
Boolean Differentiation for Formalizing
Myers' Cause-Effect Graph Testing Technique

Tolga Ayav and Fevzi Belli
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

{tolgaayav, fevzibelli}@iyte.edu.tr

Abstract—Cause-Effect Graph Testing is a popular technique
used for almost four decades. Based on Boolean algebra, this
technique assists deriving test cases from a given specification
informally written in a natural language. The present paper
suggests Boolean differentiation for formalizing this technique.
The new approach is applied to an example, borrowed from G.
Myers, for demonstrating and analyzing its features. Evaluations
show that the new approach outperforms Myers’ approach in
terms of the detected faults per test cases.

Keywords— Cause-Effect Graph; Software Testing;
Formalization; Boolean Difference; MCDC analysis;

I. INTRODUCTION AND RELATED WORK
Testing is supposed to reveal weaknesses and flaws in a

product. Critical parts in software that can cause such
impairments are twofold. The calculation parts of a program
that deliver the expected results, i.e., data flow on the one side,
and selections that change the linearity of the program, i.e.,
control flow on the other side.

This paper is about testing control flow that represents the
logic relations of data to enable decisions leading to different
paths of calculation. Here, Boolean algebra delivers useful
notions and operational means. Well-known techniques of this
category include meaningful coverage metrics like
Condition/Decision Coverage [6][7]. Other software testing
techniques using Boolean algebra and related methods are
Meaningful Impact strategy (MI), Branch Operator Strategy
(BOR), BOR+MI and Multiple Unique True Point/Multiple
Near False Point (MUMCUT) [6].

Requirements are in practice commonly informally
specified. A popular test technique, introduced by G.J. Myers
in the seventies of the last century, visualizes logic relations
between causes and their effects in specifications by Boolean
algebra-based operations and symbols. Myers enriches this
visual model, called cause-effect graph (CEG), by constraints
given by user requirements and then uses for deriving test
cases.

CEG technique is straight-ahead and easy to understand,
which explains its popularity. The difficult part is the
production of CEG that needs considerably effort and practical
experience. The analysis of the CEG for producing test is

explained rather intuitional than algorithmically, although
some work tried to form it more precisely [3]. This situation
motivated the authors of this present paper to formalize CEG
technique. Very briefly explained, the formalization suggested
by this work makes use of Boolean differentiation method [8]
for precisely defining logic relations and efficiently deriving
test cases from CEG.

The approach introduced in this paper has two promising
features. First, it is algorithmic, and thus enables automatizing
a great part of the Myers’ test technique. Second, as it is based
on sound mathematics, it avoids the error-proneness and
redundancy that often encounter manual, intuitional work. To
demonstrate these both features, an example is borrowed from
Myers’ original work [4]. The analysis of the results of the
experiments carried out with both test cases shows that the
suggested formalization has also considerably good potential
for cost saving by considerably decreasing the number of test
cases.

The next section summarizes the CEG testing technique
before Section 3 formally introduces Boolean algebraic notions
used in the paper, including Boolean differentiation. Based on
these notions, test case generation is explained also in this
Section 3. Section 4 applies the approach introduced in this
paper to a comprehensive example taken from Myers’ original
work. The comparison shows the merits of the formalization
effort. Section 5 self-critically discusses the new approach and
concludes the paper by giving also hints for the needs of future
research.

II. CAUSE-EFFECT GRAPHS
Cause-Effect Graphs (CEG) can be considered as a formal

language into which an informal specification written in a
natural language is translated. Elements of CEG represent logic
expressions in a visual notation as shown in Fig. 1.

A cause is binary-valued atomic sentence in the
specification and represents a state or an event. An effect is also
a binary-valued atomic sentence representing an output state or
action. For each feature in the software specifications, we
isolate causes that influence this feature’s behaviors. The
causes and effects are then connected with Boolean operators
and so a graphical representation is derived. For a more

2015 IEEE International Conference on Software Quality, Reliability and Security Companion

/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.31

138

2015 IEEE International Conference on Software Quality, Reliability and Security Companion

/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.31

138

2015 IEEE International Conference on Software Quality, Reliability and Security Companion

/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.31

138

2015 IEEE International Conference on Software Quality, Reliability and Security - Companion

978-1-4673-9598-4/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.31

138

detailed description and examples of cause-effect graphs, refer
to Myers’ book [4].

Fig. 1. Basic operations of cause-effect graphs.

The first step of CEG testing identifies causes and effects in
the requirements, and lists all the causes, effects and
constraints; connects those leading to the graph, considering
the relationships. Analysis of CEG enables to generate the test
cases. The algorithm Myers proposed [3] considers the
structure of the graph to generate the test cases.

Apart from testing, CEG helps with identifying the
inconsistencies in the requirements in the first place.

The graph can be augmented with constraints that describe
the combinations of causes and effects that are impossible due
to syntactic or environmental constraints. Finally, the graph is
converted into a decision table where each column represents
an input combination, i.e., a test case. The conversion of the
graph into the decision table is the key. At this point, several
heuristics can be applied to avoid combinatorial explosion of
tests.

In most cases, certain combination of causes can be
impossible due to syntactic or environmental considerations.
Fig. 2 shows the possible constraints.

Fig. 2. Constraints on causes and effects.

The E constraint (Exclusive-OR) means that, at most, one
of a and b can be true. The I constraint (Inclusive-OR) states
that at least one of a and b must be true. The O constraint
states that one and only one of a and b must be 1 (True). The R
constraint states that for a to be 1, b must be 1, in other words,
it is impossible for a to be 1 and b to be 0 (False). The M

constraint is used to describe the relations among effects. It
states that if effect e is 1, effect f is forced to 0.

III. TEST CASE GENERATION
Myers' test derivation method is shown to have some

drawbacks by several studies [2] [3]. This problem can be
overcome by exploiting the fault-based testing techniques for
Boolean expressions [6], such as Meaningful Impact strategy
(MI), Branch Operator strategy (BOR), and other strategies
such as BOR+MI, Multiple Unique True Point/Multiple Near
False Point (MUMCUT) and Modified Condition/Decision
Coverage (MCDC). For example, Paradkar et. al. [3] propose
the CEG-BOR strategy that integrates BOR strategy with CEG
and analyzes the system comprehensively. This paper proposes
a new methodology based on Masking MCDC criteria, which
contributes to the derivation of test cases from a given CEG.

The approach proposed in this paper starts with extracting
the Boolean expressions from the CEG. In particular, there
exists one expression for each effect in the graph. Then MCDC
analysis is performed to find the tests and finally the test suite
will be optimized. Note that MCDC analysis can be defined
using Boolean differentiation, which forms the mathematical
basis of the methodology.

A. Boolean Algebra
In this work, Boolean variables and operations are noted

and defined as follows:

 }.,{ where,||1|0:: 21 +⋅=ΘΘ′= xxxx

Operators, x′ , “ ⋅ ” and “ + ” denote negation, AND and
OR respectively. Other operations can be derived from these
three essential ones. For example, XOR operation can be
defined such that .yxyxyx ′+′=⊕ We define a Boolean

function BBn →:ε where }1,0{=B .

B. Boolean Differentiation

Let []Tnccc ,,, 21 K=c denote the vector of n causes.

The differences (or derivatives) of a Boolean function ()cε

with respect to c∈ic is defined as [8]:

() () ()10 =c=c=
c ii

i

εεε ⊕
∂
∂ c (1)

For instance, for a given () 32 c+c=y =cε , we can compute

'c=c=cy 332 1/ ⊕∂∂ . This result provides a useful insight

into how 3c sensitizes the output. If the derivative is 1, the

output is sensible to 2c . If 03 =c then the output is sensible

to 2c and vice versa. When computing Boolean derivatives,
the chain rules given with Equation (2) and (3) are quite useful
since we can write one Boolean function corresponding to each
effect and also to intermediate nodes in the graph as can be

a

b
E

a

b
I

a

b
O

a

b
R

e

f
M

e c e c e c

e
c

c

AND

e

c

c OR

Identity NOT

139139139139

seen in the example of the next section. The chain rules may
facilitate the computation of the derivatives of large graphs [9].

iiiii c
g

c
f

c
fg

c
gf=

c
ugf=u

∂
∂

∂
∂⊕

∂
∂⊕

∂
∂

∂
∂

⇒⋅ (2)

iiiii c
g

c
f

c
fg

c
gf=

c
ugf=u

∂
∂

∂
∂⊕

∂
∂′⊕

∂
∂′

∂
∂

⇒+ (3)

The following rules are also very useful in calculations:

ii c

f
c
f

∂
′∂=

∂
∂

 (4)

bababaaaa ′=⊕′=⊕=⊕ ,1,0 (5)

C. Masking Modified Condition/Decision Coverage (MCDC)
Analysis
MCDC states that “Every point of entry and exit in the

program has taken on all possible outcomes at least once, and
each condition has been shown to independently affect the
decision’s outcome”. Masking MCDC is a form of MCDC that
allows all possible forms of masking to be used to show a
condition’s independence. For all forms of MCDC together
with their comparisons and detailed analyses, please refer to
[7]. Among various forms, we use masking MCDC since it has
been proved that it produces less test cases while the fault
coverage remains high. MCDC is suitable to be defined
formally with mathematics as shown next.

The Boolean derivative of effect ()cε with respect to ic is

False if toggling only ic does not toggle the effect, and is True

if toggling ic does toggle the effect. Hence the test pairs can be
found such that:

i. Cause i must be different in both tests (ii yx ′=).

ii. The effect must be different in both tests
()()(yx ff ′=).

iii. For test x , cause i must change the effect

(1)(=
∂
∂ x

ix
f

).

iv. For test y , cause i must change the effect

(1)(=
∂
∂ y

iy
f

).

The test pairs are also known as independence pairs. An
independence pair is such a combination of truth vectors that
the related cause toggles in two vectors while all other
conditions are fixed or masked. For example, assume that an

effect has the expression of () 321 ccc=cε . To find an

independence pair for 1c , both 2c and 3c must be masked, i.e.

they must be both True. In this case, () 1c=cε , meaning that

the effect will directly follow 1c .

D. Adding Constraints into Boolean Expressions
The graph may contain various constraints as presented in

the previous section. These constraints must be incorporated
into Boolean expressions before computing the derivatives. We
demonstrate how the E constraint seen in Fig. 2 can be
incorporated.

Fig. 3. Exclusive-OR Constraint.

The E constraint seen in Fig. 3 states that it must always be
true that, at most, one of a, b and c can be 1. To identify this
constraint, the following expression can be written:

cbcabacbaE ′′+′′+′′=),,(γ (6)

If we augment the Boolean expression with this constraint,
the modified expression becomes:

)()(
),,(),,(

),,(
*

cbacbcaba
cbacbae
cbacbae

E

++′′+′′+′′=
=

++==
εγ

ε
 (7)

Applying the chain rule given in (2), the derivative of e
with respect to cause a would be as follows:

.

*

cbcbcb
aaaaa

e E
E

E

′′+′+′=
∂
∂

∂
∂⊕

∂
∂⊕

∂
∂=

∂
∂ εγεγγε

 (8)

The analysis and formalization of the other constraints are
carried out similarly. To keep the paper concise and easy to
read the analysis, they are not included in the paper.

IV. EXAMPLE – COMPARISON BY EXPERIMENTS
A well-known example, the “change subcommand” is

borrowed from Myers’ book. Refer to [3] for a detailed
explanation of this example. The cause-effect graph of change
is shown in Fig. 4. The graph has nine causes (921 ,,, ccc L)

and four effects (4321 ,,, eeee). The inner nodes are named as

321 ,, iii . To apply our methodology, Boolean expression

e

c

a

E b

140140140140

equivalent to the graph must be determined. For example, the
following Boolean expressions for effect 1e can be written:

()).)((
,

,,,

87654392111

931

2121387625431

ccccccccce
cie

iicciccciccci

++++==
=

=++=++=

cε

.))((98765432

2129
1

3
9

1

1

cccccccc

iicc=
c
ic=

c
e

++++=
∂
∂

∂
∂

If the exclusive-OR constraints),,(543 cccEγ and

),,(876 cccEγ are added to the expression 1e , the derivative of

it with respect to 1c becomes:

.))((

))((

98765432

878676545343
1

*
1

cccccccc

cccccccccccc=
c
e

++++

′′+′′+′′′′+′′+′′
∂
∂

The set of possible test vectors is the solution to the
following problem:

1
1

*
1 =

∂
∂

c
e

 (9)

A simple calculation finds out that there exist nine different
solutions, i.e. nine test pairs satisfying the above problem.
Table I shows the entire solution set. For cause 2, we would
have again nine test pairs, for cause 3, 4, 5, 6, 7 and 8 we
would find three pairs for each and for cause 9, we would have
nine test pairs. Therefore, the total number of possible test pairs
is 45, i.e. leading to 90 tests. Please note that the maximum
number of tests is 51229 = . However, many test vectors are
supposed to be equivalent in these 90 test vectors. Since
MCDC proposes to find one test pair for each cause, one must
initially have 18 tests. We should select the smallest set out of
90 tests so that the total number of tests will be minimal.

Once all test pairs are computed for nine causes, the
optimization minimizes the number of test cases. For example,
among the set of possible test pairs given in Table I, the
optimization decides to choose the first one, which constitutes
the first two tests shown in Table II.

Fig. 4. Cause-effect graph of the change subcommand.

TABLE I. ALL POSSIBLE TEST PAIRS FORTESTING CAUSE 1

 Causes Effects

 1 2 3 4 5 6 7 8 9 1 2 3 4

1
0 1 1 0 0 1 0 0 1 0 0 0 1

1 1 1 0 0 1 0 0 1 1 1 0 0

2

0 1 0 1 0 1 0 0 1 0 0 0 1

1 1 0 1 0 1 0 0 1 1 1 0 0

3

0 1 0 0 1 1 0 0 1 0 0 0 1

1 1 0 0 1 1 0 0 1 1 1 0 0

4

0 1 1 0 0 0 1 0 1 0 0 0 1

1 1 1 0 0 0 1 0 1 1 1 0 0

5

0 1 0 1 0 0 1 0 1 0 0 0 1

1 1 0 1 0 0 1 0 1 1 1 0 0

6

0 1 0 0 1 0 1 0 1 0 0 0 1

1 1 0 0 1 0 1 0 1 1 1 0 0

e

e

1c

2c

3c

4c

5c

6c

7c

8c

9c

1e

2e

3e

4e

1i

2i

3i

E

E

The CHANGE subcommand is used to modify a character string in
the current line of the file being edited. Syntax: C /str1/str2.
Cause1: The first nonblank character following “C”. Cause2: The
command contains exactly two “/” characters. Cause3: Str1 has length
one, Cause2: Str1 has length 30, Cause3: Str1 has length 2-29.
Cause4: Str2 has length zero, Cause5: Str2 has length 20, Cause6:
Str2 has length 1-29. Effect1: The changed line is typed. Effect2: The
first occurence of str1 is replaced by str2. Effect3: “Not Found”
printed. Effect4: “Invalid Syntax” printed.

141141141141

7

0 1 1 0 0 0 0 1 1 0 0 0 1

1 1 1 0 0 0 0 1 1 1 1 0 0

8

0 1 0 1 0 0 0 1 1 0 0 0 1

1 1 0 1 0 0 0 1 1 1 1 0 0

9

0 1 0 0 1 0 0 1 1 0 0 0 1

1 1 0 0 1 0 0 1 1 1 1 0 0

TABLE II. TEST SUITE FOR THE CHANGE SUBCOMMAND EXAMPLE

 Causes Effects

 1 2 3 4 5 6 7 8 9 1 2 3 4
1 0 1 1 0 0 1 0 0 1 0 0 0 1

2 1 1 1 0 0 1 0 0 1 1 1 0 0

3 1 0 1 0 0 1 0 0 1 0 0 0 0

4 1 1 0 0 0 1 0 0 1 0 0 0 1

5 1 1 0 1 0 1 0 0 1 1 1 0 0

6 1 1 0 0 1 1 0 0 1 1 1 0 0

7 1 1 1 0 0 0 0 0 1 0 0 0 1

8 1 1 1 0 0 0 1 0 1 1 1 0 0

9 1 1 1 0 0 0 0 1 1 1 1 0 0

10 1 1 1 0 0 1 0 0 0 0 0 1 0

A. Comparison of Myers’ Technique with the New Approach
Myers constructed 22 tests for the change subcommand in

his book [3], which contains the complete table of these tests.
The 10 test cases generated by the new approach (see Table II)
are sufficient to test the system according to Masking Modified
Cause/Effect Criteria.

It is desirable to keep the number of tests minimal while
achieving higher fault coverage. The effectiveness of the test
suites can be compared by means of two metrics, the number of
tests and the fault detection capability of them. Two metrics
are contradictory. The number of the tests depends on the test
case generation method and the fault coverage highly depends
on the fault assumption.

In the example above, the test suite derived using the
proposed approach outperforms Myers’ technique in terms of
the number of tests. However, their fault coverage should be
compared as well. Fault coverage effectiveness is generally
determined by mutation analysis. A mutant can be created by
slightly changing the original software, thus a mutant
represents a fault prototype. A test case kills a mutant if it
identifies this mutant.

There are various fault injection techniques to produce
mutants as fault prototypes known from the literature [6]:

• Operator Reference Fault (ORF): A binary logic
operator ‘.’ is replaced by ‘+’ or vice versa.

• Variable Negation Fault (VNF): An atomic Boolean
literal is replaced by its negation.

• Expression Negation Fault (ENF): A sub-expression in
the statement is replaced by its negation.

• Variable Reference Fault (VRF): A condition is
replaced by another input that exists in the statement.

• Stuck-at-0 (S-a-0): A condition is replaced by 0.

• Stuck-at-1 (S-a-1): A condition is replaced by 1.

 The following examples demonstrate how these faults are
applied to the expressions derived from the graph. Below,
one sample is given for each fault class:

531
0-a-s

5431

31
1-a-s

931

21293
VRF

21213

931
ENF

931

8762
VNF

8762

5431
ORF

5431

cciccci

iecie

iicciiicci

ciecie

ccciccci

ccciccci

+=⎯⎯ →⎯++=

=⎯⎯ →⎯=

=⎯⎯ →⎯=

′=⎯⎯ →⎯=

+′+=⎯⎯ →⎯++=

=⎯⎯ →⎯++=

B. Setup for Evaluations
The above mentioned faults are systematically injected into

the Boolean expression to create the mutants. The fault
coverage performances of two test suites, produced by the new
approach and Myers’ approach, are compared against different
fault classes. For VNF+ENF, there exist twelve nodes until the
effects, hence the number of all possible mutants
is 40951212 =− . In the CEG, there seems six Boolean
operators, thus the maximum number of ORF faults is

63126 =− . Stuck-at faults are applied to the
aforementioned twelve nodes, so in these fault classes there can
be 4095 mutants. In VRF class, two causes are exchanged in
each mutant. Since there are nine causes, the total number of
mutants can be 36289 =÷× . When ORF and VRF are
combined, 23043664 =× mutants are created. Finally, for
the combination of VRF, VNF and ENF, the number of
mutants is 147456364096 =× .

C. Results of the Evaluations

Table III shows the evaluation results. The fault coverage
percentages of the two approaches are exactly the same, but the
number of test cases generated by the new approach is less than
half of the number of the test cases generated by Myers’
technique. Hence, we can conclude that our test suite
considerably outperforms the Myers’ suite in terms of the
mutants killed (or faults detected) per test cases. Note that fault

142142142142

coverage in VRF class is lower than other classes since VRF
involves arbitrary exchange of causes, which is hard to detect.

TABLE III. EVALUATIONS FOR FAULT COVERAGE OF TWO METHODS

Fault

Classes

of

Mutants

CEG-MCDC

Myers

Fault
Coverage
(Percent.)

of
Detected

Faults per
tests

Fault
Coverage
(Percent.)

of
Detected

Faults per
tests

VNF+ENF 4095 100 409.5 100 186.13

ORF 63 100 6.3 100 2.86

S-a-0 4095 100 409.5 100 186.13

S-a-1 4095 99.9969 409.4 99.9969 186.09

VRF 36 80.5556 2.9 80.5556 1.32

ORF+VRF 2304 99.6962 229.7 99.6962 104.41

VRF+VNF
+ENF

147456 80.5556 118878.4 80.5556 5399.27

V. CONCLUSION, THREATS TO VALIDITY
This study proposes a methodology relying on MCDC

analysis to derive test cases from CEGs. It has two benefits: 1)
Masking MCDC produces less test cases with a good fault
coverage compared to similar approaches, 2) The analysis is
entirely mathematical. We demonstrate the method through an
example borrowed from Myers' book. The evaluations show
that the proposed technique outperforms the Myers' approach
in terms of the detected faults per test cases.

The approach should be extended with further evaluations
that compare the method with the other fault-based analyses
such as BOR, MI and MUMCUT, and also include more
applications in the range from small to large scale.

Since the approach has a formal basis, fault coverage and
other metrics used in software testing can also be studied by
means of mathematical proves rather than solely performing
evaluations. Hence, future work will present further
mathematical analyses supported also by extensive evaluations
to prove the superiority of the method. A new CEG Testing
tool is still under development for this purpose.

REFERENCES

[1] I. Chung, “Investigating Effectiveness of Software Testing with Cause-
Effect Graphs,” International Journal of Software Engineering and Its
Applications, Vol.8, No.7 (2014), pp.41-54.

[2] K. Nursimulu and R. L. Probert, , “Cause-Effect Graphing Analysis and
Validation of Requirements,” In Proceedings of CASCON'95 , IBM
Canada Ltd. and National Research Council, pp. 46, 1995.

[3] A. Paradkar, K.C. Tai and M.A. Vouk, “Specification-based Testing
using Cause-Effect Graphs,” Annals of Software Engineering 4 (1997),
pp. 133-157, J.C. Baltzer AG, Science Publishers.

[4] Myers, Glenford J. Art of Software Testing. First edition (1975). John
Wiley and Sons, Inc.,New York, USA.

[5] John H. Reif, “Efficient VLSI fault simulation,” Computers &
Mathematics with Applications, Volume 25, Issue 2, January 1993,
Pages 15-32, ISSN 0898-1221, http://dx.doi.org/10.1016/0898-
1221(93)90219-L.

[6] U. Badhera, G. N. Purohit and S. Taruna. “Fault Based Techniques for
Testing Boolean Expressions: A Survey,” CoRR abs/1202.4836 (2012).

[7] J.J. Chilenski, “An Investigation of Three Forms of the Modified
Condition Decision Coverage (MCDC) Criterion,” Report No:
DOT/FAA/AR-01/18, Boeing Commercial Airplane Group, April 2001.

[8] F.F. Sellers, M.Y. Hsiao, L.W. Bearnson, . “Analyzing Errors with the
Boolean Difference,” IEEE Transactions on Computer, Vol. C-17, No:7
(1968), pp. 676-683.

[9] J.H. Reif, Efficient VLSI fault simulation, Computers & Mathematics
with Applications, Volume 25, Issue 2, January 1993, pp. 15-32.

143143143143

