmol, 72.4 mg), 2-chloro-4,6-diphenyl-1,3,5-triazine (0.27 mmol, 72.4 mg) and Cs$_2$CO$_3$ (0.54 mmol, 176.0 mg) were added to the reaction flask. The solution was cooled down to −78 °C by using dry ice/acetone mixture. After cooling, n-BuLi (5.80 mmol, 2.32 mL) was added dropwise to the flask. The resultant solution was stirred at −78 °C for 1 h. After that, B(OH)$_3$Me (11.6 mm, 1.29 mL) was added dropwise and the solution was left for stirring at RT overnight. The reaction was stopped with the addition of MeOH (10–15 mL) and solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using hexane/EtOAc (2/1) solvent system. Yield: 43%. This product is directly used for the next step.

2.2.3. Synthesis of 9-{4-[4-(3,6-di-tert-butyl-9H-carbazole-9-yl)phenyl](diphenyl)siyl]phenyl} boronic acid (4)

25 mL, 2-necked round-bottom flask was dried by using heat-gun. 9-{4-[4-(bromomethyl)(diphenyl)siyl]phenyl}-3,6-di-tert-butyl-9H-carbazole (2.90 mmol, 2.00 g) was added to the reaction flask. Three times vacuum - gas (Ar) was applied to remove the O$_2$ from the reaction flask. Dry THF (30 mL) was added to the reaction flask and the solution was cooled down to −78 °C by using dry ice/acetone mixture. After cooling, n-BuLi (5.80 mmol, 2.32 mL) was added dropwise to the flask. The resultant solution was stirred at −78 °C for 1 h. After that, B(OH)$_3$Me (11.6 mm, 1.29 mL) was added dropwise and the solution was left for stirring at RT overnight. The reaction was stopped with the addition of MeOH (10–15 mL) and solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using hexane/EtOAc (2/1) solvent system. Yield: 43%. This product is directly used for the next step.

2.2.4. Synthesis of 9-{4-[4-(3,6-di-tert-butyl-9H-carbazole-9-yl)phenyl](diphenyl)siyl]phenyl} boronic acid (4)

25 mL, 2-necked round-bottom flask was dried by using heat-gun. 9-{4-[4-(bromomethyl)(diphenyl)siyl]phenyl}-3,6-di-tert-butyl-9H-carbazole (2.90 mmol, 2.00 g) was added to the reaction flask. Dry THF (30 mL) was added to the reaction flask and the solution was cooled down to −78 °C by using dry ice/acetone mixture. After cooling, n-BuLi (5.80 mmol, 2.32 mL) was added dropwise to the flask. The resultant solution was stirred at −78 °C for 1 h. After that, B(OH)$_3$Me (11.6 mm, 1.29 mL) was added dropwise and the solution was left for stirring at RT overnight. The reaction was stopped with the addition of MeOH (10–15 mL) and solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using hexane/EtOAc (2/1) solvent system. Yield: 43%. This product is directly used for the next step.

25 mL, 2-necked round-bottom flask was dried by using heat-gun. 9-{4-[4-(bromomethyl)(diphenyl)siyl]phenyl}-3,6-di-tert-butyl-9H-carbazole (2.90 mmol, 2.00 g) was added to the reaction flask. Three times vacuum - gas (Ar) was applied to remove the O$_2$ from the reaction flask. Dry THF (30 mL) was added to the reaction flask and the solution was cooled down to −78 °C by using dry ice/acetone mixture. After cooling, n-BuLi (5.80 mmol, 2.32 mL) was added dropwise to the flask. The resultant solution was stirred at −78 °C for 1 h. After that, B(OH)$_3$Me (11.6 mm, 1.29 mL) was added dropwise and the solution was left for stirring at RT overnight. The reaction was stopped with the addition of MeOH (10–15 mL) and solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using hexane/EtOAc (2/1) solvent system. Yield: 43%. This product is directly used for the next step.

25 mL, 2-necked round-bottom flask was dried by using heat-gun. 9-{4-[4-(bromomethyl)(diphenyl)siyl]phenyl}-3,6-di-tert-butyl-9H-carbazole (2.90 mmol, 2.00 g) was added to the reaction flask. Dry THF (30 mL) was added to the reaction flask and the solution was cooled down to −78 °C by using dry ice/acetone mixture. After cooling, n-BuLi (5.80 mmol, 2.32 mL) was added dropwise to the flask. The resultant solution was stirred at −78 °C for 1 h. After that, B(OH)$_3$Me (11.6 mm, 1.29 mL) was added dropwise and the solution was left for stirring at RT overnight. The reaction was stopped with the addition of MeOH (10–15 mL) and solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using hexane/EtOAc (2/1) solvent system. Yield: 43%. This product is directly used for the next step.

25 mL, 2-necked round-bottom flask was dried by using heat-gun. 9-{4-[4-(bromomethyl)(diphenyl)siyl]phenyl}-3,6-di-tert-butyl-9H-carbazole (2.90 mmol, 2.00 g) was added to the reaction flask. Dry THF (30 mL) was added to the reaction flask and the solution was cooled down to −78 °C by using dry ice/acetone mixture. After cooling, n-BuLi (5.80 mmol, 2.32 mL) was added dropwise to the flask. The resultant solution was stirred at −78 °C for 1 h. After that, B(OH)$_3$Me (11.6 mm, 1.29 mL) was added dropwise and the solution was left for stirring at RT overnight. The reaction was stopped with the addition of MeOH (10–15 mL) and solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using hexane/EtOAc (2/1) solvent system. Yield: 43%. This product is directly used for the next step.
resultant solution was stirred at −78 °C for 1 h. After that, Bu₂SnCl (9.3 mmol, 2.53 mL) was added dropwise and the solution was left for stirring at RT for overnight. The reaction was stopped with the addition of H₂O (100 mL) and EtOAc (100 mL) was added. Organic phase was extracted and water phase was washed with 2 × 50 mL EtOAc. Organic phases were combined and dried over MgSO₄. Solvents were evaporated on rotary evaporator. The crude product was purified by column chromatography using cyclohexane/CH₂Cl₂ (10/1) solvent system. Yield: 50%. ¹H NMR (CDCl₃, 400 MHz): δN (ppm) 8.18 (2H, s, Ar), 7.84–7.82 (2H, d, J = 8.0 Hz, Ar), 7.71–7.69 (4H, d, J = 8.0 Hz, Ar), 7.64–7.62 (4H, m, Ar), 7.59–7.57 (2H, d, J = 8.0 Hz, Ar), 7.54–7.45 (10H, m), 1.64–1.57 (16H, m), 1.51 (18H, s), 1.42–1.35 (6H, m), 1.14–1.10 (6H, m), 0.96–0.93 (9H, t). ¹³C NMR (CDCl₃, 100 MHz): δC (ppm) 144.51, 142.98, 139.45, 138.96, 137.82, 136.48, 136.14, 135.65, 134.16, 129.75, 128.00, 125.70, 123.60, 123.63, 116.25, 109.40, 34.77, 32.05, 29.15, 27.45, 13.74, 9.62.

2.2.7. Synthesis of 2,4,6-trichloro-1,3,5-triazine (7)

250 mL 2-necked round-bottom flask was dried by using heat-gun. 2,4,6-trichloro-1,3,5-triazine (36 mmol, 6.64 g) was added to the reaction flask. Three times vacuum - gas (Ar) was applied to remove the O₂ from the reaction flask. Dry toluene (60 mL) was added to the reaction flask and the solution was cooled down to 0 °C by using ice/water bath. Phenylmagnesium bromide (PhMgBr, 3 M/Et₂O, 30 mmol, 4.81 mL) was added dropwise and the solution was left for stirring at RT for overnight. The reaction was stopped with the addition of water (60 mL) and organic phase was separated. Water phase was washed with 2 × 50 mL EtOAc. Organic phases were combined and dried over MgSO₄. Solvents were evaporated on rotary evaporator and the crude product was purified by crystallization from hexane/CH₂Cl₂ solvent system. Yield: 65%. ¹H NMR (CDCl₃, 400 MHz): δN (ppm) 8.55–8.52 (2H, d, J = 8.0 Hz, Ar); 7.70–7.67 (1H, t, Ar); 7.58–7.55 (2H, t, Ar).

2.2.8. Synthesis of 9,9′-(6-phenyl-1,3,5-triazine-2,4,6-triyl)bis(4,1-phenylene(diphenylsilanediyl)-4,1-phenylene)tris(3,6-di-tert-butyl-9H-carbazole) (BuCz2SiTrz) (8)

50 mL 2-necked round-bottom flask was dried by using heat-gun. 3,6-di-tert-butyl-9-(4-(tributylstannyl)phenyl)silyl)phenyl)-9H-carbazole (1 mmol, 0.90 g) and 2,4-dichloro-6-phenyl-1,3,5-triazine (0.70 mmol, 0.13 g) were added to the reaction flask. Toluene (20 mL) was added to the reaction flask and Ar gas was bubbled through the solution for about 30 min. Pd(PPh₃)₄ (0.22 mmol, 0.26 g) was added to the flask and the resultant mixture was stirred at 110 °C for overnight. Toluene was removed by using rotary evaporator and the crude product was purified by column chromatography using hexane/CH₂Cl₂ (5/1) solvent system. Yield: 20%. ¹H NMR (CDCl₃, 400 MHz): δN (ppm) 8.86–8.85 (6H, d, J = 8.0 Hz, Ar), 8.18 (6H, s, Ar), 7.92–7.90 (6H, d, J = 8.0 Hz, Ar), 7.87–7.85 (6H, d, J = 8.0 Hz, Ar), 7.75–7.73 (12H, d, J = 8.0 Hz, Ar), 7.67–7.65 (6H, d, J = 8.4 Hz, Ar), 7.57–7.48 (30H, m), 1.50 (54H, s). ¹³C NMR (CDCl₃, 100 MHz): δC (ppm) 171.93, 143.06, 139.82, 139.76, 138.95, 137.80, 137.39, 136.79, 136.45, 133.53, 132.30, 129.99, 128.15, 125.84, 123.61, 123.59, 116.24, 109.37, 34.74, 32.02. MALDI-TOF MS, Found: [M]⁺ m/z: 1916.7589; ‘molecular formula C₁₃₅H₁₂₀N₅S₁₂’ requires [M]⁺ m/z: 1916.7465.

2.3. Preparation of hole and electron only devices

Prior to organic layer deposition, the ITO substrates were cleaned with acetone, isopropanol under ultrasonic for 15 min and subjected to oxygen plasma treatment for 5 min. PEDOT:PSS (Ala083) was spin coated at 2500 rpm and the layer was annealed in a vacuum oven at 120 °C for 30 min. Following this, the molecules were dissolved in toluene at a total concentration of 10 mg mL⁻¹ and were spin-coated onto the PEDOT:PSS layer and baked at 100 °C for 30 min. Finally, for the hole only devices, Au (100 nm) was deposited by thermal evaporation under a vacuum of 1 × 10⁻⁶ mbar. The active areas of the devices were 4 mm². For the electron only devices, ITO and Au layers of the above given device is replaced with Al layer of 100 nm.

3. Results and discussion

3.1. Synthesis

The synthetic route followed for the bipolar host materials is shown in Fig. 1. 9H-carbazole was alkylated by using the Friedel–Crafts alkylation method and 3,6-di-tet-butyl-9H-carbazole (1) was obtained. Bis (4-bromophenyl)(diphenyl) silane (2) was synthesized by Li-halogen exchange reaction. The Ullmann Coupling reaction of 3,6-di-tet-butyl-9H-carbazole with molecule 2 allowed to obtain molecule 3. This -Br derivative was converted to boronic acid derivative (4) and used for the synthesis of bipolar host tBuCz1SiTrz (5) with Suzuki Coupling reaction.

Molecule 3 was also converted to tributyl stannyl (6) derivative. 2,4,6-trichloro-1,3,5-triazine and 2-chloro-4,6-diphenyl-1,3,5-triazine were purchased and 2,4-dichloro-6-phenyl-1,3,5-triazine (7) was synthesized. tBuCz2SiTrz (8) and tBuCz3SiTrz (9) were prepared through Stille Coupling reactions. The synthesized molecules were characterized by ¹H and ¹³C NMR spectroscopy. Details of the structural characterizations are provided at Fig. S1a–h. The ratios of aromatic resonance peaks of tBuCz1-3SiTrz in the ¹H NMR spectra prove the presence of carbazole, triazine and phenyl units. The singlet signal at 1.50 ppm indicates the presence of the methyl substituents on phenyl units. In the ¹³C NMR spectra of tBuCz1-3SiTrz, the characteristic signals of the carbon atoms of the triazine units are observed at 171.7–174.2 ppm [20]. The formation of tBuCz1-3SiTrz were further supported by MALDI-TOF spectra (Fig. S2a–c).

3.2. Photophysical properties

The UV-Vis absorption and photoluminescence (PL) properties of the compounds were studied in cyclohexane (CH), toluene, CHCl₃ and THF (Fig. 2). The characteristic absorption peak at around 298 nm is identical for all compounds and assigned to the π-π* transition of the carbazole moieties. The longer wavelength ranging from 310 nm to 360 nm generates from the π-π* transition of the entire conjugated
backbone. The intensity of 298 nm band increased with the increasing number of carbazole units and so did the calculated molar absorption constants \(\varepsilon \) in toluene; the \(\varepsilon \) values are in the range of \(6.2 \times 10^4 \) to \(13.7 \times 10^4 \) L/mol.cm. All materials presented characteristic PL bands of non-conjugated carbazole group at ca. 354 nm and 370 nm [28]. In CH, well-structured locally exited (LE) state emission coming from the carbazole group is observed [29]. However, as the polarity of solvent was increased, gradual loss of the resolved fluorescence band, which is followed by appearance of unstructured and red-shifted Gaussian shaped emission originating from a newly formed state. This behaviour is attributed to formation ICT state between D and A groups [30,31].

In principle, as a result of photoexcitation, the LE state undergoes ICT from D to A (or vice versa) which is often accompanied by structural changes (i.e., relative folding of the D\(^{+} \) and A\(^{-} \) moieties) to form a new stabilized dipolar ICT state [30]. Structurally, if the linkage between the decoupled moieties is a formally single bond, the spatial folding between D\(^{+} \) and A\(^{-} \) moieties is precluded due to having a very limited degree of freedom in space, therefore, the internal rotational relaxations around the central bond are promoted and D\(^{+} \) moiety takes an out of plane positions with respect to the A\(^{-} \) moiety, which significantly change the electron density distribution to form a relaxed excited state. If the twist angle is around 90° between the corresponding (aromatic) molecular moieties, the stabilization of charge transfer process significantly enhanced due to large amplitude torsional motion between D\(^{+} \) to A\(^{-} \) units. In such an orthogonal conformation, the electronic coupling is significantly favoured due to the reduced (nearly zero) overlap between the orbitals involved, and concomitantly intramolecular charge transfer state is formed between LE states. The prominent property of ICT state is to observe dual fluorescence, arising from LE and ICT states [32]. However, it must be noted that observation of dual fluorescence strongly depends on the competitions between radiative and non-radiative decay processes involved in different polarity/viscosity solvents [30,33]. Therefore, it is likely to see a broadened emission in polar solvents, arising from highly polarized ICT state. In all the molecules, the HOMO is localized onto the carbazole moieties, and the LUMO is confined to the triazine and the adjacent phenyl ring (Fig. 3). When electron-hole transport takes place between HOMO and LUMO orbitals, the charge carriers follow spatially separated pathways even when they happen to meet on one molecule (Fig. S3). Considering this point, the calculated emissive excited states involve mainly the transition from the carbazole-based HOMO to a triazine based LUMO, which have strong CT character (it carries no oscillator strength). The next emissive higher energy excited state (1LE) is calculated to be \(\sim 0.20 \) eV above the 1CT state and has oscillator strength for tBuCz1SiTrz (0.77), tBuCz2SiTrz (1.05) and tBuCz3SiTrz (1.28) (Table S1). We further consider that the broad and red-shifted

![Fig. 1. Synthetic route for the synthesized molecules.](image-url)
fluorescence arises from this 1CT state due to the geometric relaxation in the excited state and concomitant planarization gives rise to slightly enhanced wave function overlap. That is the case in here, in CH, only one fluorescence band appears in all the molecules, as the viscosity and polarity are not sufficient to stabilize this twisted configuration [32]. However, once the polarity of solvent was slightly increased, it results in stabilization of an ICT state and concomitantly a further long-wavelength emission band grows in relative intensity (compared to LE emission), while the intensity of structured LE emission decreases with increasing solvent polarity (Fig. 2). In CHCl₃, the emission from 1LE state was totally vanished and the observation of red-shifted and broadened fluorescence are the indicatives of further relaxation of the excited-state geometric distortion and enhanced charge transfer strength. In general, the strength of an ICT state can be associated with solvatochromic shifts of the materials, and typically the largest positive solvatochromic shift is an indicative of the strongest ICT character. According to the findings [32], the molecules showing strong ICT character have reduced PLQY values, where monomolecular recombination of the geminately bound electron-hole pairs results in active radiative decay channels. Addressing this point, we measured the PL and PLQY values in toluene solution and drop casted films (Fig. 4), where the PLQY values in toluene were 47.2%, 75.7%, 59.4% and in films were 8.2%, % 36.4%, % 9.7% for tBuCz1-SiTrz, tBuCz2SiTrz, and tBuCz3SiTrz, respectively. Structurally, if the electron coupling between D-A units is strong (dihedral angle is close to 0°), the CT character of the state is weak. Indeed, the orientations of D-A units play significant role on determining the singlet-triplet splitting energies (ΔEₛₜ) with the molecules having planar geometry show very large ΔEₛₜ value (> 0.7 eV), however, the ΔEₛₜ is significantly decreased (< 0.01 eV) with the molecules having > 80° dihedral angle [34]. The results indicate that tBuCz2SiTrz molecule has the weakest ICT character (considering relatively narrow solvatochromic shift), localized energetically below the LE state which presumably results from reduced dihedral angle (118° Fig. S4), comparing with tBuCz1SiTrz (133°) and tBuCz3SiTrz (125°). This conformational difference gives rise to increased PLQY values in tBuCz2SiTrz.

The fluorescence lifetimes were measured under varying conditions (air saturated and degassed) to understand the triplet contribution upon the fluorescence decays (Table 1). The molecules in toluene solution were excited at 298 nm and the emission from the ICT state was collected at 429 nm for tBuCz1SiTrz, 440 nm for tBuCz2SiTrz and 430 nm for tBuCz3SiTrz. The ICT emission of molecules shows triexponential decay components, one long lasting (τ₃) and two fast decays (τ₁ and τ₂).
The long lasting component (τ3) shows strong oxygen dependency, where the lifetimes increase significantly in tBuCzSiTrz and tBuCz3SiTrz materials. However, in tBuCz2SiTrz, the lifetime slightly decreases with oxygen (Table 1). The presumable reason is that, the energy of ICT state is ∼2.92 eV for tBuCz2SiTrz molecule, which is lower than the energy of locally excited triplet state (3LE ∼ 2.98 eV, Fig. S5) and therefore, the ICT state of tBuCz2SiTrz is energetically lowest state of the system. However, for the others, the lowest energy of the system is 3LE state, where the ICT state of tBuCz1SiTrz and tBuCz3SiTrz localizes at −0.12 eV and ∼0.11 eV above the energy of 3LE state, respectively (Fig. 5). Consequently, long-lasting components (τ3) of the molecules indicates the lifetime of the ICT states, where the triplets make significant contribution by forming a feeding mechanism from 3LE state of tBuCz1SiTrz and tBuCz3SiTrz molecules. However, in tBuCz2SiTrz molecule, the energy difference between ICT and 3LE state is ∼0.06 eV, which is very close for active triplet feeding mechanism, therefore, the τ3 component has the longest lifetime even in air-saturated solution and drop-off slightly in degassed environment due to actively operative non-radiative decay channels of 3LE state. Taken together, for all three molecules, excitation at 298 nm accesses the 1LE state of carbazole, then in nanosecond range the ICT state is directly populated by both 1LE and 3LE.

3.3. Electrochemical Studies

The electrochemical behaviour of the synthesized molecules showed quasi reversible oxidation (Eox) at around 1.3 eV, irreversible reduction (Ered2) between −0.70 and −0.48 eV and reversible reduction (Ered2) between −1.30 and −1.42 eV (Fig. 6a and Table 2). Eox generates from the D whereas, Ered1 are assigned to the ICT state and the Ered2 belong to reduction of A [16,31]. The HOMO and LUMO energy levels of the molecules are calculated from the onset of Eox and Ered2 and found to be around −5.6 eV and −2.9 eV, respectively. Although the number of electron donating carbazole groups around the electron accepting triazine was increased, because of the interrupted conjugation, close running HOMO and LUMO energy levels were obtained. The electrochemical stabilities of the synthesized molecules were determined by consecutive cyclic measurements. Although no significant deviation was expected at the Eox of all molecules as the C3 and C6 positions of carbazoles were protected, only tBuCz2SiTrz ensured this expectation. tBuCz1SiTrz and tBuCz3SiTrz presented growing current peaks at higher oxidative potentials (1.5 V), pointing out that the electron density on the carbazole groups of these molecules were decreased. While the reduction of triazine was preserved, a current increase at ICT state was observed at ICT state in degassed environment due to actively operative non-radiative decay channels of 3LE state. Taken together, for all three molecules, excitation at 298 nm accesses the 1LE state of carbazole, then in nanosecond range the ICT state is directly populated by both 1LE and 3LE.

Table 1

Fluorescence lifetime decays in toluene [air saturated (A-Saturated) and degassed] solution and drop cast films. In the table, τ represents lifetimes in nanosecond (ns) range, B and f represent amplitudes of the components and fractional intensities (%), respectively.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Solution (A-saturated)</th>
<th>Solution (Degassed)</th>
<th>Drop-cast Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>tBuCz1SiTrz</td>
<td>B1 = 72295.3</td>
<td>f1 = 48.87</td>
<td>f3 = 66.45</td>
</tr>
<tr>
<td></td>
<td>f1 = 52.11</td>
<td>τ1 = 2.37 ns</td>
<td>τ1 = 2.54 ns</td>
</tr>
<tr>
<td></td>
<td>B2 = 5433.7</td>
<td>f2 = 36.41</td>
<td>f2 = 16.02</td>
</tr>
<tr>
<td></td>
<td>f2 = 20.72</td>
<td>τ2 = 18.7 ns</td>
<td>τ2 = 27.18</td>
</tr>
<tr>
<td></td>
<td>B3 = 385.8</td>
<td>f3 = 14.72</td>
<td>f3 = 38.08</td>
</tr>
<tr>
<td></td>
<td>f3 = 27.18</td>
<td>τ3 = 13.51 ns</td>
<td>τ3 = 82.82 ns</td>
</tr>
<tr>
<td>tBuCz2SiTrz</td>
<td>B1 = 11186.38</td>
<td>f1 = 66.45</td>
<td>f1 = 6.37</td>
</tr>
<tr>
<td></td>
<td>f1 = 39.83</td>
<td>τ1 = 2.80 ns</td>
<td>τ1 = 1.01 ns</td>
</tr>
<tr>
<td></td>
<td>B2 = 850.152</td>
<td>f2 = 27.5</td>
<td>f2 = 16.02</td>
</tr>
<tr>
<td></td>
<td>f2 = 15.15</td>
<td>τ2 = 16.12 ns</td>
<td>τ2 = 27.9 ns</td>
</tr>
<tr>
<td></td>
<td>B3 = 26.92</td>
<td>f3 = 56.07</td>
<td>f3 = 85.99</td>
</tr>
<tr>
<td>tBuCz3SiTrz</td>
<td>B1 = 6777.77</td>
<td>f1 = 66.45</td>
<td>f1 = 6.37</td>
</tr>
<tr>
<td></td>
<td>f1 = 39.83</td>
<td>τ1 = 2.80 ns</td>
<td>τ1 = 1.01 ns</td>
</tr>
<tr>
<td></td>
<td>B2 = 5617.28</td>
<td>f2 = 27.5</td>
<td>f2 = 16.02</td>
</tr>
<tr>
<td></td>
<td>f2 = 15.15</td>
<td>τ2 = 16.12 ns</td>
<td>τ2 = 27.9 ns</td>
</tr>
<tr>
<td></td>
<td>B3 = 872.57</td>
<td>f3 = 56.07</td>
<td>f3 = 85.99</td>
</tr>
<tr>
<td></td>
<td>f3 = 27.18</td>
<td>τ3 = 136.93</td>
<td>τ3 = 136.93</td>
</tr>
<tr>
<td></td>
<td>χ1 = 1.11</td>
<td>χ1 = 1.09</td>
<td>χ1 = 1.3</td>
</tr>
<tr>
<td></td>
<td>χ2 = 1.11</td>
<td>χ2 = 0.97</td>
<td>χ2 = 1.24</td>
</tr>
<tr>
<td></td>
<td>χ3 = 1.11</td>
<td>χ3 = 1.09</td>
<td>χ3 = 1.3</td>
</tr>
</tbody>
</table>

The large lifetime differences between the components indicate that they are of different origin. One of the fast components (τ1) can be attributed to 1LE emission of molecules and τ2 may result from partially twisted geometry of the molecules giving rise to a fast non-radiative decay channel. The long lasting component (τ3) shows strong oxygen dependency, where the lifetimes increase significantly in tBuCz1SiTrz and tBuCz3SiTrz materials. However, in tBuCz2SiTrz, the lifetime slightly decreases with oxygen (Table 1). The presumable reason is that, the energy of ICT state is ∼2.92 eV for tBuCz2SiTrz molecule, which is lower than the energy of locally excited triplet state (3LE ∼ 2.98 eV, Fig. S5) and therefore, the ICT state of tBuCz2SiTrz is energetically lowest state of the system. However, for the others, the lowest energy of the system is 3LE state, where the ICT state of tBuCz1SiTrz and tBuCz3SiTrz localizes at −0.12 eV and ∼0.11 eV above the energy of 3LE state, respectively (Fig. 5). Consequently, long-lasting components (τ3) of the molecules indicates the lifetime of the ICT states, where the triplets make significant contribution by forming a feeding mechanism from 3LE state of tBuCz1SiTrz and tBuCz3SiTrz molecules. However, in tBuCz2SiTrz molecule, the energy difference between ICT and 3LE state is ∼0.06 eV, which is very close for active triplet feeding mechanism, therefore, the τ3 component has the longest lifetime even in air-saturated solution and drop-off slightly in degassed environment due to actively operative non-radiative decay channels of 3LE state. Taken together, for all three molecules, excitation at 298 nm accesses the 1LE state of carbazole, then in nanosecond range the ICT state is directly populated by both 1LE and 3LE.

Fig. 5. Energy level diagram of the locally excited singlet (1LE), triplet (3LE) and charge transfer state (ICT) of the molecules obtained from experimental data.
enhancement order of tBuCz2SiTrz < tBuCz3SiTrz < tBuCz1SiTrz (Fig. 6b-d). These growing currents corresponds to the potentials of −0.92 V, −0.78 V and −0.89 V for the increasing order of carbazole units. Lowest charge transfer reduction potential and current enhancement obtained with tBuCz2SiTrz molecule, supports the discussions provided above on low laying ICT state of this molecule.

3.4. Studies of hole and electron only devices

In order to monitor the charge balance in the molecules, hole and electron only devices with the structures of ITO/PEDOT:PSS (≈ 40 nm)/tBuCz1-3SiTrz (≈ 60 nm)/Au (100 nm) and Al (200 nm)/tBuCz1-3SiTrz (≈ 60 nm)/Cs2CO3 (3 nm)/Al (200 nm), respectively were prepared. The hole densities were increased with the increasing number of carbazole groups while the electron currents were decreased. For tBuCz3SiTrz molecule, the hole density of the device is higher than the electron density, the situation is the other way around for tBuCz1SiTrz molecule and for tBuCz2SiTrz, current density-voltage curves address a charge balance (Fig. 7).

4. Conclusions

In conclusion, three novel, bipolar materials were synthesized by increasing the number of electron donating (D) carbazole units around the electron accepting (A) triazine. The conjugation between the D and A was interrupted by tetraphenylsilane groups and high-triplet energy, solution-processable bipolar blue emitting materials were obtained. All presented solvatochromic shifts. Photophysical and electrochemical characterizations showed the potential of these molecules as blue

![Fig. 7. Current density-Voltage curves of a) hole and b) electron only devices.](image-url)
emitters and bipolar host materials for green emitting OLED applications and that tBuCz2SiTrz has the weakest intramolecular charge transfer character, highest PLQY and charge balance.

Acknowledgements

The authors would like to thank liker Oner and Daniel Voltz for fruitful discussions, project support funds of TUBITAK (113Z253) and IYTE Biological Mass Spectrometry and Proteomic Laboratory.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.dyepig.2018.06.014.

References