Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7074
Title: Binder effect on electrochemical performance of zinc electrodes for nickel-zinc batteries
Authors: Cihanoğlu, Gizem
Ebil
Keywords: Zinc electrode
NiZn secondary batteries
PEG
PVA
Publisher: Turkish Chemical Society
Source: Cihanoğlu, G., and Ebil, Ö. (2018). Binder effect on electrochemical performance of zinc electrodes for nickel-zinc batteries. Journal of the Turkish Chemical Society, Section A: Chemistry, 5(Special Issue 1), 65-84. doi:10.18596/jotcsa.370774
Abstract: Polyethylene glycol (PEG) and polyvinyl alcohol (PVA) were used as a zinc electrode binder at different concentrations to enhance the electrochemical behavior of zinc electrodes for nickel-zinc (NiZn) batteries. ZnO powders synthesized by mechanochemical and hydrothermal precipitation methods were mixed with lead oxide, calcium hydroxide and binder to prepare zinc electrodes in pouch cell NiZn batteries. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis reveal that initial morphology of zinc electrode changes drastically regardless of the binder type and its loading after charge/discharge process, and even the charge/discharge process is not complete. The results show that the presence of PEG causes better discharge capacity compared to that of PVA as a binder. Zinc electrode prepared using commercial ZnO powder and 3 wt.% PEG gives the optimum discharge capability, with a specific capacity of approximately 311 mAhg-1, while zinc electrodes prepared using ZnO powder synthesized from ZnCl2 and Zn(NO3)2.6H2O and 6 wt.% PEG exhibit high specific energy of 255 and 275 mAhg-1, respectively. The results suggest a relationship between binder loading and battery capacity, but in-situ analysis of microstructural evolution of zinc electrode during charge/discharge process is needed to confirm this relationship.
URI: http://doi.org/10.18596/jotcsa.370774
http://hdl.handle.net/11147/7074
ISSN: 2149-0120
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
7074.pdfMakale (Article)1.2 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Apr 5, 2024

Page view(s)

352
checked on Apr 22, 2024

Download(s)

188
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.