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Abstract—Cause-Effect Graph Testing is a popular technique 
used for almost four decades. Based on Boolean algebra, this 
technique assists deriving test cases from a given specification 
informally written in a natural language. The present paper 
suggests Boolean differentiation for formalizing this technique. 
The new approach is applied to an example, borrowed from G. 
Myers, for demonstrating and analyzing its features. Evaluations 
show that the new approach outperforms Myers’ approach in 
terms of the detected faults per test cases.  
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I.  INTRODUCTION AND RELATED WORK 
Testing is supposed to reveal weaknesses and flaws in a 

product. Critical parts in software that can cause such 
impairments are twofold. The calculation parts of a program 
that deliver the expected results, i.e., data flow on the one side, 
and selections that change the linearity of the program, i.e., 
control flow on the other side. 

This paper is about testing control flow that represents the 
logic relations of data to enable decisions leading to different 
paths of calculation. Here, Boolean algebra delivers useful 
notions and operational means. Well-known techniques of this 
category include meaningful coverage metrics like 
Condition/Decision Coverage [6][7]. Other software testing 
techniques using Boolean algebra and related methods are 
Meaningful Impact strategy (MI), Branch Operator Strategy 
(BOR), BOR+MI and Multiple Unique True Point/Multiple 
Near False Point (MUMCUT) [6]. 

Requirements are in practice commonly informally 
specified. A popular test technique, introduced by G.J. Myers 
in the seventies of the last century, visualizes logic relations 
between causes and their effects in specifications by Boolean 
algebra-based operations and symbols. Myers enriches this 
visual model, called cause-effect graph (CEG), by constraints 
given by user requirements and then uses for deriving test 
cases. 

CEG technique is straight-ahead and easy to understand, 
which explains its popularity. The difficult part is the 
production of CEG that needs considerably effort and practical 
experience. The analysis of the CEG for producing test is 

explained rather intuitional than algorithmically, although 
some work tried to form it more precisely [3]. This situation 
motivated the authors of this present paper to formalize CEG 
technique. Very briefly explained, the formalization suggested 
by this work makes use of Boolean differentiation method [8] 
for precisely defining logic relations and efficiently  deriving 
test cases from CEG.  

The approach introduced in this paper has two promising 
features. First, it is algorithmic, and thus enables automatizing 
a great part of the Myers’ test technique. Second, as it is based 
on sound mathematics, it avoids the error-proneness and 
redundancy that often encounter manual, intuitional work. To 
demonstrate these both features, an example is borrowed from 
Myers’ original work [4]. The analysis of the results of the 
experiments carried out with both test cases shows that the 
suggested formalization has also considerably good potential 
for cost saving by considerably decreasing the number of test 
cases. 

The next section summarizes the CEG testing technique 
before Section 3 formally introduces Boolean algebraic notions 
used in the paper, including Boolean differentiation. Based on 
these notions, test case generation is explained also in this 
Section 3. Section 4 applies the approach introduced in this 
paper to a comprehensive example taken from Myers’ original 
work. The comparison shows the merits of the formalization 
effort. Section 5 self-critically discusses the new approach and 
concludes the paper by giving also hints for the needs of future 
research. 

II. CAUSE-EFFECT GRAPHS 
Cause-Effect Graphs (CEG) can be considered as a formal 

language into which an informal specification written in a 
natural language is translated. Elements of CEG represent logic 
expressions in a visual notation as shown in Fig. 1. 

A cause is binary-valued atomic sentence in the 
specification and represents a state or an event. An effect is also 
a binary-valued atomic sentence representing an output state or 
action. For each feature in the software specifications, we 
isolate causes that influence this feature’s behaviors. The 
causes and effects are then connected with Boolean operators 
and so a graphical representation is derived. For a more 
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detailed description and examples of cause-effect graphs, refer 
to Myers’ book [4].  

 
Fig. 1. Basic operations of cause-effect graphs.  

The first step of CEG testing identifies causes and effects in 
the requirements, and lists all the causes, effects and 
constraints; connects those leading to the graph, considering 
the relationships. Analysis of CEG enables to generate the test 
cases. The algorithm Myers proposed [3] considers the 
structure of the graph to generate the test cases.  

Apart from testing, CEG helps with identifying the 
inconsistencies in the requirements in the first place. 

The graph can be augmented with constraints that describe 
the combinations of causes and effects that are impossible due 
to syntactic or environmental constraints. Finally, the graph is 
converted into a decision table where each column represents 
an input combination, i.e., a test case. The conversion of the 
graph into the decision table is the key. At this point, several 
heuristics can be applied to avoid combinatorial explosion of 
tests. 

In most cases, certain combination of causes can be 
impossible due to syntactic or environmental considerations. 
Fig. 2 shows the possible constraints. 

 
Fig. 2. Constraints on causes and effects.  

The E constraint (Exclusive-OR) means that, at most, one 
of a and b can be true. The I constraint (Inclusive-OR) states 
that at least one of a and b must be true. The O constraint 
states that one and only one of a and b must be 1 (True). The R 
constraint states that for a to be 1, b must be 1, in other words, 
it is impossible for a to be 1 and b to be 0 (False). The M 

constraint is used to describe the relations among effects. It 
states that if effect e is 1, effect f is forced to 0. 

III. TEST CASE GENERATION 
Myers' test derivation method is shown to have some 

drawbacks by several studies [2] [3].  This problem can be 
overcome by exploiting the fault-based testing techniques for 
Boolean expressions [6], such as Meaningful Impact strategy 
(MI), Branch Operator strategy (BOR), and other strategies 
such as BOR+MI, Multiple Unique True Point/Multiple Near 
False Point (MUMCUT) and Modified Condition/Decision 
Coverage (MCDC). For example, Paradkar et. al. [3] propose 
the CEG-BOR strategy that integrates BOR strategy with CEG 
and analyzes the system comprehensively. This paper proposes 
a new methodology based on Masking MCDC criteria, which 
contributes to the derivation of test cases from a given CEG.  

The approach proposed in this paper starts with extracting 
the Boolean expressions from the CEG. In particular, there 
exists one expression for each effect in the graph. Then MCDC 
analysis is performed to find the tests and finally the test suite 
will be optimized. Note that MCDC analysis can be defined 
using Boolean differentiation, which forms the mathematical 
basis of the methodology.   

A. Boolean Algebra 
In this work, Boolean variables and operations are noted 

and defined as follows: 

 }.,{ where,||1|0:: 21 +⋅=ΘΘ′= xxxx   

Operators, x′ , “ ⋅ ” and “ + ”  denote negation, AND and 
OR respectively. Other operations can be derived from these 
three essential ones. For example, XOR operation can be 
defined such that .yxyxyx ′+′=⊕  We define a Boolean 

function BBn →:ε  where }1,0{=B . 

B. Boolean Differentiation 

Let [ ]Tnccc ,,, 21 K=c denote the vector of  n  causes. 

The differences (or derivatives) of a Boolean function ( )cε  

with respect to c∈ic  is defined as [8]: 

( ) ( ) ( )10 =c=c=
c ii

i

εεε ⊕
∂
∂ c       (1) 

For instance, for a given ( ) 32 c+c=y =cε , we can compute 

'c=c=cy 332 1/ ⊕∂∂ . This result provides a useful insight 

into how 3c  sensitizes the output. If the derivative is 1, the 

output is sensible to 2c  . If  03 =c  then the output is sensible 

to 2c  and vice versa. When computing Boolean derivatives, 
the chain rules given with Equation (2) and (3) are quite useful 
since we can write one Boolean function corresponding to each 
effect and also to intermediate nodes in the graph as can be 
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seen in the example of the next section. The chain rules may 
facilitate the computation of the derivatives of large graphs [9]. 
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The following rules are also very useful in calculations: 
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bababaaaa ′=⊕′=⊕=⊕ ,1,0     (5) 

C. Masking Modified Condition/Decision Coverage (MCDC) 
Analysis 
MCDC states that “Every point of entry and exit in the 

program has taken on all possible outcomes at least once, and 
each condition has been shown to independently affect the 
decision’s outcome”. Masking MCDC is a form of MCDC that 
allows all possible forms of masking to be used to show a 
condition’s independence. For all forms of MCDC together 
with their comparisons and detailed analyses, please refer to 
[7]. Among various forms, we use masking MCDC since it has 
been proved that it produces less test cases while the fault 
coverage remains high. MCDC is suitable to be defined 
formally with mathematics as shown next.  

The Boolean derivative of effect ( )cε  with respect to ic  is 

False if toggling only ic does not toggle the effect, and is True 

if toggling ic does toggle the effect. Hence the test pairs can be 
found such that: 

i. Cause i  must be different in both tests ( ii yx ′= ). 

ii. The effect must be different in both tests 
( )()( yx ff ′= ). 

iii. For test x , cause i  must change the effect 

( 1)( =
∂
∂ x

ix
f

). 

iv. For test y , cause i  must change the effect 

( 1)( =
∂
∂ y

iy
f

). 

The test pairs are also known as independence pairs. An 
independence pair is such a combination of truth vectors that 
the related cause toggles in two vectors while all other 
conditions are fixed or masked. For example, assume that an 

effect has the expression of ( ) 321 ccc=cε . To find an 

independence pair for 1c , both 2c and 3c must be masked, i.e. 

they must be both True. In this case, ( ) 1c=cε , meaning that 

the effect will directly follow 1c . 

D. Adding Constraints into Boolean Expressions 
The graph may contain various constraints as presented in 

the previous section. These constraints must be incorporated 
into Boolean expressions before computing the derivatives. We 
demonstrate how the E constraint seen in Fig. 2 can be 
incorporated.  

 

Fig. 3. Exclusive-OR Constraint.  

The E constraint seen in Fig. 3 states that it must always be 
true that, at most, one of a, b and c can be 1. To identify this 
constraint, the following expression can be written: 

cbcabacbaE ′′+′′+′′=),,(γ   (6) 

If we augment the Boolean expression with this constraint, 
the modified expression becomes:  
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Applying the chain rule given in (2), the derivative of e 
with respect to cause a would be as follows: 
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The analysis and formalization of the other constraints are 
carried out similarly. To keep the paper concise and easy to 
read the analysis, they are not included in the paper.  

IV. EXAMPLE – COMPARISON BY EXPERIMENTS 
A well-known example, the “change subcommand” is 

borrowed from Myers’ book. Refer to [3] for a detailed 
explanation of this example. The cause-effect graph of change 
is shown in Fig. 4. The graph has nine causes ( 921 ,,, ccc L ) 

and four effects ( 4321 ,,, eeee ). The inner nodes are named as 

321 ,, iii . To apply our methodology, Boolean expression 
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equivalent to the graph must be determined. For example, the 
following Boolean expressions for effect 1e  can be written: 
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If the exclusive-OR constraints ),,( 543 cccEγ  and 

),,( 876 cccEγ  are added to the expression 1e , the derivative of 

it with respect to 1c becomes: 
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The set of possible test vectors is the solution to the 
following problem:  

1
1

*
1 =

∂
∂

c
e

         (9) 

A simple calculation finds out that there exist nine different 
solutions, i.e. nine test pairs satisfying the above problem. 
Table I shows the entire solution set. For cause 2, we would 
have again nine test pairs, for cause 3, 4, 5, 6, 7 and 8 we 
would find three pairs for each and for cause 9, we would have 
nine test pairs. Therefore, the total number of possible test pairs 
is 45, i.e. leading to 90 tests. Please note that the maximum 
number of tests is 51229 = . However, many test vectors are 
supposed to be equivalent in these 90 test vectors. Since 
MCDC proposes to find one test pair for each cause, one must 
initially have 18 tests. We should select the smallest set out of 
90 tests so that the total number of tests will be minimal.  

Once all test pairs are computed for nine causes, the 
optimization minimizes the number of test cases. For example, 
among the set of possible test pairs given in Table I, the 
optimization decides to choose the first one, which constitutes 
the first two tests shown in Table II. 

 

 

Fig. 4. Cause-effect graph of the change subcommand. 

 
 

TABLE I.  ALL POSSIBLE TEST PAIRS FORTESTING CAUSE 1 

 Causes Effects 

 1 2 3 4 5 6 7 8 9 1 2 3 4 
 

1 
0 1 1 0 0 1 0 0 1 0 0 0 1 

1 1 1 0 0 1 0 0 1 1 1 0 0 

 
2 

0 1 0 1 0 1 0 0 1 0 0 0 1 

1 1 0 1 0 1 0 0 1 1 1 0 0 

 
3 

0 1 0 0 1 1 0 0 1 0 0 0 1 

1 1 0 0 1 1 0 0 1 1 1 0 0 

 
4 

0 1 1 0 0 0 1 0 1 0 0 0 1 

1 1 1 0 0 0 1 0 1 1 1 0 0 

 
5 

0 1 0 1 0 0 1 0 1 0 0 0 1 

1 1 0 1 0 0 1 0 1 1 1 0 0 

 
6 

0 1 0 0 1 0 1 0 1 0 0 0 1 

1 1 0 0 1 0 1 0 1 1 1 0 0 
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1i

2i

3i

E

E

The CHANGE subcommand is used to modify a character string in 
the current line of the file being edited.  Syntax: C /str1/str2. 
Cause1: The first nonblank character following “C”. Cause2: The 
command contains exactly two “/” characters. Cause3: Str1 has length 
one, Cause2:  Str1 has length 30, Cause3: Str1 has length 2-29. 
Cause4: Str2 has length zero, Cause5: Str2 has length 20, Cause6: 
Str2 has length 1-29. Effect1: The changed line is typed. Effect2: The 
first occurence of str1 is replaced by str2. Effect3: “Not Found” 
printed. Effect4: “Invalid Syntax” printed. 
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7 

0 1 1 0 0 0 0 1 1 0 0 0 1 

1 1 1 0 0 0 0 1 1 1 1 0 0 

 
8 

0 1 0 1 0 0 0 1 1 0 0 0 1 

1 1 0 1 0 0 0 1 1 1 1 0 0 

 
9 

0 1 0 0 1 0 0 1 1 0 0 0 1 

1 1 0 0 1 0 0 1 1 1 1 0 0 

 

TABLE II.  TEST SUITE FOR THE CHANGE SUBCOMMAND EXAMPLE 

 Causes Effects 

 1 2 3 4 5 6 7 8 9 1 2 3 4 
1 0 1 1 0 0 1 0 0 1 0 0 0 1 

2 1 1 1 0 0 1 0 0 1 1 1 0 0 

3 1 0 1 0 0 1 0 0 1 0 0 0 0 

4 1 1 0 0 0 1 0 0 1 0 0 0 1 

5 1 1 0 1 0 1 0 0 1  1 1 0 0 

6 1 1 0 0 1 1 0 0 1 1 1 0 0 

7 1 1 1 0 0 0 0 0 1 0 0 0 1 

8 1 1 1 0 0 0 1 0 1 1 1 0 0 

9 1 1 1 0 0 0 0 1 1 1 1 0 0 

10 1 1 1 0 0 1 0 0 0 0 0 1 0 

 

A. Comparison of Myers’ Technique  with the New Approach  
Myers constructed 22 tests for the change subcommand in 

his book [3], which contains the complete table of these tests. 
The 10 test cases generated by the new approach (see Table II) 
are sufficient to test the system according to Masking Modified 
Cause/Effect Criteria. 

It is desirable to keep the number of tests minimal while 
achieving higher fault coverage. The effectiveness of the test 
suites can be compared by means of two metrics, the number of 
tests and the fault detection capability of them. Two metrics 
are contradictory. The number of the tests depends on the test 
case generation method and the fault coverage highly depends 
on the fault assumption. 

In the example above, the test suite derived using the 
proposed approach outperforms Myers’ technique in terms of 
the number of tests. However, their fault coverage should be 
compared as well. Fault coverage effectiveness is generally 
determined by mutation analysis. A mutant can be created by 
slightly changing the original software, thus a mutant 
represents a fault prototype. A test case kills a mutant if it 
identifies this mutant. 

There are various fault injection techniques to produce 
mutants as fault prototypes known from the literature [6]: 

• Operator Reference Fault (ORF): A binary logic 
operator ‘.’ is replaced by ‘+’ or vice versa. 

• Variable Negation Fault (VNF): An atomic Boolean 
literal is replaced by its negation. 

• Expression Negation Fault (ENF): A sub-expression in 
the statement is replaced by its negation. 

• Variable Reference Fault (VRF): A condition is 
replaced by another input that exists in the statement. 

• Stuck-at-0 (S-a-0): A condition is replaced by 0. 

• Stuck-at-1 (S-a-1): A condition is replaced by 1. 

 The following examples demonstrate how these faults are 
applied to the expressions derived from the graph. Below, 
one sample is given for each fault class: 

531
0-a-s

5431

31
1-a-s

931

21293
VRF

21213

931
ENF

931

8762
VNF

8762

5431
ORF

5431

cciccci

iecie

iicciiicci

ciecie

ccciccci

ccciccci

+=⎯⎯ →⎯++=

=⎯⎯ →⎯=

=⎯⎯ →⎯=

′=⎯⎯ →⎯=

+′+=⎯⎯ →⎯++=

=⎯⎯ →⎯++=

 

B. Setup for Evaluations 
The above mentioned faults are systematically injected into 

the Boolean expression to create the mutants. The fault 
coverage performances of two test suites, produced by the new 
approach and Myers’ approach, are compared against different 
fault classes. For VNF+ENF, there exist twelve nodes until the 
effects, hence the number of all possible mutants 
is 40951212 =− . In the CEG, there seems six Boolean 
operators, thus the maximum number of ORF faults is 

63126 =− . Stuck-at faults are applied to the 
aforementioned twelve nodes, so in these fault classes there can 
be 4095 mutants. In VRF class, two causes are exchanged in 
each mutant. Since there are nine causes, the total number of 
mutants can be 36289 =÷× . When ORF and VRF are 
combined, 23043664 =× mutants are created. Finally, for 
the combination of VRF, VNF and ENF, the number of 
mutants is 147456364096 =× .  

C. Results of the Evaluations 
 

Table III shows the evaluation results. The fault coverage 
percentages of the two approaches are exactly the same, but the 
number of test cases generated by the new approach is less than 
half of the number of the test cases generated by Myers’ 
technique. Hence, we can conclude that our test suite 
considerably outperforms the Myers’ suite in terms of the 
mutants killed (or faults detected) per test cases. Note that fault 
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coverage in VRF class is lower than other classes since VRF 
involves arbitrary exchange of causes, which is hard to detect. 

TABLE III.  EVALUATIONS FOR FAULT COVERAGE OF TWO METHODS 

 
Fault 

Classes 

 
#  of 

Mutants 

CEG-MCDC 
 

Myers  
 

Fault 
Coverage  
(Percent.) 

# of 
Detected 

Faults per 
tests 

Fault 
Coverage 
(Percent.) 

# of 
Detected 

Faults per 
tests 

VNF+ENF 4095 100 409.5 100 186.13 

ORF 63 100 6.3 100 2.86 

S-a-0 4095 100 409.5 100 186.13 

S-a-1 4095 99.9969 409.4 99.9969 186.09 

VRF 36 80.5556 2.9 80.5556 1.32 

ORF+VRF 2304 99.6962 229.7 99.6962 104.41 

VRF+VNF
+ENF 

147456 80.5556 118878.4 80.5556 5399.27 

 

V. CONCLUSION, THREATS TO VALIDITY 
This study proposes a methodology relying on MCDC 

analysis to derive test cases from CEGs. It has two benefits: 1) 
Masking MCDC produces less test cases with a good fault 
coverage compared to similar approaches, 2) The analysis is 
entirely mathematical. We demonstrate the method through an 
example borrowed from Myers' book. The evaluations show 
that the proposed technique outperforms the Myers' approach 
in terms of the detected faults per test cases. 

The approach should be extended with further evaluations 
that compare the method with the other fault-based analyses 
such as BOR, MI and MUMCUT, and also include more 
applications in the range from small to large scale. 

Since the approach has a formal basis, fault coverage and 
other metrics used in software testing can also be studied by 
means of mathematical proves rather than solely performing 
evaluations. Hence, future work will present further 
mathematical analyses supported also by extensive evaluations 
to prove the superiority of the method. A new CEG Testing 
tool is still under development for this purpose.  
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