Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5263
Title: Constraint Removal for Sparse Signal Recovery
Authors: Şahin, Ahmet
Özen, Serdar
Keywords: Compressed sensing
Greedy pursuit
Sparse recovery
Underdetermined system
Signal reconstruction
Publisher: Elsevier Ltd.
Source: Şahin, A. and Özen, S. (2012). Constraint removal for sparse signal recovery. Signal Processing, 92(4), 1172-1175. doi:10.1016/j.sigpro.2011.11.014
Abstract: This paper presents a new iterative algorithm called constraint removal (CR) for the recovery of a sparse signal x from an incomplete number of linear measurements y such that ym× 1= Am× nxn× 1 and m<n. It is empirically demonstrated that the CR algorithm has a recovery performance which is between basis pursuit linear programming (BP-LP) and subspace pursuit (SP) for both zero-one and Gaussian type signals.
URI: http://dx.doi.org/10.1016/j.sigpro.2011.11.014
http://hdl.handle.net/11147/5263
ISSN: 0165-1684
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
5263.pdfMakale173.35 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 21, 2024

Page view(s)

296
checked on Dec 16, 2024

Download(s)

288
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.