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Artificial Neural Network Prediction of
Tropospheric Ozone Concentrations in Istanbul,
Turkey

Tropospheric (ground-level) ozone has adverse effects on human health and environ-

ment. In this study, next day’s maximum 1-h average ozone concentrations in Istanbul

were predicted using multi-layer perceptron (MLP) type artificial neural networks

(ANNs). Nine meteorological parameters and nine air pollutant concentrations were

utilized as inputs. The total 578 datasets were divided into three groups: training, cross-

validation, and testing. When all the 18 inputs were used, the best performance was

obtained with a network containing one hidden layer with 24 neurons. The transfer

function was hyperbolic tangent. The correlation coefficient (R), mean absolute error

(MAE), root mean squared error (RMSE), and index of agreement or Willmott’s Index (d2)

for the testing data were 0.90, 8.78mg/m3, 11.15mg/m3, and 0.95, respectively.

Sensitivity analysis has indicated that the persistence information (current day’s

maximum and average ozone concentrations), NO concentration, average temperature,

PM10, maximum temperature, sunshine time, wind direction, and solar radiation were

the most important input parameters. The values of R, MAE, RMSE, and d2 did not

change considerably for the MLP model using only these nine inputs. The performances

of the MLP models were compared with those of regression models (i.e., multiple linear

regression and multiple non-linear regression). It has been found that there was no

significant difference between the ANN and regression modeling techniques for the

forecasting of ozone concentrations in Istanbul.

Keywords: Artificial neural network (ANN); Istanbul; Multi-layer perceptron (MLP); Ozone;
Regression

Received: April 13, 2010; revised: June 29, 2010; accepted: July 30, 2010

DOI: 10.1002/clen.201000138

1 Introduction

Ozone (O3) is a secondary pollutant and formed in the lower atmo-

sphere (troposphere) by the complex reactions of nitrogen oxides

(NOx) and volatile organic compounds (VOCs) in the presence of solar

radiation. Ozone formation in the troposphere is a rapid photo-

chemical cycle and a non-linear process depending on the concen-

trations of precursors, meteorological parameters, and the sunlight

intensity and spectral distribution [1, 2]. Briefly, it involves the

photolysis of nitrogen dioxide (NO2) by solar radiation to form nitric

oxide (NO) and a ground-state oxygen atom (O).

NO2 þ hv ! NO þ O (1)

The major reaction forming O3 in the troposphere includes the

reaction of oxygen atom with oxygen molecule (O2). Collision of

recently formed O3 with a third body (i.e., a molecule from the

surrounding air) removes the excess energy of ozone and allows it

to stabilize.

O þ O2 þ M ! O3 þ M (2)

O3 is removed by the reaction with NO to reform NO2;

O3 þ NO ! NO2 þ O2 (3)

However, reactions between NO and reactive radical species that are

formed by the oxidation of reactive VOCs can also oxidize NO to NO2

without the involvement of ozone,

NO �������!HO2�;RO2�
NO2 (4)

Therefore, ozone concentration can increase.

Ozone is a strong oxidizing chemical. It has negative effects on

human health, plants (e.g., decreased growth and biomass accumu-

lation in plants, reduction in crop yields, damage to the leaves of

plants, etc.), and materials. Textiles, fabrics, elastomers, paints,

and other surface coatings can be damaged by ozone. There are

number of studies (dosimetric, controlled human exposure, animal
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toxicologic, and epidemiological) in the literature on the health

effects of ozone exposure [1, 3–5]. The health effects related to

short-term ozone exposure include irritation of eyes and throat,

adverse effects on pulmonary function, aggravation of respiratory

symptoms, and increase in medication usage, hospital admissions

and mortality. The long-term exposure can cause reduction in lung

function development [6, 7]. Children, adults who are active out-

doors [8], and people with preexisting respiratory illnesses are more

sensitive to ozone than others. A recent study has shown that short-

term inhalation of PM2.5 and ozone at environmentally relevant

concentrations causes acute conduit artery vasoconstriction in

healthy adults [9].

Deterministic and stochastic methods are used in environmental

modeling. Deterministic models require extensive data on reaction

mechanisms, chemical kinetics, transport, and meteorological

parameters. Artificial neural networks (ANNs) have recently been

introduced as alternatives to conventional statistical methods for

pollutant modeling due to the following advantages: ANNs make

no prior assumptions concerning the data distribution; they can

model highly non-linear functions; they can be retrained for better

generalization whenever new or unseen data are available [10].

Yi and Prybutok [11] developed a neural network model for pre-

dicting daily maximum ozone levels using pollutant and meteoro-

logical data, and compared the neural network’s performance with

two statistical models: regression and Box–Jenkins autoregressive

integrated moving average (ARIMA). The neural network model

performed better than the regression and Box–Jenkins ARIMA

models. Chattopadhyay and Chattopadhyay have applied autoregres-

sive neural network (AR-NN) [12] and ARIMA [13] models to the

monthly total ozone concentration over Kolkata, India. While the

performance of AR-NN model was better compared with the ordinary

autoregressive model of same order [12], ARIMA model in the form of

ARIMA (0, 2, 2) had maximum prediction capacity among the three

ARIMA and 11 AR-ANN models [13]. When only average daily mete-

orological data were used as input, Comrie [14] and Spellman [15]

reported that the difference between the performances of neural

network technique and regression model was not remarkable. In

recent studies, ANN technique has been applied to predict tropo-

spheric ozone levels in several European cities: five locations in

United Kingdom (Central London, Harwell, Birmingham, Leeds,

and Strath Vaich [15], and Bristol, Edinburgh, Eskdalemuir, Leeds,

and Southampton [16]), Valencia, Spain [17, 18], Oporto, Portugal

[19], and Orleans, France [20].

Istanbul is one of the world’s largest cities with a population of

about 12.6 million according to 2007 population census [21]. It also

has the highest population density in Turkey with 2420 people/km2.

Air pollution is a major concern in Istanbul, since in addition to

being the largest city in the country it contains 40% of the industrial

facilities in Turkey [22]. The main industrial sectors are textile

production, metal production, food processing, rubber, leather,

chemical and petroleum products, machinery, and automotive.

Recent meteorological evaluations, and tracer and trajectory studies

have indicated that trans-boundary transport of air pollutants from

Europe are also responsible for the poor air quality of Istanbul under

specific weather conditions [23].

Different approaches have been used to model tropospheric ozone

concentrations in Istanbul: non-linear time series method [24],

regression model [25], fuzzy synthetic evaluation techniques [26],

and cellular neural networks [27]. Ozcan et al. [27] have utilized

genetically trained, multi-level cellular neural network to predict

ozone values 24 h in advance. The input parameters for the model

were meteorological and air pollutant data for the year 2003

(January to December). The correlation coefficients (R) between

the predicted and measured ozone levels for the training and testing

data sets were 0.62 and 0.57, respectively. In previous studies, little

information is available on the effects of each input parameter on

ozone concentrations in Istanbul.

Because of the adverse health effects of tropospheric ozone, it is

indispensable to have an accurate model to forecast ozone concen-

trations. Our objective in this study was to predict next-day’s maxi-

mum 1-h average ozone concentrations in Istanbul using multi-layer

perceptron (MLP) ANN [10], the most frequently used ANN in atmo-

spheric modeling, with larger datasets (i.e., air pollutant and mete-

orological data for the years 2003–2005). Additionally, sensitivity

and pruning techniques were applied to find the effects of each

input parameter and the simplified network architecture with these

inputs, respectively. The performances of the MLPs were also com-

pared with those of multiple linear regression (MLR) and multiple

non-linear regression (MNLR) models.

2 Materials and methods

2.1 Site description and data

Istanbul (41.018N, 28.588E) is located in the northwest of Turkey

(Fig. 1). Bosphorus strait divides the city into Asian and European

parts. Due to its geographical location, northern and southern parts

of Istanbul exhibit different meteorological characteristics [28]. The

southern parts show general characteristics of the Mediterranean

climate. However, in northern parts, Mediterranean type climate is

modified by the cooler Black Sea and northerly colder air masses of

maritime and continental origins. Therefore, the climate in this part

of the city is described as having cooler temperatures in both winter

and summer, and experiencing more rains compared to the south.

The coldest months are January (Tave¼ 6.18C) and February

(Tave¼ 5.98C) and the hottest months are July (Tave¼ 23.88C) and

August (Tave¼ 23.58C). The average annual total precipitation

is about 800 mm. The predominant winds are in the northeast

direction in Istanbul.

The important air pollutant sources in Istanbul are residential

heating, motor vehicle emissions, and industrial plants [29]. With

respect to ozone precursors NOx and VOCs, the predominant sources

are motor vehicle emissions and industrial plants for NOx emissions,

and motor vehicle emissions and residential heating for the emis-

sions of VOCs. As of June 2009, the number of motor vehicles

registered to the traffic in Istanbul is about 2.8 million [30].

Natural gas, lignite, wood, and fuel-oil are the main fuels used

for residential heating in winter season.

Air pollutant and meteorological data for three years (February to

October for 2003 and 2004, and February to July for 2005) were used

in the models developed in this study. Table 1 gives the input and

output parameters. Air pollutant data were obtained from Kadikoy

Air Quality Station operated by the Istanbul Metropolitan

Municipality. The location of Kadikoy Air Quality station represents

an urban site with traffic influence. Meteorological parameters

were acquired from the nearest meteorological station, Goztepe

Meteorology Station, operated by the State Meteorological Service.

The distance between these two stations is about 6 km, and both of

them are located in the Asian side.
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Due to the equipment maintenance some of the parameters were

not available. If the values of any parameters were not measured

more than 6 h for a given day, the entire row of data was removed

from the dataset. Therefore, the total dataset used in this study was

578.

2.2 ANN model

ANNs are interconnected parallel systems. They consist of simple

processing elements called neurons organized into layers [31, 32]. In

contrast to traditional modeling approaches, ANNs are data driven

and self-adaptive methods.

A feedforward, MLP type of ANNs was applied for the prediction of

next-day’s maximum 1-h average ozone concentrations. MLP consists

of an input layer, one or more hidden layers, and an output layer

(Fig. 2). Input quantities are fed into input layer neurons, and then

distributed to all the neurons in the hidden layer without any

computation. Each neuron in the hidden layer or output layer sums

the weighted inputs received from the preceding layer to obtain its

net input. Weights are adjustable parameters that determine the

strength of the input signal. The output of a neuron in these layers

(i.e., hidden or output) is computed by applying a transfer or acti-

vation function (usually non-linear) to its net input;

yj ¼ f netj

� �
¼ f

X
j

wijxi þ bj

 !
(5)

where yj is the output of the jth neuron, f the transfer function, netj

the net input to the jth neuron, wij the connection weight from the

ith neuron in the previous layer to the jth neuron in the current

layer, xi the input from the ith neuron to the jth neuron, and bi is the

bias [33].

Data normalization was performed before the training. Data were

scaled to match the range of the hidden layer’s transfer function.

The ranges were 0–1 for the sigmoid transfer function and�1 to 1 for

the hyperbolic tangent transfer function. The network output was

denormalized to match the units of the desired response data.

Figure 1. Map of Istanbul.
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The learning of the network is achieved through the training

process. Connection weights are updated using either supervised

or unsupervised learning during the training. In supervised learn-

ing, input and output data (i.e., training set) are presented to the

network. Backpropagation algorithm, the most commonly used

supervised learning for MLPs, was applied to train the networks

in this study. First step in backpropagation algorithm is to process

the input in the forward direction to determine the output value of

each neuron in the output layer. Network output for each neuron is

then compared with the desired or target output, and the following

error is calculated [33];

E ¼
X
k

X
n

ðdnk�ynkÞ2 (6)

where k is an index over the system output, n is an index over the

input patterns, d is a component of the desired or target output

vector D, and y is a component of the network output vector Y. In the

second step of backpropagation, this error is propagated in the

backward direction from output layer to input layer to update

the weights in each consecutive layer.

To speed up the learning and to avoid getting caught in local

minima in the search for the optimal values of weights, we have used

an adaptive search procedure Delta Bar Delta [33]. In this procedure,

learning rates are adjusted continuously (i.e., learning rates are high

when the learning curve (i.e., graph of output error versus iteration)

is flat, and they are low when the learning curve oscillates) during

training. If hij is the learning rate for the weight wij, the update to

each step size is

Dhij nþ 1ð Þ ¼
k if Sij n�1ð ÞDij nð Þ > 0

�bhijðnÞ if Sij n�1ð ÞDij nð Þ < 0
0 if otherwise

8<
: (7)

where Sij is the average of previous gradients and Dij is the

current gradient. When the average of previous gradients and

the current gradient have same sign, their product will be positive,

which refers to slow convergence. Therefore, the step size

increased arithmetically at each iteration by a constant. When

the weight is oscillating (i.e., second case), the step size is decreased

proportionally to its current value.Training can be performed

either in batch or online modes. Weights are updated for each

input sample in online training. However, in batch training,

weight update occurs only after the presentation of the entire

training set.

If the network is overtrained, it memorizes the training patterns,

and thus poor generalization is obtained when the network is tested

with unseen data. There are two stop criteria commonly used for

ending the training process: stopping based on training-set error and

stop criterion based on generalization (also known as early stopping

or stopping with cross-validation) [33]. We have applied the stopping

with cross-validation. For the best generalization of the network,

training was stopped at the point of the smallest error in cross-

validation set.

Once the neural network is trained, connection weights are fixed.

The performance of the network is evaluated with the data (i.e.,

testing set) not used in training or cross-validation sets. The data

from the years 2003–2004 were used in training (�80%), and 2005

were used in cross-validation (�5%) and testing (�15%). However,

depending on the size of the available data set, different percentages

of the total data can also be used in training, cross-validation, and

testing.

The following network parameters were investigated and opti-

mized during the development of the best network for the predic-

tion of ozone levels in Istanbul: number of hidden layers (one or two

hidden layers), number of neurons in each hidden layer (varied from

5 to 35 in each hidden layer), possible transfer functions (sigmoid or

hyperbolic tangent), and training mode (batch or online).

3 Results and discussion

For the time period investigated in this study, daily maximum 1-h

ozone concentrations occurred in the mid-afternoon (2–4 PM local

standard time) while the lowest ozone levels were observed at

about midnight or in the early morning in Istanbul. However,Figure 2. Feedforward, MLP type ANNs.

Table 1. Input and output parameters used in the modeling study.

Parameter Timing Unit

Input
SO2 Daily averagea) mg/m3

PM10 Daily averagea) mg/m3

CO Daily averagea) mg/m3

NO Daily averagea) mg/m3

NO2 Daily averagea) mg/m3

CH4 Daily averagea) mg/m3

Non-methane hydrocarbons (nMHCs) Daily averagea) mg/m3

O3,ave Daily averagea) mg/m3

O3,max Daily maximum mg/m3

Maximum temperature (Tmax) Daily maximum 8C
Average temperature (Tave) Daily averagea) 8C
Barometric pressure (BP) Daily averagea) mb
Relative humidity (RH) Daily averagea) %
Daily precipitation (DP) Total daily mm
Sunshine time (ST) Total daily h
Solar radiation (SR) Daily averagea) cal/cm2

Wind speed (WS) Daily averagea) m/s
Wind direction (WD) Daily averagea) N8

Output
Next day’s maximum ozone Daily maximum mg/m3

concentration

a) Average of the data measured at 07:00, 14:00, and 21:00 local
standard time.
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there were some cases in which ozone concentrations were high in

the early morning hours. Similar behavior was also reported in

previous studies [34]. Im et al. [34] have suggested that decreasing

inversion heights in the early hours of the day leads to suppression

of pollutants close to surface, and thus causing an increase in

ozone concentrations. Summer months (June to August) had

higher ozone levels. The daily maximum 1-h ozone concentrations

were in the range of 18–163mg/m3 for June, 27–168mg/m3 for July,

and 44–159mg/m3 for August. The information and alert

thresholds for 1-h average ground-level ozone in National

Ambient Air Quality Standards of Turkey are 180 and 240mg/m3,

respectively [35]. The target value for the daily maximum

8-h average ozone concentration to be achieved by 2022 is

120mg/m3 (not to be exceeded more than 25 days per calendar

year; averaged over 3 years).

The previous studies have shown that the performance of ANNs

could be improved by including persistence information as an

input [14, 20, 36]. Therefore, current day’s ozone concentrations

(daily average and maximum 1-h concentrations) were used

as input parameters. Initially, the total number of inputs was

eighteen (i.e., nine pollutant parameters and nine meteorological

parameters).

The performances of the models were evaluated with the

following statistical indicators: Pearson product moment corre-

lation coefficient (R), mean absolute error (MAE), root mean

squared error (RMSE), and index of agreement or Willmott’s

Index (d2):

R ¼

X
i

di�d
� �

yi�yð Þ

NffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

di�d
� �2

N

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

yi�yð Þ2

N

vuut
(8)

MAE ¼ 1

N

X
i

di�yij j (9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

di�yið Þ2

s
(10)

d2 ¼ 1�

P
i

yi�dij j2

P
i

yi�d
�� ��þ di�d

�� ��� �2 (11)

Hundreds of networks were tested to obtain the best prediction

performance. The optimum MLP architecture was found to be

1-hidden layer with 24 neurons (18-24-1). The transfer function

and training mode were hyperbolic tangent and batch, respectively.
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Figure 3.Scatter plots for the MLPmodel with 18
inputs (a) training (b) testing.
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The performance of the network did not improve considerably with

increases in number of hidden layer and number of neuron in

each hidden layer. Since the larger networks require more free

parameters to solve a given problem and may overfit the data, a

network with low complexity was preferred.

Scatter plots of daily maximum actual ozone concentrations

against actual concentrations are given in Fig. 3 for the

training and testing datasets. The actual and predicted concen-

trations were in good agreement. The deviations from the

diagonal were random and not systematic. The correlation

coefficient, MAE, RMSE, and d2 for the training data were

0.90, 8.14mg/m3, 11.07mg/m3, and 0.95, respectively (Tab. 2). When

MLP model was tested with unseen data, the correlation coefficient

and d2 were 0.90 and 0.95, respectively, which indicates that

the model did not over-train or memorize the data patterns. MAE

and RMSE for the testing data were 8.78 and 11.15mg/m3,

respectively (Tab. 2). A good generalization performance was

obtained since there were not significant differences between

Table 2. Performance summary of the MLP model with 18 inputs.

Performance indicator Training Testing

MAE (mg/m3) 8.14 8.78
RMSE (mg/m3) 11.07 11.15
R 0.90 0.90
d2 0.95 0.95

Table 3. Performances of the MLP models having different time lags of O3,max as inputs.

Inputs Optimum MLP
architecturea)

MAE
(mg/m3)

RMSE
(mg/m3)

R d2

18 Inputs (including O3,max(t� 1)) 18-24-1 8.78 11.15 0.90 0.95
19 Inputs (including O3,max(t� 1) and O3,max(t� 2)) 19-26-1 9.38 11.53 0.89 0.94
20 Inputs (including O3,max(t� 1), O3,max(t� 2), and O3,max(t� 3)) 20-25-1 11.52 13.97 0.90 0.91

a) Transfer function: hyperbolic tangent.
Training mode: batch.
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Figure 4.Scatter plots for theMLRmodel with 18
inputs (a) training (b) testing.
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the values of performance indicators for the training and testing

sets.

Ozcan et al. [27] have reported the values of MAE and RMSE as 6.32

and 8.70mg/m3, respectively for the prediction of next-day daily

mean ozone concentrations in Istanbul using cellular neural net-

work approach. However, their correlation coefficient (R¼ 0.57) was

lower than the one we obtained in this study. Dutot et al. [20] have

utilized MLP network combined to a neural classifier for the fore-

casting of next-day maximum hourly-mean ozone concentrations.

The network inputs were the model output of the weather predic-

tions and persistence variables. They obtained higher MAE and RMSE

(MAE¼RMSE¼ 15mg/m3). The index of agreement was 0.92. In a

similar study, Salazar-Ruiz et al. [37] have used meteorological data,

precursor concentrations, and persistence information as inputs to

predict next-day maximum tropospheric ozone levels. R, d2, and

RMSE for the MLP model developed were 0.74, 0.85, and 9.43 ppb

(1 ppb¼ 1.96mg/m3 at 258C), respectively.

Although persistence information in the form of 1-day time lag

was used as an input in the MLP model, we have calculated the

autocorrelation coefficients for the daily maximum ozone concen-

tration (O3, max) up to time lag of 3 days using:

r ¼
P

xt�xð Þ xt�k�xð ÞP
xt�xð Þ2 (12)

where xt and xt–k are the paired values, and k is the lag. The auto-

correlation coefficients for O3,max were 0.73, 0.62, and 0.51 for the lag

of 1, 2, and 3 days, respectively. Therefore, we have decided to check

Table 4. Performance summary of the MLR model with 18 inputs.

Performance indicator Training Testing

MAE (mg/m3) 8.12 8.65
RMSE (mg/m3) 10.89 11.35
R 0.90 0.89
d2 0.95 0.94
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Figure 5. Scatter plots for the MNLR model with
18 inputs (a) training (b) testing.

Table 5. Performance summary of the MNLR model with 18 inputs.

Performance indicator Training Testing

MAE (mg/m3) 8.11 8.09
RMSE (mg/m3) 11.94 11.86
R 0.89 0.88
d2 0.94 0.92
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the performances of MLP models containing additional 2- and 3-day

lags as input. Results have indicated that there were not any

improvements in the performances of the MLP models when this

additional input was used (Tab. 3). Consequently, only 1-day lag

information was utilized in this study.

We compared the performance of the MLP model with MLR and

MNLR models. In regression modeling, a new test dataset was formed

by the addition of cross-validation data to the test data.

The coefficients of the MLR model were obtained by the ordinary

least squares procedure (SPSS v.7.0) without stepwise regression. The

model equation was:

½O3� ¼ �109:941 þ 0:1166½BP� þ 0:00064½CH4��0:00086½CO�
þ 0:068½DP� þ 0:0049½nMHC� þ 0:0026½NO� �0:0207½NO2�
þ 0:724½O3;ave� þ 0:438½O3;max� þ 0:046½PM10� þ 0:007½RH�
� 0:0069½SR� þ 0:0258½SO2� �0:2203½ST� þ 0:545½Tave�
� 0:2366½Tmax��0:01098½WD��1:474½WS�

(13)

Scatter plots of actual ozone concentrations against actual con-

centrations are given in Fig. 4 for the training and testing data sets,

respectively. The deviations from the diagonal were not systematic.

The performance of the MLR model was also good for predicting

next-day maximum ozone concentrations. Table 4 summarizes the

performance indicators for the MLR model. R, MAE, RMSE, and d2

for the testing data were 0.89, 8.65mg/m3, 11.35mg/m3, and 0.94,

respectively. Tecer et al. [25] have also investigated ozone forecasting

in Istanbul using MLR model, and obtained an R2 (coefficient of

determination) [38] value of 0.715.

Table 6. Sensitivity factors for the input parameters.

Input Sensitivity
factor

BP 0.12
CH4 0.13
CO 0.14
WS 0.15
nMHCs 0.25
NO2 0.29
SO2 0.32
RH 0.50
DP 0.60
SR 0.86
WD 0.94
ST 1.03
Tmax 1.08
PM10 1.37
Tave 1.43
NO 1.48
O3,ave 4.02
O3,max 5.78
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Figure 6. Scatter plots for the MLP model with
nine inputs (a) training (b) testing.
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A modified form of MNLR equation of Chattopadhyay and

Chattopadhyay [39] was also used to predict ozone concentrations:

lnðyÞ ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ . . . (14)

The regression parameters were estimated using the Levenberg–

Marquardt method. The model equation was:

ln½O3� ¼ 0:178 þ 0:0027½BP� þ 0:000085½CH4��0:000064½CO�
þ 0:0036½DP� þ 0:000081½nMHC��0:00049 ½NO��0:0013½NO2�
þ 0:0091½O3;ave� þ 0:008½O3;max� þ 0:0018½PM10��0:00046½RH�
þ 0:0032½SR��0:0012 ½SO2��0:0021½ST� þ 0:0045½Tave�
þ 0:0031½Tmax� �0:00026½WD��0:0037½WS�

(15)

For the MNLR model, scatter plots of actual ozone concentrations

against actual concentrations are given in Fig. 5 for the training and

testing datasets. R, MAE, RMSE, and d2 for the testing data were 0.88,

8.09mg/m3, 11.86mg/m3, and 0.92, respectively (Tab. 5). The values of

R and d2 were slightly lower compared to those obtained with MLP

and MLR models. Elkamel et al. [40] have reported the average,

maximum, and minimum errors for the testing set as 20.04,

188.6, and 0.229%, respectively for the forecasting of ozone levels

in Kuwait using a similar MNLR model.

In order to understand or interpret the results obtained from MLP

models, sensitivity and pruning analyses are usually carried out.

There are different methods used for sensitivity analysis [17]. In the

delta error method, the changes in training error that would be

obtained if an input were removed from the model are evaluated.

However, in the average absolute gradient method, an input is

perturbed, and then the model outputs are monitored. In this study,

to find the effects of each input parameter on next day’s maximum

ozone concentration, the network was first trained and the

connection weights were fixed. After that, one by one, each input

parameter was randomly perturbed around its mean value while

the other inputs were kept at their mean values, and then the

change in the output was measured. The input perturbation

was done by adding a random value of a known variance to each

Table 7. Performance summary of the MLP model with nine inputs.

Performance indicator Training Testing

MAE (mg/m3) 8.45 9.34
RMSE (mg/m3) 11.46 11.64
R 0.90 0.90
d2 0.95 0.95

Figure 7. Scatter plots for the MLR model with
nine inputs (a) training (b) testing.
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sample and computing the output. The sensitivity factor for input k

is given as:

Sk ¼

PP
p¼1

Po
i¼1

yip�yip

� �2

s2
k

(16)

where yip is the ith output obtained with the fixed weights for the

pth pattern, o the number of network outputs, P the number of

patterns, and s2
k is the variance of the input perturbation [33].

The sensitivity factors are given in Tab. 6. The most important

input parameters were found to be persistence information (current

day’s maximum and average ozone concentrations), NO concen-

tration, average temperature, PM10, maximum temperature, sun-

shine time, wind direction, and solar radiation. The previous

studies have also indicated the significance of persistence infor-

mation in ozone prediction [20, 36]. NOx (NO and NO2) species are

the ozone precursors. Since the formation of ozone is a photochem-

ical reaction, reaction rate is influenced by the temperature and the

intensity of solar radiation. The higher sensitivity factor obtained for

the wind direction indicates the importance of transport phenom-

ena for ozone levels in Istanbul. PM10 concentrations affect the solar

radiation intensity. The sensitivity factors for hydrocarbon species

(i.e., nMHCs and CH4) were relatively low.

The input parameters with smaller sensitivity factors (i.e., DP, RH,

SO2, NO2, nMHCs, WS, CO, CH4, and BP) were removed in Pruning

tests, and the simplified networks with fewer connection weights

were evaluated again for their prediction performances. When only

nine input parameters were used for the forecasting of daily maxi-

mum ozone concentrations, the optimum MLP architecture was

found to be 1-hidden layer with 24 neurons (9-24-1). The transfer

function was hyperbolic tangent. The better prediction perfor-

mances were obtained with batch training mode.

Scatter plots of actual and predicted maximum ozone concen-

trations are shown in Fig. 6 for the training and testing sets. The

predictions of the simplified network were also consistent with

both training and testing data. R, MAE, RMSE, and d2 were 0.90,

8.45mg/m3, 11.46mg/m3, and 0.95 for the training data, and 0.90,

9.34mg/m3, 11.64mg/m3, and 0.95 for the testing data, respectively

(Tab. 7). The removal of input parameters with lower sensitivity

factors was supported by not having significant differences in

performance indicators for 18- and 9-input networks.

We have also checked the performance of MLR and MNLR models

with nine inputs. Scatter plots of actual and predicted daily maxi-

mum ozone concentrations for the training and testing sets are

shown in Fig. 7 for the MLR model and in Fig. 8 for the MNLR model.

In general, MLR and MNLR models with nine inputs performed as

good as the models with 18 inputs. R, MAE, RMSE, and d2 for the
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Figure 8. Scatter plots for the MNLR model with
nine inputs (a) training (b) testing.
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testing set were 0.89, 8.66mg/m3, 11.49mg/m3, and 0.94 for the MLR

model (Tab. 8), and 0.88, 8.15mg/m3, 11.52mg/m3, and 0.91 for the

MNLR model (Tab. 9), respectively.

4 Conclusions

MLP ANN and regression (i.e., MLR and MNLR) modeling approaches

were successfully applied to predict next day’s maximum 1-h average

ozone concentrations in Istanbul. The most significant input

parameters were found by the sensitivity analysis. A simplified

MLP model was obtained by removing the input parameters with

lower sensitivity factors in Pruning tests. It has been shown that only

nine inputs (current day’s maximum and average ozone concen-

trations, NO concentrations, average temperature, PM10, maximum

temperature, sunshine time, wind direction, and solar radiation)

were enough to predict next day’s maximum ozone concentrations

without any significant performance loss. There were also good

agreements between the actual data and regression model results

with nine inputs. Although slightly lower values of R and d2 were

obtained for MNLR models, the performances of MLP and regression

models with both 18 and 9 inputs were comparable for predicting

the ozone concentrations in Istanbul based on the four statistical

indicators considered.
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